Search This Blog

Tuesday, July 24, 2018

DNA nanotechnology

From Wikipedia, the free encyclopedia
 
DNA nanotechnology involves forming artificial, designed nanostructures out of nucleic acids, such as this DNA tetrahedron.[1] Each edge of the tetrahedron is a 20 base pair DNA double helix, and each vertex is a three-arm junction. The 4 DNA strands that form the 4 tetrahedral faces are color-coded.

DNA nanotechnology is the design and manufacture of artificial nucleic acid structures for technological uses. In this field, nucleic acids are used as non-biological engineering materials for nanotechnology rather than as the carriers of genetic information in living cells. Researchers in the field have created static structures such as two- and three-dimensional crystal lattices, nanotubes, polyhedra, and arbitrary shapes, and functional devices such as molecular machines and DNA computers. The field is beginning to be used as a tool to solve basic science problems in structural biology and biophysics, including applications in X-ray crystallography and nuclear magnetic resonance spectroscopy of proteins to determine structures. Potential applications in molecular scale electronics and nanomedicine are also being investigated.

The conceptual foundation for DNA nanotechnology was first laid out by Nadrian Seeman in the early 1980s, and the field began to attract widespread interest in the mid-2000s. This use of nucleic acids is enabled by their strict base pairing rules, which cause only portions of strands with complementary base sequences to bind together to form strong, rigid double helix structures. This allows for the rational design of base sequences that will selectively assemble to form complex target structures with precisely controlled nanoscale features. Several assembly methods are used to make these structures, including tile-based structures that assemble from smaller structures, folding structures using the DNA origami method, and dynamically reconfigurable structures using strand displacement methods. The field's name specifically references DNA, but the same principles have been used with other types of nucleic acids as well, leading to the occasional use of the alternative name nucleic acid nanotechnology.

Fundamental concepts

These four strands associate into a DNA four-arm junction because this structure maximizes the number of correct base pairs, with A matched to T and C matched to G.[2][3] See this image for a more realistic model of the four-arm junction showing its tertiary structure.
 
This double-crossover (DX) supramolecular complex consists of five DNA single strands that form two double-helical domains, on the top and the bottom in this image. There are two crossover points where the strands cross from one domain into the other.[2]

Properties of nucleic acids

Nanotechnology is often defined as the study of materials and devices with features on a scale below 100 nanometers. DNA nanotechnology, specifically, is an example of bottom-up molecular self-assembly, in which molecular components spontaneously organize into stable structures; the particular form of these structures is induced by the physical and chemical properties of the components selected by the designers.[4] In DNA nanotechnology, the component materials are strands of nucleic acids such as DNA; these strands are often synthetic and are almost always used outside the context of a living cell. DNA is well-suited to nanoscale construction because the binding between two nucleic acid strands depends on simple base pairing rules which are well understood, and form the specific nanoscale structure of the nucleic acid double helix. These qualities make the assembly of nucleic acid structures easy to control through nucleic acid design. This property is absent in other materials used in nanotechnology, including proteins, for which protein design is very difficult, and nanoparticles, which lack the capability for specific assembly on their own.[5]

The structure of a nucleic acid molecule consists of a sequence of nucleotides distinguished by which nucleobase they contain. In DNA, the four bases present are adenine (A), cytosine (C), guanine (G), and thymine (T). Nucleic acids have the property that two molecules will only bind to each other to form a double helix if the two sequences are complementary, meaning that they form matching sequences of base pairs, with A only binding to T, and C only to G.[5][6] Because the formation of correctly matched base pairs is energetically favorable, nucleic acid strands are expected in most cases to bind to each other in the conformation that maximizes the number of correctly paired bases. The sequences of bases in a system of strands thus determine the pattern of binding and the overall structure in an easily controllable way. In DNA nanotechnology, the base sequences of strands are rationally designed by researchers so that the base pairing interactions cause the strands to assemble in the desired conformation.[3][5] While DNA is the dominant material used, structures incorporating other nucleic acids such as RNA and peptide nucleic acid (PNA) have also been constructed.[7][8]

Subfields

DNA nanotechnology is sometimes divided into two overlapping subfields: structural DNA nanotechnology and dynamic DNA nanotechnology. Structural DNA nanotechnology, sometimes abbreviated as SDN, focuses on synthesizing and characterizing nucleic acid complexes and materials that assemble into a static, equilibrium end state. On the other hand, dynamic DNA nanotechnology focuses on complexes with useful non-equilibrium behavior such as the ability to reconfigure based on a chemical or physical stimulus. Some complexes, such as nucleic acid nanomechanical devices, combine features of both the structural and dynamic subfields.[9][10]

The complexes constructed in structural DNA nanotechnology use topologically branched nucleic acid structures containing junctions. (In contrast, most biological DNA exists as an unbranched double helix.) One of the simplest branched structures is a four-arm junction that consists of four individual DNA strands, portions of which are complementary in a specific pattern. Unlike in natural Holliday junctions, each arm in the artificial immobile four-arm junction has a different base sequence, causing the junction point to be fixed at a certain position. Multiple junctions can be combined in the same complex, such as in the widely used double-crossover (DX) structural motif, which contains two parallel double helical domains with individual strands crossing between the domains at two crossover points. Each crossover point is, topologically, a four-arm junction, but is constrained to one orientation, in contrast to the flexible single four-arm junction, providing a rigidity that makes the DX motif suitable as a structural building block for larger DNA complexes.[3][5]

Dynamic DNA nanotechnology uses a mechanism called toehold-mediated strand displacement to allow the nucleic acid complexes to reconfigure in response to the addition of a new nucleic acid strand. In this reaction, the incoming strand binds to a single-stranded toehold region of a double-stranded complex, and then displaces one of the strands bound in the original complex through a branch migration process. The overall effect is that one of the strands in the complex is replaced with another one.[9] In addition, reconfigurable structures and devices can be made using functional nucleic acids such as deoxyribozymes and ribozymes, which can perform chemical reactions, and aptamers, which can bind to specific proteins or small molecules.[11]

Structural DNA nanotechnology

Structural DNA nanotechnology, sometimes abbreviated as SDN, focuses on synthesizing and characterizing nucleic acid complexes and materials where the assembly has a static, equilibrium endpoint. The nucleic acid double helix has a robust, defined three-dimensional geometry that makes it possible to predict and design the structures of more complicated nucleic acid complexes. Many such structures have been created, including two- and three-dimensional structures, and periodic, aperiodic, and discrete structures.[10]

Extended lattices

The assembly of a DX array. Left, schematic diagram. Each bar represents a double-helical domain of DNA, with the shapes representing complementary sticky ends. The DX complex at top will combine with other DX complexes into the two-dimensional array shown at bottom.[2] Right, an atomic force microscopy image of the assembled array. The individual DX tiles are clearly visible within the assembled structure. The field is 150 nm across.
 
