Search This Blog

Saturday, February 9, 2019

Lawrence Livermore National Laboratory

From Wikipedia, the free encyclopedia

Lawrence Livermore National Laboratory
Lawrence Livermore National Laboratory logo.svg
Motto"Science and Technology
on a mission."
Established1952 by the University of California; 67 years ago
Research typeNuclear and basic science
Budget$1.5 billion
DirectorWilliam H. Goldstein
Staff5,800
LocationLivermore, California, U.S.
37.69°N 121.71°WCoordinates: 37.69°N 121.71°W
Campus1 square mile (2.6 km2)
Operating agency
Lawrence Livermore
National Security, LLC
Websitewww.llnl.gov
www.llnsllc.com
Map
Lawrence Livermore National Laboratory is located in California
Lawrence Livermore National Laboratory
Location in California

Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.

Overview

Aerial view of Lawrence Livermore National Laboratory

LLNL is self-described as "a premier research and development institution for science and technology applied to national security." Its principal responsibility is ensuring the safety, security and reliability of the nation's nuclear weapons through the application of advanced science, engineering and technology. The Laboratory also applies its special expertise and multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness. 

The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2) remote experimental test site, called Site 300, situated about 15 miles (24 km) southeast of the main lab site. LLNL has an annual budget of about $1.5 billion and a staff of roughly 5,800 employees.

History

Origins

LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence, director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility. 

The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills above the UC campus, including one of the first experiments in the magnetic approach to confined thermonuclear reactions (i.e. fusion). About half an hour southeast of Berkeley, the Livermore site provided much greater security for classified projects than an urban university campus.

Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood (the magnetic-fusion program), Project Whitney (the weapons-design program), diagnostic weapon experiments (both for the Los Alamos and Livermore laboratories), and a basic physics program. York and the new lab embraced the Lawrence "big science" approach, tackling challenging projects with physicists, chemists, engineers, and computational scientists working together in multidisciplinary teams. Lawrence died in August 1958 and shortly after, the university's board of regents named both laboratories for him, as the Lawrence Radiation Laboratory

Historically, the Berkeley and Livermore laboratories have had very close relationships on research projects, business operations, and staff. The Livermore Lab was established initially as a branch of the Berkeley laboratory. The Livermore lab was not officially severed administratively from the Berkeley lab until 1971. To this day, in official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL's remote test location as Site 300.

Renaming

The laboratory was renamed Lawrence Livermore Laboratory (LLL) in 1971. On October 1, 2007 LLNS assumed management of LLNL from the University of California, which had exclusively managed and operated the Laboratory since its inception 55 years before. The laboratory was honored in 2012 by having the synthetic chemical element livermorium named after it. The LLNS takeover of the laboratory has been controversial. In May 2013, an Alameda County jury awarded over $2.7 million to five former laboratory employees who were among 430 employees LLNS laid off during 2008. The jury found that LLNS breached a contractual obligation to terminate the employees only for "reasonable cause." The five plaintiffs also have pending age discrimination claims against LLNS, which will be heard by a different jury in a separate trial. There are 125 co-plaintiffs awaiting trial on similar claims against LLNS. The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.

On March 14, 2011, the City of Livermore officially expanded the city's boundaries to annex LLNL and move it within the city limits. The unanimous vote by the Livermore city council expanded Livermore's southeastern boundaries to cover 15 land parcels covering 1,057 acres (4.28 km2) that comprise the LLNL site. The site was formerly an unincorporated area of Alameda County. The LLNL campus continues to be owned by the federal government.

Major projects

Nuclear weapons

From its inception, Livermore focused on new weapon design concepts; as a result, its first three nuclear tests were unsuccessful. The lab persevered and its subsequent designs proved increasingly successful. In 1957, the Livermore Lab was selected to develop the warhead for the Navy's Polaris missile. This warhead required numerous innovations to fit a nuclear warhead into the relatively small confines of the missile nosecone.

During the Cold War, many Livermore-designed warheads entered service. These were used in missiles ranging in size from the Lance surface-to-surface tactical missile to the megaton-class Spartan antiballistic missile. Over the years, LLNL designed the following warheads: W27 (Regulus cruise missile; 1955; joint with Los Alamos), W38 (Atlas/Titan ICBM; 1959), B41 (B52 bomb; 1957), W45 (Little John/Terrier missiles; 1956), W47 (Polaris SLBM; 1957), W48 (155-mm howitzer; 1957), W55 (submarine rocket; 1959), W56 (Minuteman ICBM; 1960), W58 (Polaris SLBM; 1960), W62 (Minuteman ICBM; 1964), W68 (Poseidon SLBM; 1966), W70 (Lance missile; 1969), W71 (Spartan missile; 1968), W79 (8-in. artillery gun; 1975), W82 (155-mm howitzer; 1978), B83 (modern strategic bomb; 1979), and W87 (Peacekeeper/MX ICBM; 1982). The W87 and the B83 are the only LLNL designs still in the U.S. nuclear stockpile.

With the collapse of the Soviet Union in 1991 and the end of the Cold War, the United States began a moratorium on nuclear testing and development of new nuclear weapon designs. To sustain existing warheads for the indefinite future, a science-based Stockpile Stewardship Program (SSP) was defined that emphasized the development and application of greatly improved technical capabilities to assess the safety, security, and reliability of existing nuclear warheads without the use of nuclear testing. Confidence in the performance of weapons, without nuclear testing, is maintained through an ongoing process of stockpile surveillance, assessment and certification, and refurbishment or weapon replacement. 

With no new designs of nuclear weapons, the warheads in the U.S. stockpile must continue to function far past their original expected lifetimes. As components and materials age, problems can arise. Stockpile Life Extension Programs can extend system lifetimes, but they also can introduce performance uncertainties and require maintenance of outdated technologies and materials. Because there is concern that it will become increasingly difficult to maintain high confidence in the current warheads for the long term, the Department of Energy/National Nuclear Security Administration initiated the Reliable Replacement Warhead (RRW) Program. RRW designs could reduce uncertainties, ease maintenance demands, and enhance safety and security. In March 2007, the LLNL design was chosen for the Reliable Replacement Warhead. Since that time, Congress has not allocated funding for any further development of the RRW.

Plutonium research

LLNL conducts research into the properties and behavior of plutonium to learn how plutonium performs as it ages and how it behaves under high pressure (e.g., with the impact of high explosives). Plutonium has seven temperature-dependent solid allotropes. Each possesses a different density and crystal structure. Alloys of plutonium are even more complex; multiple phases can be present in a sample at any given time. Experiments are being conducted at LLNL and elsewhere to measure the structural, electrical and chemical properties of plutonium and its alloys and to determine how these materials change over time. Such measurements will enable scientists to better model and predict plutonium's long-term behavior in the aging stockpile.

The Lab's plutonium research is conducted in a specially designed facility called the SuperBlock, with emphasis on safety and security. Work with highly enriched uranium is also conducted here. In March 2008, the National Nuclear Security Administration (NNSA) presented its preferred alternative for the transformation of the nation's nuclear weapons complex. Under this plan, LLNL would be a center of excellence for nuclear design and engineering, a center of excellence for high explosive research and development, and a science magnet in high-energy-density (i.e., laser) physics. In addition, most of its special nuclear material would be removed and consolidated at a more central, yet-to-be-named site.

On September 30, 2009, the NNSA announced that about two thirds of the special nuclear material (e.g., plutonium) at LLNL requiring the highest level of security protection had been removed from LLNL. The move was part of NNSA's efforts initiated in October 2006 to consolidate special nuclear material at five sites by 2012, with significantly reduced square footage at those sites by 2017. The federally mandated project intends to improve security and reduce security costs, and is part of NNSA's overall effort to transform the Cold War era "nuclear weapons" enterprise into a 21st-century "nuclear security" enterprise. The original date to remove all high-security nuclear material from LLNL, based on equipment capability and capacity, was 2014. NNSA and LLNL developed a timeline to remove this material as early as possible, accelerating the target completion date to 2012.

Global security program

The Lab's work in global security aims to reduce and mitigate the dangers posed by the spread or use of weapons of mass destruction and by threats to energy and environmental security. Livermore has been working on global security and homeland security for decades, predating both the collapse of the Soviet Union in 1991 and the September 11, 2001, terrorist attacks. LLNL staff have been heavily involved in the cooperative nonproliferation programs with Russia to secure at-risk weapons materials and assist former weapons workers in developing peaceful applications and self-sustaining job opportunities for their expertise and technologies. In the mid-1990s, Lab scientists began efforts to devise improved biodetection capabilities, leading to miniaturized and autonomous instruments that can detect biothreat agents in a few minutes instead of the days to weeks previously required for DNA analysis.