Left, a model of a DNA tile used to make another two-dimensional periodic lattice. Right, an atomic force micrograph of the assembled lattice.[12][13]
 
An example of an aperiodic two-dimensional lattice that assembles into a fractal pattern. Left, the Sierpinski gasket fractal. Right, DNA arrays that display a representation of the Sierpinski gasket on their surfaces[14]

Small nucleic acid complexes can be equipped with sticky ends and combined into larger two-dimensional periodic lattices containing a specific tessellated pattern of the individual molecular tiles.[10] The earliest example of this used double-crossover (DX) complexes as the basic tiles, each containing four sticky ends designed with sequences that caused the DX units to combine into periodic two-dimensional flat sheets that are essentially rigid two-dimensional crystals of DNA.[15][16] Two-dimensional arrays have been made from other motifs as well, including the Holliday junction rhombus lattice,[17] and various DX-based arrays making use of a double-cohesion scheme.[18][19] The top two images at right show examples of tile-based periodic lattices.

Two-dimensional arrays can be made to exhibit aperiodic structures whose assembly implements a specific algorithm, exhibiting one form of DNA computing.[20] The DX tiles can have their sticky end sequences chosen so that they act as Wang tiles, allowing them to perform computation. A DX array whose assembly encodes an XOR operation has been demonstrated; this allows the DNA array to implement a cellular automaton that generates a fractal known as the Sierpinski gasket. The third image at right shows this type of array.[14] Another system has the function of a binary counter, displaying a representation of increasing binary numbers as it grows. These results show that computation can be incorporated into the assembly of DNA arrays.[21]

DX arrays have been made to form hollow nanotubes 4–20 nm in diameter, essentially two-dimensional lattices which curve back upon themselves.[22] These DNA nanotubes are somewhat similar in size and shape to carbon nanotubes, and while they lack the electrical conductance of carbon nanotubes, DNA nanotubes are more easily modified and connected to other structures. One of many schemes for constructing DNA nanotubes uses a lattice of curved DX tiles that curls around itself and closes into a tube.[23] In an alternative method that allows the circumference to be specified in a simple, modular fashion using single-stranded tiles, the rigidity of the tube is an emergent property.[24]

Forming three-dimensional lattices of DNA was the earliest goal of DNA nanotechnology, but this proved to be one of the most difficult to realize. Success using a motif based on the concept of tensegrity, a balance between tension and compression forces, was finally reported in 2009.[20][25]

Discrete structures

Researchers have synthesized many three-dimensional DNA complexes that each have the connectivity of a polyhedron, such as a cube or octahedron, meaning that the DNA duplexes trace the edges of a polyhedron with a DNA junction at each vertex.[26] The earliest demonstrations of DNA polyhedra were very work-intensive, requiring multiple ligations and solid-phase synthesis steps to create catenated polyhedra.[27] Subsequent work yielded polyhedra whose synthesis was much easier. These include a DNA octahedron made from a long single strand designed to fold into the correct conformation,[28] and a tetrahedron that can be produced from four DNA strands in one step, pictured at the top of this article.[1]

Nanostructures of arbitrary, non-regular shapes are usually made using the DNA origami method. These structures consist of a long, natural virus strand as a "scaffold", which is made to fold into the desired shape by computationally designed short "staple" strands. This method has the advantages of being easy to design, as the base sequence is predetermined by the scaffold strand sequence, and not requiring high strand purity and accurate stoichiometry, as most other DNA nanotechnology methods do. DNA origami was first demonstrated for two-dimensional shapes, such as a smiley face, a coarse map of the Western Hemisphere, and the Mona Lisa painting.[26][29][30] Solid three-dimensional structures can be made by using parallel DNA helices arranged in a honeycomb pattern,[31] and structures with two-dimensional faces can be made to fold into a hollow overall three-dimensional shape, akin to a cardboard box. These can be programmed to open and reveal or release a molecular cargo in response to a stimulus, making them potentially useful as programmable molecular cages.[32][33]

Templated assembly

Nucleic acid structures can be made to incorporate molecules other than nucleic acids, sometimes called heteroelements, including proteins, metallic nanoparticles, quantum dots, and fullerenes. This allows the construction of materials and devices with a range of functionalities much greater than is possible with nucleic acids alone. The goal is to use the self-assembly of the nucleic acid structures to template the assembly of the nanoparticles hosted on them, controlling their position and in some cases orientation.[26][34] Many of these schemes use a covalent attachment scheme, using oligonucleotides with amide or thiol functional groups as a chemical handle to bind the heteroelements. This covalent binding scheme has been used to arrange gold nanoparticles on a DX-based array,[35] and to arrange streptavidin protein molecules into specific patterns on a DX array.[36] A non-covalent hosting scheme using Dervan polyamides on a DX array was used to arrange streptavidin proteins in a specific pattern on a DX array.[37] Carbon nanotubes have been hosted on DNA arrays in a pattern allowing the assembly to act as a molecular electronic device, a carbon nanotube field-effect transistor.[38] In addition, there are nucleic acid metallization methods, in which the nucleic acid is replaced by a metal which assumes the general shape of the original nucleic acid structure,[39] and schemes for using nucleic acid nanostructures as lithography masks, transferring their pattern into a solid surface.[40]

Dynamic DNA nanotechnology

Dynamic DNA nanotechnology often makes use of toehold-mediated strand displacement reactions. In this example, the red strand binds to the single stranded toehold region on the green strand (region 1), and then in a branch migration process across region 2, the blue strand is displaced and freed from the complex. Reactions like these are used to dynamically reconfigure or assemble nucleic acid nanostructures. In addition, the red and blue strands can be used as signals in a molecular logic gate.

Dynamic DNA nanotechnology focuses on forming nucleic acid systems with designed dynamic functionalities related to their overall structures, such as computation and mechanical motion. There is some overlap between structural and dynamic DNA nanotechnology, as structures can be formed through annealing and then reconfigured dynamically, or can be made to form dynamically in the first place.[26][41]

Nanomechanical devices

DNA complexes have been made that change their conformation upon some stimulus, making them one form of nanorobotics. These structures are initially formed in the same way as the static structures made in structural DNA nanotechnology, but are designed so that dynamic reconfiguration is possible after the initial assembly.[9][41] The earliest such device made use of the transition between the B-DNA and Z-DNA forms to respond to a change in buffer conditions by undergoing a twisting motion.[42] This reliance on buffer conditions caused all devices to change state at the same time. Subsequent systems could change states based upon the presence of control strands, allowing multiple devices to be independently operated in solution. Some examples of such systems are a "molecular tweezers" design that has an open and a closed state,[43] a device that could switch from a paranemic-crossover (PX) conformation to a double-junction (JX2) conformation, undergoing rotational motion in the process,[44] and a two-dimensional array that could dynamically expand and contract in response to control strands.[45] Structures have also been made that dynamically open or close, potentially acting as a molecular cage to release or reveal a functional cargo upon opening.[32][46][47]
DNA walkers are a class of nucleic acid nanomachines that exhibit directional motion along a linear track. A large number of schemes have been demonstrated.[41] One strategy is to control the motion of the walker along the track using control strands that need to be manually added in sequence.[48][49] Another approach is to make use of restriction enzymes or deoxyribozymes to cleave the strands and cause the walker to move forward, which has the advantage of running autonomously.[50][51] A later system could walk upon a two-dimensional surface rather than a linear track, and demonstrated the ability to selectively pick up and move molecular cargo.[52] Additionally, a linear walker has been demonstrated that performs DNA-templated synthesis as the walker advances along the track, allowing autonomous multistep chemical synthesis directed by the walker.[53] The synthetic DNA walkers' function is similar to that of the proteins dynein and kinesin.[54]

Strand displacement cascades

Cascades of strand displacement reactions can be used for either computational or structural purposes. An individual strand displacement reaction involves revealing a new sequence in response to the presence of some initiator strand. Many such reactions can be linked into a cascade where the newly revealed output sequence of one reaction can initiate another strand displacement reaction elsewhere. This in turn allows for the construction of chemical reaction networks with many components, exhibiting complex computational and information processing abilities. These cascades are made energetically favorable through the formation of new base pairs, and the entropy gain from disassembly reactions. Strand displacement cascades allow isothermal operation of the assembly or computational process, in contrast to traditional nucleic acid assembly's requirement for a thermal annealing step, where the temperature is raised and then slowly lowered to ensure proper formation of the desired structure. They can also support catalytic function of the initiator species, where less than one equivalent of the initiator can cause the reaction to go to completion.[9][55]

Strand displacement complexes can be used to make molecular logic gates capable of complex computation.[56] Unlike traditional electronic computers, which use electric current as inputs and outputs, molecular computers use the concentrations of specific chemical species as signals. In the case of nucleic acid strand displacement circuits, the signal is the presence of nucleic acid strands that are released or consumed by binding and unbinding events to other strands in displacement complexes. This approach has been used to make logic gates such as AND, OR, and NOT gates.[57] More recently, a four-bit circuit was demonstrated that can compute the square root of the integers 0–15, using a system of gates containing 130 DNA strands.[58]

Another use of strand displacement cascades is to make dynamically assembled structures. These use a hairpin structure for the reactants, so that when the input strand binds, the newly revealed sequence is on the same molecule rather than disassembling. This allows new opened hairpins to be added to a growing complex. This approach has been used to make simple structures such as three- and four-arm junctions and dendrimers.[55]

Applications

DNA nanotechnology provides one of the few ways to form designed, complex structures with precise control over nanoscale features. The field is beginning to see application to solve basic science problems in structural biology and biophysics. The earliest such application envisaged for the field, and one still in development, is in crystallography, where molecules that are difficult to crystallize in isolation could be arranged within a three-dimensional nucleic acid lattice, allowing determination of their structure. Another application is the use of DNA origami rods to replace liquid crystals in residual dipolar coupling experiments in protein NMR spectroscopy; using DNA origami is advantageous because, unlike liquid crystals, they are tolerant of the detergents needed to suspend membrane proteins in solution. DNA walkers have been used as nanoscale assembly lines to move nanoparticles and direct chemical synthesis. Further, DNA origami structures have aided in the biophysical studies of enzyme function and protein folding.[10][59]

DNA nanotechnology is moving toward potential real-world applications. The ability of nucleic acid arrays to arrange other molecules indicates its potential applications in molecular scale electronics. The assembly of a nucleic acid structure could be used to template the assembly of a molecular electronic elements such as molecular wires, providing a method for nanometer-scale control of the placement and overall architecture of the device analogous to a molecular breadboard.[10][26] DNA nanotechnology has been compared to the concept of programmable matter because of the coupling of computation to its material properties.[60]

In a study conducted by a group of scientists from iNANO and CDNA centers in Aarhus University, researchers were able to construct a small multi-switchable 3D DNA Box Origami. The proposed nanoparticle was characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Förster resonance energy transfer (FRET). The constructed box was shown to have a unique reclosing mechanism, which enabled it to repeatedly open and close in response to a unique set of DNA or RNA keys. The authors proposed that this "DNA device can potentially be used for a broad range of applications such as controlling the function of single molecules, controlled drug delivery, and molecular computing."[61]

There are potential applications for DNA nanotechnology in nanomedicine, making use of its ability to perform computation in a biocompatible format to make "smart drugs" for targeted drug delivery. One such system being investigated uses a hollow DNA box containing proteins that induce apoptosis, or cell death, that will only open when in proximity to a cancer cell.[59][62] There has additionally been interest in expressing these artificial structures in engineered living bacterial cells, most likely using the transcribed RNA for the assembly, although it is unknown whether these complex structures are able to efficiently fold or assemble in the cell's cytoplasm. If successful, this could enable directed evolution of nucleic acid nanostructures.[26] Scientists at Oxford University reported the self-assembly of four short strands of synthetic DNA into a cage which can enter cells and survive for at least 48 hours. The fluorescently labeled DNA tetrahedra were found to remain intact in the laboratory cultured human kidney cells despite the attack by cellular enzymes after two days. This experiment showed the potential of drug delivery inside the living cells using the DNA ‘cage’.[63][64] A DNA tetrahedron was used to deliver RNA Interference (RNAi) in a mouse model, reported a team of researchers in MIT. Delivery of the interfering RNA for treatment has showed some success using polymer or lipid, but there are limits of safety and imprecise targeting, in addition to short shelf life in the blood stream. The DNA nanostructure created by the team consists of six strands of DNA to form a tetrahedron, with one strand of RNA affixed to each of the six edges. The tetrahedron is further equipped with targeting protein, three folate molecules, which lead the DNA nanoparticles to the abundant folate receptors found on some tumors. The result showed that the gene expression targeted by the RNAi, luciferase, dropped by more than half. This study shows promise in using DNA nanotechnology as an effective tool to deliver treatment using the emerging RNA Interference technology.[65][66]The DNA tetrahedron was also used in an effort to overcome the phenomena multidrug resistance. Doxorubicin (DOX) was conjugated with the tetrahedron and was loaded into MCF-7 breast cancer cells that contained the P-glycoprotein drug efflux pump. The results of the experiment showed the DOX was not being pumped out and apoptosis of the cancer cells was achieved.The tetrahedron without DOX was loaded into cells to test its biocompatibility, and the structure showed no cytotoxicity itself.[67]

Applications for DNA nanotechnology in nanomedicine also focus on mimicking the structure and function of naturally occurring membrane proteins with designed DNA nanostructures. In 2012, Langecker et al.[68] introduced a pore-shaped DNA origami structure that can self-insert into lipid membranes via hydrophobic cholesterol modifications and induce ionic currents across the membrane. This first demonstration of a synthetic DNA ion channel was followed by a variety of pore-inducing designs ranging from a single DNA duplex,[69] to small tile-based structures,[70][71][72][73][74] and large DNA origami transmembrane porins.[75] Similar to naturally occurring protein ion channels, this ensemble of synthetic DNA-made counterparts thereby spans multiple orders of magnitude in conductance. The study of the membrane-inserting single DNA duplex showed that current must also flow on the DNA-lipid interface as no central channel lumen is present in the design that lets ions pass across the lipid bilayer. This indicated that the DNA-induced lipid pore has a toroidal shape, rather than cylindrical, as lipid headgroups reorient to face towards the membrane-inserted part of the DNA.[69] Researchers from the University of Cambridge and the University of Illinois at Urbana-Champaign then demonstrated that such a DNA-induced toroidal pore can facilitate rapid lipid flip-flop between the lipid bilayer leaflets. Utilizing this effect, they designed a synthetic DNA-built enzyme that flips lipids in biological membranes orders of magnitudes faster than naturally occurring proteins called scramblases.[76] This development highlights the potential of synthetic DNA nanostructures for personalized drugs and therapeutics.