Today, Livermore researchers address a spectrum of threats – radiological/nuclear, chemical, biological, explosives, and cyber. They combine physical and life sciences, engineering, computations, and analysis to develop technologies that solve real-world problems. Activities are grouped into five programs:
  • Nonproliferation. Preventing the spread of materials, technology and expertise related to weapons of mass destruction (WMD) and detecting WMD proliferation activities worldwide.
  • Domestic security: Anticipating, innovating and delivering technological solutions to prevent and mitigate devastating high-leverage attacks on U.S. soil.
  • Defense: Developing and demonstrating new concepts and capabilities to help the Department of Defense prevent and deter harm to the nation, its citizens and its military forces.
  • Intelligence: Working at the intersection of science, technology and analysis to provide insight into the threats to national security posed by foreign entities.
  • Energy and environmental security: Furnishing scientific understanding and technological expertise to devise energy and environmental solutions at global, regional and local scales.

Other programs

LLNL supports capabilities in a broad range of scientific and technical disciplines, applying current capabilities to existing programs and developing new science and technologies to meet future national needs.
  • The LLNL chemistry, materials, and life science research focuses on chemical engineering, nuclear chemistry, materials science, and biology and bio-nanotechnology.
  • Physics thrust areas include condensed matter and high-pressure physics, optical science and high energy density physics, medical physics and biophysics, and nuclear, particle and accelerator physics.
  • In the area of energy and environmental science, Livermore's emphasis is on carbon and climate, energy, water and the environment, and the national nuclear waste repository.
  • The LLNL engineering activities include micro- and nanotechnology, lasers and optics, biotechnology, precision engineering, nondestructive characterization, modeling and simulation, systems and decision science, and sensors, imaging and communications.
  • The LLNL is very strong in computer science, with thrust areas in computing applications and research, integrated computing and communications systems, and cyber security.
Lawrence Livermore National Laboratory has worked out several energy technologies in the field of coal gasification, shale oil extraction, geothermal energy, advanced battery research, solar energy, and fusion energy. Main oil shale processing technologies worked out by the Lawrence Livermore National Laboratory are LLNL HRS (hot-recycled-solid), LLNL RISE (in situ extraction technology) and LLNL radiofrequency technologies.

Key accomplishments

Over its 60-year history, Lawrence Livermore has made many scientific and technological achievements, including:
On July 17, 2009 LLNL announced that the Laboratory had received eight R&D 100 Awards – more than it had ever received in the annual competition. The previous LLNL record of seven awards was reached five times – in 1987, 1988, 1997, 1998 and 2006. 

Also known as the "Oscars of invention", the awards are given each year for the development of cutting-edge scientific and engineering technologies with commercial potential. The awards raise LLNL's total number of awards since 1978 to 129. 

On October 12, 2016, LLNL released the results of computerized modeling of Mars' moon Phobos, finding that it has a connection with keeping the Earth safe from asteroids.

Key facilities

  • Biosecurity and Nanoscience Laboratory. Researchers apply advances in nanoscience to develop novel technologies for the detection, identification, and characterization of harmful biological pathogens (viruses, spores, and bacteria) and chemical toxins.
  • Center for Accelerator Mass Spectrometry: LLNL's Center for Accelerator Mass Spectrometry (CAMS) develops and applies a wide range of isotopic and ion-beam analytical tools used in basic research and technology development, addressing a spectrum of scientific needs important to the Laboratory, the university community, and the nation. CAMS is the world's most versatile and productive accelerator mass spectrometry facility, performing more than 25,000 AMS measurement operations per year.
  • High Explosives Applications Facility and Energetic Materials Center: At HEAF, teams of scientists, engineers, and technicians address nearly all aspects of high explosives: research, development and testing, material characterization, and performance and safety tests. HEAF activities support the Laboratory's Energetic Materials Center, a national resource for research and development of explosives, pyrotechnics, and propellants.
  • National Atmospheric Release Advisory Center: NARAC is a national support and resource center for planning, real-time assessment, emergency response, and detailed studies of incidents involving a wide variety of hazards, including nuclear, radiological, chemical, biological, and natural atmospheric emissions.
  • National Ignition Facility: This 192-beam, stadium-size laser system will be used to compress fusion targets to conditions required for thermonuclear burn. Experiments at NIF will study physical processes at conditions that exist only in the interior of stars and in exploding nuclear weapons (see National Ignition Facility and photon science).
  • Superblock: This unique high-security facility houses modern equipment for research and engineering testing of nuclear materials and is the place where plutonium expertise is developed, nurtured, and applied. Research on highly enriched uranium also is performed here.
  • Livermore Computing Complex: LLNL's Livermore Computing Complex houses some of the world's most powerful computers, including the 20 petaflop Sequoia, the 5-petaflop Vulcan system; Jade and Quartz systems at 3 petaflops each; the 970-teraflop Zin system; 431-teraflop Cab system; and additional large multi-core, multi-socket Linux clusters with various processor types. The newest machine, Sierra, occupied the No. 3 position on the TOP500 list in June 2018. The complex has nearly 10,000 square feet of machine floor space, supporting both classified and unclassified national security programs.
  • Titan Laser: Titan is a combined nanosecond-long pulse and ultrashort-pulse (subpicosecond) laser, with hundreds of joules of energy in each beam. This petawatt-class laser is used for a range of high-energy density physics experiments, including the science of fast ignition for inertial confinement fusion energy.