Design

DNA nanostructures must be rationally designed so that individual nucleic acid strands will assemble into the desired structures. This process usually begins with specification of a desired target structure or function. Then, the overall secondary structure of the target complex is determined, specifying the arrangement of nucleic acid strands within the structure, and which portions of those strands should be bound to each other. The last step is the primary structure design, which is the specification of the actual base sequences of each nucleic acid strand.[22][77]

Structural design

The first step in designing a nucleic acid nanostructure is to decide how a given structure should be represented by a specific arrangement of nucleic acid strands. This design step determines the secondary structure, or the positions of the base pairs that hold the individual strands together in the desired shape.[22] Several approaches have been demonstrated:
  • Tile-based structures. This approach breaks the target structure into smaller units with strong binding between the strands contained in each unit, and weaker interactions between the units. It is often used to make periodic lattices, but can also be used to implement algorithmic self-assembly, making them a platform for DNA computing. This was the dominant design strategy used from the mid-1990s until the mid-2000s, when the DNA origami methodology was developed.[22][78]
  • Folding structures. An alternative to the tile-based approach, folding approaches make the nanostructure from one long strand, which can either have a designed sequence that folds due to its interactions with itself, or it can be folded into the desired shape by using shorter, "staple" strands. This latter method is called DNA origami, which allows forming nanoscale two- and three-dimensional shapes (see Discrete structures above).[26][29]
  • Dynamic assembly. This approach directly controls the kinetics of DNA self-assembly, specifying all of the intermediate steps in the reaction mechanism in addition to the final product. This is done using starting materials which adopt a hairpin structure; these then assemble into the final conformation in a cascade reaction, in a specific order (see Strand displacement cascades below). This approach has the advantage of proceeding isothermally, at a constant temperature. This is in contrast to the thermodynamic approaches, which require a thermal annealing step where a temperature change is required to trigger the assembly and favor proper formation of the desired structure.[26][55]

Sequence design

After any of the above approaches are used to design the secondary structure of a target complex, an actual sequence of nucleotides that will form into the desired structure must be devised. Nucleic acid design is the process of assigning a specific nucleic acid base sequence to each of a structure's constituent strands so that they will associate into a desired conformation. Most methods have the goal of designing sequences so that the target structure has the lowest energy, and is thus the most thermodynamically favorable, while incorrectly assembled structures have higher energies and are thus disfavored. This is done either through simple, faster heuristic methods such as sequence symmetry minimization, or by using a full nearest-neighbor thermodynamic model, which is more accurate but slower and more computationally intensive. Geometric models are used to examine tertiary structure of the nanostructures and to ensure that the complexes are not overly strained.[77][79]
Nucleic acid design has similar goals to protein design. In both, the sequence of monomers is designed to favor the desired target structure and to disfavor other structures. Nucleic acid design has the advantage of being much computationally easier than protein design, because the simple base pairing rules are sufficient to predict a structure's energetic favorability, and detailed information about the overall three-dimensional folding of the structure is not required. This allows the use of simple heuristic methods that yield experimentally robust designs. Nucleic acid structures are less versatile than proteins in their function because of proteins' increased ability to fold into complex structures, and the limited chemical diversity of the four nucleotides as compared to the twenty proteinogenic amino acids.[79]

Materials and methods

Gel electrophoresis methods, such as this formation assay on a DX complex, are used to ascertain whether the desired structures are forming properly. Each vertical lane contains a series of bands, where each band is characteristic of a particular reaction intermediate.

The sequences of the DNA strands making up a target structure are designed computationally, using molecular modeling and thermodynamic modeling software.[77][79] The nucleic acids themselves are then synthesized using standard oligonucleotide synthesis methods, usually automated in an oligonucleotide synthesizer, and strands of custom sequences are commercially available.[80] Strands can be purified by denaturing gel electrophoresis if needed,[81] and precise concentrations determined via any of several nucleic acid quantitation methods using ultraviolet absorbance spectroscopy.[82]

The fully formed target structures can be verified using native gel electrophoresis, which gives size and shape information for the nucleic acid complexes. An electrophoretic mobility shift assay can assess whether a structure incorporates all desired strands.[83] Fluorescent labeling and Förster resonance energy transfer (FRET) are sometimes used to characterize the structure of the complexes.[84]

Nucleic acid structures can be directly imaged by atomic force microscopy, which is well suited to extended two-dimensional structures, but less useful for discrete three-dimensional structures because of the microscope tip's interaction with the fragile nucleic acid structure; transmission electron microscopy and cryo-electron microscopy are often used in this case. Extended three-dimensional lattices are analyzed by X-ray crystallography.[85][86]

History

The woodcut Depth (pictured) by M. C. Escher reportedly inspired Nadrian Seeman to consider using three-dimensional lattices of DNA to orient hard-to-crystallize molecules. This led to the beginning of the field of DNA nanotechnology.

The conceptual foundation for DNA nanotechnology was first laid out by Nadrian Seeman in the early 1980s.[87] Seeman's original motivation was to create a three-dimensional DNA lattice for orienting other large molecules, which would simplify their crystallographic study by eliminating the difficult process of obtaining pure crystals. This idea had reportedly come to him in late 1980, after realizing the similarity between the woodcut Depth by M. C. Escher and an array of DNA six-arm junctions.[3][88] Several natural branched DNA structures were known at the time, including the DNA replication fork and the mobile Holliday junction, but Seeman's insight was that immobile nucleic acid junctions could be created by properly designing the strand sequences to remove symmetry in the assembled molecule, and that these immobile junctions could in principle be combined into rigid crystalline lattices. The first theoretical paper proposing this scheme was published in 1982, and the first experimental demonstration of an immobile DNA junction was published the following year.[5][26]