Largest computers

Throughout its history, LLNL has been a leader in computers and scientific computing. Even before the Livermore Lab opened its doors, E.O. Lawrence and Edward Teller recognized the importance of computing and the potential of computational simulation. Their purchase of one of the first UNIVAC computers set the precedent for LLNL's history of acquiring and exploiting the fastest and most capable supercomputers in the world. A succession of increasingly powerful and fast computers have been used at the Lab over the years. LLNL researchers use supercomputers to answer questions about subjects such as materials science simulations, global warming, and reactions to natural disasters.

LLNL has a long history of developing computing software and systems. Initially, there was no commercially available software, and computer manufacturers considered it the customer's responsibility to develop their own. Users of the early computers had to write not only the codes to solve their technical problems, but also the routines to run the machines themselves. Today, LLNL computer scientists focus on creating the highly complex physics models, visualization codes, and other unique applications tailored to specific research requirements. A great deal of software also has been written by LLNL personnel to optimize the operation and management of the computer systems, including operating system extensions such as CHAOS (Linux Clustering) and resource management packages such as SLURM. LLNL also initiated and continues leading the development of ZFS on Linux, the official port of ZFS to the Linux operating system.

Livermore Valley Open Campus (LVOC)

In August 2009 a joint venture was announced between Sandia National Laboratories/California campus and LLNL to create an open, unclassified research and development space called the Livermore Valley Open Campus (LVOC). The motivation for the LVOC stems from current and future national security challenges that require increased coupling to the private sector to understand threats and deploy solutions in areas such as high performance computing, energy and environmental security, cyber security, economic security, and non-proliferation.

The LVOC is modeled after research and development campuses found at major industrial research parks and other U.S. Department of Energy laboratories with campus-like security, a set of business and operating rules devised to enhance and accelerate international scientific collaboration and partnerships with U.S. government agencies, industry and academia. Ultimately, the LVOC will consist of an approximately 110-acre parcel along the eastern edge of the Livermore Laboratory and Sandia sites, and will house additional conference space, collaboration facilities and a visitor's center to support educational and research activities.

Objectives of LVOC
  • Enhance the two laboratories' national security missions by substantially increasing engagement with the private sector and academic community.
  • Stay at the forefront of the science, technology and engineering fields.
  • Ensure a quality future workforce by expanding opportunities for open engagement of the broader scientific community.

Sponsors

LLNL's principal sponsor is the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Office of Defense Programs, which supports its stockpile stewardship and advanced scientific computing programs. Funding to support LLNL's global security and homeland security work comes from the DOE/NNSA Office of Defense Nuclear Nonproliferation as well as the Department of Homeland Security. LLNL also receives funding from DOE's Office of Science, Office of Civilian Radioactive Waste Management, and Office of Nuclear Energy. In addition, LLNL conducts work-for-others research and development for various Defense Department sponsors, other federal agencies, including NASA, Nuclear Regulatory Commission (NRC), National Institutes of Health, and Environmental Protection Agency, a number of California State agencies, and private industry.

Budget

For Fiscal Year 2009 LLNL spent $1.497 billion on research and laboratory operations activities:
Research/Science Budget:
  • National Ignition Facility - $301.1 million
  • Nuclear Weapon Deterrent (Safety/Security/Reliability) - $227.2 million
  • Advance Simulation and Computing - $221.9 million
  • Nonproliferation - $152.2 million
  • Department of Defense - $125.9 million
  • Basic and Applied Science - $86.6 million
  • Homeland Security - $83.9 million
  • Energy - $22.4 million
Site Management/Operations Budget:
  • Safeguards/Security - $126.5 million
  • Facility Operations - $118.2 million
  • Environmental Restoration - $27.3 million

Directors

The LLNL Director is appointed by the board of governors of Lawrence Livermore National Security, LLC (LLNS) and reports to the board. The laboratory director also serves as the president of LLNS. Over the course of its history, the following scientists have served as LLNL director:

Organization

The LLNL Director is supported by a senior executive team consisting of the Deputy Director, the Deputy Director for Science and Technology, Principal Associate Directors, and other senior executives who manage areas/functions directly reporting to the Laboratory Director.

The Directors Office is organized into these functional areas/offices:
  • Chief Information Office
  • Contractor Assurance and Continuous Improvement
  • Environment, Safety and Health
  • Government and External Relations
  • Independent Audit and Oversight
  • Office of General Counsel
  • Prime Contract Management Office
  • Quality Assurance Office
  • Security Organization
  • LLNS, LLC Parent Oversight Office
The Laboratory is organized into four principal directorates, each headed by a Principal Associate Director:
  • Global Security
  • Weapons and Complex Integration
  • National Ignition Facility and Photon Science
  • Operations and Business
    • Business
    • Facilities & Infrastructure
    • Institutional Facilities Management
    • Integrated Safety Management System Project Office
    • Nuclear Operations
    • Planning and Financial Management
    • Staff Relations
    • Strategic Human Resources Management
Three other directorates are each headed by an Associate Director who reports to the LLNL Director:
  • Computation
  • Engineering
  • Physical & Life Sciences

Corporate management

The LLNL Director reports to the Lawrence Livermore National Security, LLC (LLNS) Board of Governors, a group of key scientific, academic, national security and business leaders from the LLNS partner companies that jointly own and control LLNS. The LLNS Board of Governors has a total of 16 positions, with six of these Governors constituting an Executive Committee. All decisions of the Board are made by the Governors on the Executive Committee. The other Governors are advisory to the Executive Committee and do not have voting rights.

The University of California is entitled to appoint three Governors to the Executive Committee, including the Chair. Bechtel is also entitled to appoint three Governors to the Executive Committee, including the Vice Chair. One of the Bechtel Governors must be a representative of Babcock & Wilcox (B&W) or the Washington Division of URS Corporation (URS), who is nominated jointly by B&W and URS each year, and who must be approved and appointed by Bechtel. The Executive Committee has a seventh Governor who is appointed by Battelle; they are non-voting and advisory to the Executive Committee. The remaining Board positions are known as Independent Governors (also referred to as Outside Governors), and are selected from among individuals, preferably of national stature, and can not be employees or officers of the partner companies. 

The University of California-appointed Chair has tie-breaking authority over most decisions of the Executive Committee. The Board of Governors is the ultimate governing body of LLNS and is charged with overseeing the affairs of LLNS in its operations and management of LLNL.

LLNS managers and employees who work at LLNL, up to and including the President/Laboratory Director, are generally referred to as Laboratory Employees. All Laboratory Employees report directly or indirectly to the LLNS President. While most of the work performed by LLNL is funded by the federal government, Laboratory employees are paid by LLNS which is responsible for all aspects of their employment including providing health care benefits and retirement programs. 

Within the Board of Governors, authority resides in the Executive Committee to exercise all rights, powers, and authorities of LLNS, excepting only certain decisions that are reserved to the parent companies. The LLNS Executive Committee is free to appoint officers or other managers of LLNS and LLNL, and may delegate its authorities as it deems appropriate to such officers, employees, or other representatives of LLNS/LLNL. The Executive Committee may also retain auditors, attorneys, or other professionals as necessary. For the most part the Executive Committee has appointed senior managers at LLNL as the primary officers of LLNS. As a practical matter most operational decisions are delegated to the President of LLNS, who is also the Laboratory Director. The positions of President/Laboratory Director and Deputy Laboratory Director are filled by joint action of the Chair and Vice Chair of the Executive Committee, with the University of California nominating the President/Laboratory Director and Bechtel nominating the Deputy Laboratory Director.

The current LLNS Chairman is Norman J. Pattiz, founder and chairman of Westwood One, America's largest radio network, who also currently serves on the Board of Regents of the University of California. The Vice Chairman is J. Scott Ogilvie, president of Bechtel Systems & Infrastructure, Inc., who also serves on the Board of Directors of Bechtel Group, Inc. (BGI) and on the BGI Audit Committee.

Public protests

The Livermore Action Group organized many mass protests, from 1981 to 1984, against nuclear weapons which were being produced by the Lawrence Livermore National Laboratory. Peace activists Ken Nightingale and Eldred Schneider were involved. On June 22, 1982, more than 1,300 anti-nuclear protesters were arrested in a nonviolent demonstration. More recently, there has been an annual protest against nuclear weapons research at Lawrence Livermore. In August 2003, 1,000 people protested at Livermore Labs against "new-generation nuclear warheads". In the 2007 protest, 64 people were arrested. More than 80 people were arrested in March 2008 while protesting at the gates.