In 1991, Seeman's laboratory published a report on the synthesis of a cube made of DNA, the first synthetic three-dimensional nucleic acid nanostructure, for which he received the 1995 Feynman Prize in Nanotechnology. This was followed by a DNA truncated octahedron. It soon became clear that these structures, polygonal shapes with flexible junctions as their vertices, were not rigid enough to form extended three-dimensional lattices. Seeman developed the more rigid double-crossover (DX) structural motif, and in 1998, in collaboration with Erik Winfree, published the creation of two-dimensional lattices of DX tiles.[3][87][89] These tile-based structures had the advantage that they provided the ability to implement DNA computing, which was demonstrated by Winfree and Paul Rothemund in their 2004 paper on the algorithmic self-assembly of a Sierpinski gasket structure, and for which they shared the 2006 Feynman Prize in Nanotechnology. Winfree's key insight was that the DX tiles could be used as Wang tiles, meaning that their assembly could perform computation.[87] The synthesis of a three-dimensional lattice was finally published by Seeman in 2009, nearly thirty years after he had set out to achieve it.[59]

New abilities continued to be discovered for designed DNA structures throughout the 2000s. The first DNA nanomachine—a motif that changes its structure in response to an input—was demonstrated in 1999 by Seeman. An improved system, which was the first nucleic acid device to make use of toehold-mediated strand displacement, was demonstrated by Bernard Yurke the following year. The next advance was to translate this into mechanical motion, and in 2004 and 2005, several DNA walker systems were demonstrated by the groups of Seeman, Niles Pierce, Andrew Turberfield, and Chengde Mao.[41] The idea of using DNA arrays to template the assembly of other molecules such as nanoparticles and proteins, first suggested by Bruche Robinson and Seeman in 1987,[90] was demonstrated in 2002 by Seeman, Kiehl et al.[91] and subsequently by many other groups.

In 2006, Rothemund first demonstrated the DNA origami method for easily and robustly forming folded DNA structures of arbitrary shape. Rothemund had conceived of this method as being conceptually intermediate between Seeman's DX lattices, which used many short strands, and William Shih's DNA octahedron, which consisted mostly of one very long strand. Rothemund's DNA origami contains a long strand which folding is assisted by several short strands. This method allowed forming much larger structures than formerly possible, and which are less technically demanding to design and synthesize.[89] DNA origami was the cover story of Nature on March 15, 2006.[29] Rothemund's research demonstrating two-dimensional DNA origami structures was followed by the demonstration of solid three-dimensional DNA origami by Douglas et al. in 2009,[31] while the labs of Jørgen Kjems and Yan demonstrated hollow three-dimensional structures made out of two-dimensional faces.[59]

DNA nanotechnology was initially met with some skepticism due to the unusual non-biological use of nucleic acids as materials for building structures and doing computation, and the preponderance of proof of principle experiments that extended the abilities of the field but were far from actual applications. Seeman's 1991 paper on the synthesis of the DNA cube was rejected by the journal Science after one reviewer praised its originality while another criticized it for its lack of biological relevance. By the early 2010s the field was considered to have increased its abilities to the point that applications for basic science research were beginning to be realized, and practical applications in medicine and other fields were beginning to be considered feasible.[59][92] The field had grown from very few active laboratories in 2001 to at least 60 in 2010, which increased the talent pool and thus the number of scientific advances in the field during that decade.

Biocosm: The New Scientific Theory of Evolution: Intelligent Life is the Architect of the Universe

August 26, 2003 by James N. Gardner
Original link:  http://www.kurzweilai.net/biocosm-the-new-scientific-theory-of-evolution-intelligent-life-is-the-architect-of-the-universe 
Excerpted from Biocosm, Inner Ocean Publishing, August 2003. Published on KurzweilAI.net August 26, 2003.

James N. Gardner’s Selfish Biocosm hypothesis proposes that the remarkable anthropic (life-friendly) qualities that our universe exhibits can be explained as incidental consequences of a cosmic replication cycle in which a cosmologically extended biosphere provides a means for the cosmos to produce one or more baby universes. The cosmos is “selfish” in the same sense that Richard Dawkins proposed that genes are focused on their own replication.

Introduction

This book presents a new theory about the role of life and mind in shaping the origin and ultimate fate of the universe. In addition, it reflects on how that new theory might eventually influence religion, ethics, and our self-image as a species.

In important respects, my book is a riff on Charles Darwin’s masterwork, The Origin of Species. Following Darwin’s lead, I have endeavored to use the insights proffered by a wide range of gifted contemporary theorists—cosmologists, evolutionary biologists, computer scientists, and complexologists—to construct the foundation for a novel and somewhat startling synthesis. The essence of that synthesis is that life, mind, and the fate of the cosmos are intimately and indissolubly linked in a very special way. To echo the insightful phrase of Princeton astrophysicist Freeman Dyson, it is my contention that “mind and intelligence are woven into the fabric of our universe in a way that altogether surpasses our comprehension.”

The fundamental credo of science is that physical mysteries that presently elude human understanding will someday, if only in the far distant future, succumb to new explanatory paradigms that are capable of being either validated or discredited through falsifiable predictions. (Falsifiability of claims, which is scientific shorthand for the empirical testability of new hypotheses and their implications, is the hallmark of genuine science, sharply demarcating it from other arenas of human thought and experience like religion, mysticism, and metaphysics.) The basic claim of this book is that the oddly life-friendly character of the fundamental physical laws and constants that prevail in our universe can be explained as the predictable outcome of natural processes—specifically the evolution of life and intelligence over tens of billions of years.

The explanation that I shall put forward to elucidate the linkage between biological evolution and the ultimate fate of the cosmos—a new theory called the “Selfish Biocosm” hypothesis—has been developed in papers and essays published in peer-reviewed scientific journals like Complexity (the journal of the Santa Fe Institute, the leading center for the study of the new sciences of complexity), Acta Astronautica (the journal of the International Academy of Astronautics), and the Journal of the British Interplanetary Society. These papers provide the foundation for a scientifically plausible version of the “strong anthropic principle”—the notion that the physical laws and constants of nature are cunningly structured in such a way as to coax the emergence of life and intelligence from inanimate matter.

The book is divided into six parts. The first part reviews the profound mysteries of an anthropic—or life-friendly—universe. Beginning with ancient Greek philosophy, continuing on through Renaissance thought, and concluding with contemporary speculations by a leading complexity theorist about a mysterious antichaotic force in nature, this section provides the foundation for theoretical speculations about possible reasons why the universe is life-friendly.

The second part of the book plunges deeper into the anthropic mystery and probes some of the novel ideas that contemporary scientists have advanced by way of explanation. These include the conjecture by a leading cosmologist that black holes are gateways to new universes.

The third part makes a risky foray into the dangerous territory that is the situs of the contemporary cultural war between ultraevolutionists and modern creationists, who call themselves “intelligent design theorists.” In a proposed harmonization of these conflicting viewpoints, I suggest that the appearance of cosmic design could conceivably emerge from the operation of evolutionary forces operating at unexpectedly large scales.

The fourth part of the book puts forward my new Selfish Biocosm hypothesis: that the anthropic qualities that our universe exhibits can be explained as incidental consequences of an enormously lengthy cosmic replication cycle in which a cosmologically extended biosphere provides the means by which our cosmos duplicates itself and propagates one or more “baby universes.” The hypothesis suggests that the cosmos is “selfish” in the same metaphorical sense that evolutionary theorist and ultra-Darwinist Richard Dawkins proposed that genes are “selfish.” Under my theory, the cosmos is “selfishly” focused upon the overarching objective of achieving its own replication. To use the terminology favored by economists, self-reproduction is the hypothesized “utility function” of the universe.

An implication of the Selfish Biocosm hypothesis is that the emergence of life and ever more accomplished forms of intelligence is inextricably linked to the physical birth, evolution, and reproduction of the cosmos. This section also provides a set of falsifiable implications by means of which the new hypothesis may be tested.

The fifth part of the book enters a more speculative realm by considering methods by which a sufficiently evolved form of intelligence might replicate the life-friendly physical laws and constants that prevail in our universe. In addition, it advances the idea that if the space-time continuum (i.e., our cosmos in its entirety) constitutes a closed loop linking one gateway of time (the Big Bang) to another (the Big Crunch), then our anthropic universe could conceivably, in the words of Princeton astrophysicist J. Richard Gott III, be its own mother.

The sixth and final section ponders the possible implications of the Selfish Biocosm hypothesis for fundamental evolutionary theory and for our self-image as a species. It also takes a brief look at possible religious and ethical implications of the hypothesis.

A major caveat is in order before we begin. This book is intentionally and forthrightly speculative. Following the example of Darwin, I have attempted to crudely frame a revolutionary explanatory paradigm well before all of the required building materials and construction tools are at hand. Darwin had not the slightest clue, for instance, that DNA is the molecular device used by all life-forms to accomplish the feat of what he called “inheritance.” Indeed, as cell biologist Kenneth R. Miller noted in Finding Darwin’s God, “Charles Darwin worked in almost total ignorance of the fields we now call genetics, cell biology, molecular biology, and biochemistry.” Nonetheless, Darwin managed to put forward a plausible theoretical framework that succeeded magnificently despite the fact that it was utterly dependent on hypothesized but completely unknown mechanisms of genetic transmission.

As Darwin’s example shows, plausible and deliberate speculation plays an essential role in the advancement of science. Speculation is the means by which new paradigms are initially constructed, to be either abandoned later as wrong-headed detours or vindicated as the seeds of scientific revolution.

Scientific speculation plays another equally important role, which is to shine the harsh light of skepticism on accepted verities. As the brilliant and controversial Cornell physicist Thomas Gold put it,
new ideas in science are not right just because they are new. Nor are old ideas wrong just because they are old. A critical attitude is clearly required of every seeker of truth. But one must be equally critical of both the old ideas as of the new. Whenever the established ideas are accepted uncritically and conflicting new evidence is brushed aside or not even reported because it does not fit, that particular science is in deep trouble.
Science is an inherently conservative discipline, and iconoclastic ideas like those entertained by Gold (the existence of a deep hot biosphere far beneath the planet’s surface as well as the nonbiological origin of natural gas and oil) are legitimately relegated to what Skeptic magazine publisher Michael Shermer calls the borderlands of science. But what must never be forgotten is that these dimly illuminated borderlands have frequently proven to be the breeding ground of revolutionary ideas.

Scientific revolutions differ profoundly in character from the normal practice of scientific investigation. Scientific historian Thomas Kuhn observed in his classic The Structure of Scientific Revolutions that normal science consists of puzzle solving within the framework provided by prevailing scientific paradigms (like Newtonian mechanics or Darwinian theory), which are themselves the fruit of earlier revolutions. Revolutionary science, by contrast, is a hazardous but utterly exhilarating process of creative destruction—the erection of fundamental new paradigms to supplant or supplement a foundational structure that has become hopelessly flawed. As science popularizer James Gleick put it in Chaos: Making a New Science,
Then there are the revolutions. A new science arises out of one that has reached a dead end. Often a revolution has an interdisciplinary character—its central discoveries often come from people straying outside the normal bounds of their specialties. The problems that obsess these theorists are not recognized as legitimate lines of inquiry. Thesis proposals are turned down or articles are refused publication. The theorists themselves are not sure whether they would recognize an answer if they saw one. They accept risk to their careers. A few freethinkers working alone, unable to explain where they are heading, afraid even to tell their colleagues what they are doing—that romantic image lies at the heart of Kuhn’s scheme, and it has occurred in real life, time and time again.
The borderlands of science, in short, are the natural habitats of scientific revolutionaries—those free-spirited souls who cheerfully risk professional ridicule in return for the sublime privilege of attempting to pull one more veil from nature’s deeply shrouded visage.

For me, the pathway to the particular scientific borderland that is the subject of this book has meandered through the novel intellectual landscape illuminated by the new sciences of complexity. These sciences, which explore phenomena like “emergence” (the generation of complicated phenomena such as consciousness from the interaction of relatively simple components like individual nerve cells), self-organization, and the operation of complex adaptive systems (like sets of coevolving species comprising a biosphere), have generated not only scholarly excitement but a rapidly rising level of popular interest. The great appeal of these sciences is their inherently holistic quality, so different from the reductionist approach favored by practitioners of so-called hard physical sciences like physics and chemistry. These traditional sciences tend to foster a “silo” mentality that frowns on cross-disciplinary thinking. By contrast, scientists studying complexity deliberately seek out the recurrence of similar patterns of evolutionary development and emergence in a wide range of seemingly disconnected phenomena, from embryology to cultural evolution and from theoretical chemistry to the origin of life.

The key experimental tool utilized by complexologists is not physical measurement but computer simulation; the “experiments” of complexity scientists generally take place in what mathematician John Casti calls “would-be worlds” that exist only in the memory and logic chips of a computer. As Casti puts it, “With our newfound ability to create worlds for all occasions inside the computer, we can play myriad sorts of what-if games with genuine complex systems. No longer do we have to break the system into simpler subsystems or avoid experimentation completely because the experiments are too costly, too impractical, or just plain too dangerous.”

The holistic philosophy embodied in the sciences of complexity is uniquely suited to the mission of the intellectual voyage on which we shall presently embark: to seek out and delineate, as precisely and exhaustively as possible, a specific theory concerning the linkage and “consilience” (in biologist Edward O. Wilson’s resonant phrase) between the basic laws and constants governing the behavior of inanimate nature and the role of life and mind in the universe. As we shall see, the very fact that such consilience and linkage should exist is itself a profound ontological commentary.

Now, why am I—an attorney, a complexity theorist, and a science essayist—qualified to serve as your guide on this daunting journey to the outer limits of cosmological theory? In part because, as an attorney, I am trained to search for faint and elusive patterns of evidence that a layperson might overlook—including evidence that crosses traditional disciplinary lines demarcating the borders of disparate scientific fields.