DARPA

From Wikipedia, the free encyclopedia

Defense Advanced Research Projects Agency
DARPA logo (current).png
Agency overview
FormedFebruary 7, 1958; 61 years ago (as ARPA)
HeadquartersArlington, Virginia, U.S.
Employees240
Annual budgetUS$2.97 billion
Agency executives
  • Dr. Steven Walker, Director
  • Dr. Peter Highnam, Deputy Director
Parent agencyU.S. Department of Defense
WebsiteDARPA.mil

DARPA's former headquarters in the Virginia Square neighborhood of Arlington. The agency is currently located in a new building at 675 North Randolph St.

The Defense Advanced Research Projects Agency (DARPA) is an agency of the United States Department of Defense responsible for the development of emerging technologies for use by the military. 

Originally known as the Advanced Research Projects Agency (ARPA), the agency was created in February 1958 by President Dwight D. Eisenhower in response to the Soviet launching of Sputnik 1 in 1957. By collaborating with academic, industry, and government partners, DARPA formulates and executes research and development projects to expand the frontiers of technology and science, often beyond immediate U.S. military requirements.

DARPA-funded projects have provided significant technologies that influenced many non-military fields, such as computer networking and the basis for the modern Internet, and graphical user interfaces in information technology. 

DARPA is independent of other military research and development and reports directly to senior Department of Defense management. DARPA has about 220 employees, of whom approximately 100 are in management.

The name of the organization first changed from its founding name ARPA to DARPA in March 1972, briefly changing back to ARPA in February 1993, only to revert to DARPA in March 1996.

Mission

Currently, DARPA's mission statement is "to make pivotal investments in breakthrough technologies for national security". 

History

Early history (1959–1969)

The creation of the Advanced Research Projects Agency (ARPA) was authorized by President Dwight D. Eisenhower in 1958 for the purpose of forming and executing research and development projects to expand the frontiers of technology and science, and able to reach far beyond immediate military requirements, the two relevant acts being the Supplemental Military Construction Authorization (Air Force) (Public Law 85-325) and Department of Defense Directive 5105.15, in February 1958. Its creation was directly attributed to the launching of Sputnik and to U.S. realization that the Soviet Union had developed the capacity to rapidly exploit military technology. Initial funding of ARPA was $520 million. ARPA's first director, Roy Johnson, left a $160,000 management job at General Electric for an $18,000 job at ARPA. Herbert York from Lawrence Livermore National Laboratory was hired as his scientific assistant.

Johnson and York were both keen on space projects, but when NASA was established later in 1958 all space projects and most of ARPA's funding were transferred to it. Johnson resigned and ARPA was repurposed to do "high-risk", "high-gain", "far out" basic research, a posture that was enthusiastically embraced by the nation's scientists and research universities. ARPA's second director was Brigadier General Austin W. Betts, who resigned in early 1961. He was succeeded by Jack Ruina who served until 1963. Ruina, the first scientist to administer ARPA, managed to raise its budget to $250 million. It was Ruina who hired J. C. R. Licklider as the first administrator of the Information Processing Techniques Office, which played a vital role in creation of ARPANET, the basis for the future Internet.

Additionally, the political and defense communities recognized the need for a high-level Department of Defense organization to formulate and execute R&D projects that would expand the frontiers of technology beyond the immediate and specific requirements of the Military Services and their laboratories. In pursuit of this mission, DARPA has developed and transferred technology programs encompassing a wide range of scientific disciplines that address the full spectrum of national security needs. 

From 1958 to 1965, ARPA's emphasis centered on major national issues, including space, ballistic missile defense, and nuclear test detection. During 1960, all of its civilian space programs were transferred to the National Aeronautics and Space Administration (NASA) and the military space programs to the individual services. 

This allowed ARPA to concentrate its efforts on the Project Defender (defense against ballistic missiles), Project Vela (nuclear test detection), and Project AGILE (counterinsurgency research) programs, and to begin work on computer processing, behavioral sciences, and materials sciences. The DEFENDER and AGILE programs formed the foundation of DARPA sensor, surveillance, and directed energy research, particularly in the study of radar, infrared sensing, and x-ray/gamma ray detection. 

ARPA at this point (1959) played an early role in Transit (also called NavSat) a predecessor to the Global Positioning System (GPS). "Fast-forward to 1959 when a joint effort between DARPA and the Johns Hopkins Applied Physics Laboratory began to fine-tune the early explorers’ discoveries. TRANSIT, sponsored by the Navy and developed under the leadership of Dr. Richard Kirschner at Johns Hopkins, was the first satellite positioning system."