I first began probing the mysteries of complexity theory in a scholarly paper that proposed an interpretation of the behavior of subnational geopolitical regions (like Flanders in Belgium and Catalonia in Spain) as the operation of complex adaptive systems. After this essay was published in Complexity, I turned my attention to another set of complex phenomena: the probable future coevolution of “memes” (hypothetical units of cultural transmission) and genes in the context of the rapidly emerging technological capacity to engage in human germline genetic engineering. That essay—which is reproduced here in appendix 1—was likewise published in Complexity.

With that foundation in place, I decided to use the approach of complexity theory to probe an odd feature of cosmology that has intrigued me ever since I began studying philosophy and theoretical biology as an undergraduate at Yale: the strangely life-friendly quality of the physical laws and constants that prevail in our universe. As a lawyer, I was goaded by the sense that the patterns of evidence seemed to be pointing in a direction that most mainstream scientists were unwilling to explore. As a student of philosophy and biology, I was convinced that issues of profound importance were being overlooked or deliberately shunned. And as a recent convert to the holistic philosophy represented by the sciences of complexity, I was becoming increasingly convinced that the pathway to genuine enlightenment about the import of an anthropic universe—a universe adapted to the needs of life just as thoroughly as life is adapted to the exigencies imposed by the universe—must surely pass through the strange and intriguing intellectual terrain revealed by these new sciences.

I explored that possibility in an essay published in Complexity entitled “The Selfish Biocosm: Complexity as Cosmology.” I was privileged to have as the chief reviewer for this paper an individual who is one of the most distinguished theoretical cosmologists in the world. And I was equally privileged to have the services of a courageous editor—John Casti—who was willing to take a chance on a relatively unknown theorist advancing a radically new hypothesis about the intimate relationship of life and intelligence to fundamental cosmic forces and laws. That essay, of which this book is an expanded and augmented version, was my first attempt to crudely map out what is, for me at least, a singularly exciting new borderland of science.

Like a medieval European map maker piecing together the borders of an imagined America from travelers’ tales and the misty recollections of ancient mariners, my role (at least as I perceive it) is not to serve as an explorer or experimentalist but rather to sketch the larger features of a vision of cosmic reality profoundly at odds with traditional wisdom. In medieval times, the orthodox view was that the surface of Earth was flat. In the contemporary era, the prevailing scientific mindset is captured curtly and elegantly by Nobelist Steven Weinberg’s pithy epigram that “the more the universe seems comprehensible, the more it also seems pointless.” It is my fervent hope that those who consider seriously the speculative exercise in intellectual cartography presented in this book will conclude that Weinberg’s assertion may eventually prove to be as mistaken as the flat-Earth orthodoxy espoused with such strenuous but utterly misplaced confidence in a bygone age.

With that preface, I invite you to enter what I believe to be the least tamed and most challenging scientific borderland of all: current theorizing about the ultimate nature and destiny of the vast cosmos that envelops our tiny speck of Earth like an endless sea. Perhaps you will find in the speculative discourse that follows some useful nugget of fact or some momentary flash of insight that helps pierce, to at least a minuscule degree, the perplexing darkness that surrounds the outer ramparts of twenty-first-century cosmological science. If so, I will have succeeded in communicating a faint echo of the sense of wonder and awe at the abiding mysteries of nature so perfectly captured by Isaac Newton three hundred years ago: “I do not know what I may appear to the world, but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay undiscovered before me.”

© 2003 James N. Gardner. Reprinted with permission of Inner Ocean Publishing.

Nucleic acid structure

From Wikipedia, the free encyclopedia
 
Nucleic acid primary structureNucleic acid secondary structureNucleic acid tertiary structureNucleic acid quaternary structure
The image above contains clickable links
Interactive image of nucleic acid structure (primary, secondary, tertiary, and quaternary) using DNA helices and examples from the VS ribozyme and telomerase and nucleosome. (PDB: ADNA, 1BNA, 4OCB, 4R4V, 1YMO, 1EQZ​)

Nucleic acid structure refers to the structure of nucleic acids such as DNA and RNA. Chemically speaking, DNA and RNA are very similar. Nucleic acid structure is often divided into four different levels: primary, secondary, tertiary and quaternary.

Primary structure

Chemical structure of DNA

Primary structure consists of a linear sequence of nucleotides that are linked together by phosphodiester bonds. It is this linear sequence of nucleotides that make up the Primary structure of DNA or RNA. Nucleotides consist of 3 components:
  1. Nitrogenous base
    1. Adenine
    2. Guanine
    3. Cytosine
    4. Thymine (present in DNA only)
    5. Uracil (present in RNA only)
  2. 5-carbon sugar which is called deoxyribose (found in DNA) and ribose (found in RNA).
  3. One or more phosphate groups.[1]
The nitrogen bases adenine and guanine are purine in structure and form a glycosidic bond between their 9 nitrogen and the 1' -OH group of the deoxyribose. Cytosine, thymine and uracil are pyrimidines, hence the glycosidic bonds forms between their 1 nitrogen and the 1' -OH of the deoxyribose. For both the purine and pyrimidine bases, the phosphate group forms a bond with the deoxyribose sugar through an ester bond between one of its negatively charged oxygen groups and the 5' -OH of the sugar.[2] The polarity in DNA and RNA is derived from the oxygen and nitrogen atoms in the backbone. Nucleic acids are formed when nucleotides come together through phosphodiester linkages between the 5' and 3' carbon atoms.[3] A Nucleic acid sequence is the order of nucleotides within a DNA (GACT) or RNA (GACU) molecule that is determined by a series of letters. Sequences are presented from the 5' to 3' end and determine the covalent structure of the entire molecule. Sequences can be complementary to another sequence in that the base on each position is complementary as well as in the reverse order. An example of a complementary sequence to AGCT is TCGA. DNA is double-stranded containing both a sense strand and an antisense strand. Therefore, the complementary sequence will be to the sense strand.[4]
 
Nucleic acid design can be used to create nucleic acid complexes with complicated secondary structures such as this four-arm junction. These four strands associate into this structure because it maximizes the number of correct base pairs, with A's matched to T's and C's matched to G's. Image from Mao, 2004.[5]

Complexes with alkali metal ions

There are three potential metal binding groups on nucleic acids: phosphate, sugar and base moieties. Solid-state structure of complexes with alkali metal ions have been reviewed.[6]

Secondary structure

Secondary structure is the set of interactions between bases, i.e., which parts of strands are bound to each other. In DNA double helix, the two strands of DNA are held together by hydrogen bonds. The nucleotides on one strand base pairs with the nucleotide on the other strand. The secondary structure is responsible for the shape that the nucleic acid assumes. The bases in the DNA are classified as purines and pyrimidines. The purines are adenine and guanine. Purines consist of a double ring structure, a six membered and a five membered ring containing nitrogen. The pyrimidines are cytosine and thymine. It has a single ringed structure, a six membered ring containing nitrogen. A purine base always pairs with a pyrimidine base (guanine (G) pairs with cytosine (C) and adenine (A) pairs with thymine (T) or uracil (U)). DNA's secondary structure is predominantly determined by base-pairing of the two polynucleotide strands wrapped around each other to form a double helix. Although the two strands are aligned by hydrogen bonds in base pairs, the stronger forces holding the two strands together are stacking interactions between the bases. These stacking interactions are stabilized by Van der Waals forces and hydrophobic interactions, and show a large amount of local structural variability.[7] There are also two grooves in the double helix, which are called major groove and minor groove based on their relative size.

The secondary structure of RNA consists of a single polynucleotide. Base pairing in RNA occurs when RNA folds between complementarity regions. Both single- and double-stranded regions are often found in RNA molecules. The antiparallel strands form a helical shape.[3] The four basic elements in the secondary structure of RNA are helices, loops, bulges, and junctions. Stem-loop or hairpin loop is the most common element of RNA secondary structure.[8] Stem-loop is formed when the RNA chains fold back on themselves to form a double helical tract called the stem, the unpaired nucleotides forms single stranded region called the loop.[9] Secondary structure of RNA can be predicted by experimental data on the secondary structure elements, helices, loops and bulges. Bulges and internal loops are formed by separation of the double helical tract on either one strand (bulge) or on both strands (internal loops) by unpaired nucleotides. A tetraloop is a four-base pairs hairpin RNA structure. There are three common families of tetraloop in ribosomal RNA: UNCG, GNRA, and CUUG (N is one of the four nucleotides and R is a purine).UNCG is the most stable tetraloop.[10]  Pseudoknot is a RNA secondary structure first identified in turnip yellow mosaic virus.[11] Pseudoknots are formed when nucleotides from the hairpin loop pairs with a single stranded region outside of the hairpin to form a helical segment. H-type fold pseudoknots are best characterized. In H-type fold, nucleotides in the hairpin loop pairs with the bases outside the hairpin stem forming second stem and loop. This causes formation of pseudoknots with two stems and two loops.[12] Pseudoknots are functional elements in RNA structure having diverse function and found in most classes of RNA. DotKnot-PW method is used for comparative pseudoknots prediction. The main points in the DotKnot-PW method is scoring the similarities found in stems, secondary elements and H-type pseudoknots.[13]

Tertiary structure

DNA structure and bases
 
A-B-Z-DNA Side View

Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3-dimensional shape. There are 4 areas in which the structural forms of DNA can differ.
  1. Handedness – right or left
  2. Length of the helix turn
  3. Number of base pairs per turn
  4. Difference in size between the major and minor grooves[3]
The tertiary arrangement of DNA's double helix in space includes B-DNA, A-DNA and Z-DNA.

B-DNA is the most common form of DNA in vivo and is a more narrow, elongated helix than A-DNA. Its wide major groove makes it more accessible to proteins. On the other hand, it has a narrow minor groove. B-DNA's favored conformations occur at high water concentrations; the hydration of the minor groove appears to favor B-DNA. B-DNA base pairs are nearly perpendicular to the helix axis. The sugar pucker which determines the shape of the a-helix, whether the helix will exist in the A-form or in the B-form, occurs at the C2'-endo.[14]

A-DNA, is a form of the DNA duplex observed under dehydrating conditions. It is shorter and wider than B-DNA. RNA adopts this double helical form, and RNA-DNA duplexes are mostly A-form, but B-form RNA-DNA duplexes have been observed.[15] In localized single strand dinucleotide contexts, RNA can also adopt the B-form without pairing to DNA.[16] A-DNA has a deep, narrow major groove which does not make it easily accessible to proteins. On the other hand, its wide, shallow minor groove makes it accessible to proteins but with lower information content than the major groove. Its favored conformation is at low water concentrations. A-DNAs base pairs are tilted relative to the helix axis, and are displaced from the axis. The sugar pucker occurs at the C3'-endo and in RNA 2'-OH inhibits C2'-endo conformation.[14] Long considered little more than a laboratory artifice, A-DNA is now known to have several biological functions.

Z-DNA is a relatively rare left-handed double-helix. Given the proper sequence and superhelical tension, it can be formed in vivo but its function is unclear. It has a more narrow, more elongated helix than A or B. Z-DNA's major groove is not really a groove, and it has a narrow minor groove. The most favored conformation occurs when there are high salt concentrations. There are some base substitutions but they require an alternating purine-pyrimidine sequence. The N2-amino of G H-bonds to 5' PO, which explains the slow exchange of protons and the need for the G purine. Z-DNA base pairs are nearly perpendicular to the helix axis. Z-DNA does not contain single base-pairs but rather a GpC repeat with P-P distances varying for GpC and CpG. On the GpC stack there is good base overlap, whereas on the CpG stack there is less overlap. Z-DNA's zigzag backbone is due to the C sugar conformation compensating for G glycosidic bond conformation. The conformation of G is syn, C2'-endo and for C it is anti, C3'-endo.[14]

A linear DNA molecule having free ends can rotate, to adjust to changes of various dynamic processes in the cell, by changing how many times the two chains of its double helix twist around each other. Some DNA molecules are circular and are topologically constrained. More recently circular RNA was described as well to be a natural pervasive class of nucleic acids, expressed in many organisms (see circRNA).

A covalently closed, circular DNA (also known as cccDNA) is topologically constrained as the number of times the chains coiled around one other cannot change. This cccDNA can be supercoiled, which is the tertiary structure of DNA. Supercoiling is characterized by the linking number, twist and writhe. The linking number (Lk) for circular DNA is defined as the number of times one strand would have to pass through the other strand to completely separate the two strands. The linking number for circular DNA can only be changed by breaking of a covalent bond in one of the two strands. Always an integer, the linking number of a cccDNA is the sum of two components: twists (Tw) and writhes (Wr).[17]
Lk=Tw+Wr
Twists are the number of times the two strands of DNA are twisted around each other. Writhes are number of times the DNA helix crosses over itself. DNA in cells is negatively supercoiled and has the tendency to unwind. Hence the separation of strands is easier in negatively supercoiled DNA than in relaxed DNA. The two components of supercoiled DNA are solenoid and plectonemic. The plectonemic supercoil is found in prokaryotes, while the solenoidal supercoiling is mostly seen in eukaryotes.

Quaternary structure

The quaternary structure of nucleic acids is similar to that of protein quaternary structure. Although some of the concepts are not exactly the same, the quaternary structure refers to a higher-level of organization of nucleic acids. Moreover, it refers to interactions of the nucleic acids with other molecules. The most commonly seen form of higher-level organization of nucleic acids is seen in the form of chromatin which leads to its interactions with the small proteins histones. Also, the quaternary structure refers to the interactions between separate RNA units in the ribosome or spliceosome.

Human brain

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Human_brain Human brain The human br...