During the late 1960s, with the transfer of these mature programs to the Services, ARPA redefined its role and concentrated on a diverse set of relatively small, essentially exploratory research programs. The agency was renamed the Defense Advanced Research Projects Agency (DARPA) in 1972, and during the early 1970s, it emphasized direct energy programs, information processing, and tactical technologies. 

Concerning information processing, DARPA made great progress, initially through its support of the development of time-sharing (all modern operating systems rely on concepts invented for the Multics system, developed by a cooperation among Bell Labs, General Electric and MIT, which DARPA supported by funding Project MAC at MIT with an initial two-million-dollar grant).

DARPA supported the evolution of the ARPANET (the first wide-area packet switching network), Packet Radio Network, Packet Satellite Network and ultimately, the Internet and research in the artificial intelligence fields of speech recognition and signal processing, including parts of Shakey the robot. DARPA also funded the development of the Douglas Engelbart's NLS computer system and The Mother of All Demos; and the Aspen Movie Map, which was probably the first hypermedia system and an important precursor of virtual reality.

Later history (1970–1980)

The Mansfield Amendment of 1973 expressly limited appropriations for defense research (through ARPA/DARPA) only to projects with direct military application. Some contend that the amendment devastated American science, since ARPA/DARPA was a major funding source for basic science projects of the time; the National Science Foundation never made up the difference as expected. 

The resulting "brain drain" is also credited with boosting the development of the fledgling personal computer industry. Some young computer scientists left the universities to startups and private research laboratories such as Xerox PARC.

Between 1976 and 1981, DARPA's major projects were dominated by air, land, sea, and space technology, tactical armor and anti-armor programs, infrared sensing for space-based surveillance, high-energy laser technology for space-based missile defense, antisubmarine warfare, advanced cruise missiles, advanced aircraft, and defense applications of advanced computing. These large-scale technological program demonstrations were joined by integrated circuit research, which resulted in submicrometer electronic technology and electron devices that evolved into the Very-Large-Scale Integration (VLSI) Program and the Congressionally-mandated charged particle beam program. 

Many of the successful programs were transitioned to the Services, such as the foundation technologies in automatic target recognition, space based sensing, propulsion, and materials that were transferred to the Strategic Defense Initiative Organization (SDIO), later known as the Ballistic Missile Defense Organization (BMDO), now titled the Missile Defense Agency (MDA).

Recent history (1981–present)

During the 1980s, the attention of the Agency was centered on information processing and aircraft-related programs, including the National Aerospace Plane (NASP) or Hypersonic Research Program. The Strategic Computing Program enabled DARPA to exploit advanced processing and networking technologies and to rebuild and strengthen relationships with universities after the Vietnam War. In addition, DARPA began to pursue new concepts for small, lightweight satellites (LIGHTSAT) and directed new programs regarding defense manufacturing, submarine technology, and armor/anti-armor. 

On October 28, 2009 the agency broke ground on a new facility in Arlington, Virginia a few miles from the Pentagon.

In fall 2011, DARPA hosted the 100-Year Starship Symposium with the aim of getting the public to start thinking seriously about interstellar travel.

On June 5, 2016, NASA and DARPA announced that it planned to build new X-planes with NASA's plan setting to create a whole series of X planes over the next 10 years.

In July 2016, it was announced that DARPA would bring a group of top-notch computer security experts to search for security vulnerabilities and create a fix that patches those vulnerabilities and it is called the Cyber Grand Challenge (CGC).

In June 2018, DARPA leaders demonstrated a number of new technologies that were developed within the framework of the GXV-T program. The goal of this program is to create a lightly armored combat vehicle of not very large dimensions, which, due to maneuverability and other tricks, can successfully resist modern anti-tank weapon systems.

Organization

Current program offices

DARPA has six technical offices that manage the agency's research portfolio, and two additional support offices that manage special projects and transition efforts. All offices report to the DARPA director:
  • The Adaptive Execution Office (AEO) is one of two new DARPA offices created in 2009 by the DARPA Director, Regina Dugan. The office's four project areas include technology transition, assessment, rapid productivity and adaptive systems. AEO provides the agency with robust connections to the warfighter community and assists the agency with the planning and execution of technology demonstrations and field trials to promote adoption by the warfighter, accelerating the transition of new technologies into DoD capabilities.
  • The Defense Sciences Office (DSO) vigorously pursues the most promising technologies within a broad spectrum of the science and engineering research communities and develops those technologies into important, radically new military capabilities. DSO identifies and pursues high-risk, high-payoff fundamental research initiatives across a broad spectrum of science and engineering disciplines – sometimes reshaping existing fields or creating entirely new disciplines – and transforms these initiatives into radically new, game-changing technologies for U.S. national security. 
  • The Information Innovation Office (I2O) aims to ensure U.S. technological superiority in all areas where information can provide a decisive military advantage. Some of the program managers in I2O are Wade Shen (as of December 2014), Stuart Wagner (as of September 2014), Steve Jameson (as of August 2014), Angelos Keromytis (as of July 2014), and David Doermann (as of April 2014). Brian Pierce is currently the office director.
  • The Microsystems Technology Office (MTO) mission focuses on the heterogeneous microchip-scale integration of electronics, photonics, and microelectromechanical systems (MEMS). Their high risk/high payoff technology is aimed at solving the national level problems of protection from biological, chemical and information attack and to provide operational dominance for mobile distributed command and control, combined manned/unmanned warfare, and dynamic, adaptive military planning and execution.
  • The Strategic Technology Office (STO) mission is to focus on technologies that have a global theater-wide impact and that involve multiple Services.
  • The Tactical Technology Office (TTO) engages in high-risk, high-payoff advanced military research, emphasizing the "system" and "subsystem" approach to the development of aeronautic, space, and land systems as well as embedded processors and control systems.
  • The Biological Technologies Office (BTO) fosters, demonstrates, and transitions breakthrough fundamental research, discoveries, and applications that integrate biology, engineering, and computer science for national security. Created in April 2014 by then director Arati Prabhakar, taking programs from the MTO and DSO divisions.

Former offices

  • Information Awareness Office: 2002–2003
  • The Advanced Technology Office (ATO) researched, demonstrated, and developed high payoff projects in maritime, communications, special operations, command and control, and information assurance and survivability mission areas.
  • The Special Projects Office (SPO) researched, developed, demonstrated, and transitioned technologies focused on addressing present and emerging national challenges. SPO investments ranged from the development of enabling technologies to the demonstration of large prototype systems. SPO developed technologies to counter the emerging threat of underground facilities used for purposes ranging from command-and-control, to weapons storage and staging, to the manufacture of weapons of mass destruction. SPO developed significantly more cost-effective ways to counter proliferated, inexpensive cruise missiles, UAVs, and other platforms used for weapon delivery, jamming, and surveillance. SPO invested in novel space technologies across the spectrum of space control applications including rapid access, space situational awareness, counterspace, and persistent tactical grade sensing approaches including extremely large space apertures and structures.
  • The Information Systems Office (ISO) in the 1990s developed system applications of advanced information technologies. It was a predecessor to the Information Exploitation Office.
A 1991 reorganization created several offices which existed throughout the early 1990s:
  • The Electronic Systems Technology Office combined areas of the Defense Sciences Office and the Defense Manufacturing Office. This new office will focus on the boundary between general-purpose computers and the physical world, such as sensors, displays and the first few layers of specialized signal-processing that couple these modules to standard computer interfaces.
  • The Computing Systems Technology Office combined functions of the old Information Sciences and Tactical Technology office. The office "will work scalable parallel and distributed heterogeneous computing systems technologies", DoD said.[citation needed]
  • The Software and Intelligent Systems Technology Office and the Computing Systems office will have responsibility associated with the Presidential High-Performance Computing Initiative. The Software office will also be responsible for "software systems technology, machine intelligence and software engineering".
  • The Land Systems Office was created to develop advanced land vehicle and anti-armor systems, once the domain of the Tactical Technology Office
  • The Undersea Warfare Office combined areas of the Advanced Vehicle Systems and Tactical Technology offices to develop and demonstrate submarine stealth and counterstealth and automation.
Reorganization in 2010 merged two offices:
  • The Transformational Convergence Technology Office (TCTO) mission was to advance new crosscutting capabilities derived from a broad range of emerging technological and social trends, particularly in areas related to computing and computing-reliant subareas of the life sciences, social sciences, manufacturing, and commerce. The TCTO was folded into the I2O in 2010.
  • The Information Processing Techniques Office (IPTO) focused on inventing the networking, computing, and software technologies vital to ensuring DOD military superiority. The IPTO was combined with TCTO in 2010 to form the I2O.

Projects

A list of DARPA's active and archived projects is available on the agency's website. Because of the agency's fast pace, programs constantly start and stop based on the needs of the U.S. government. Structured information about some of the DARPA's contracts and projects is publicly available.

Active projects

Notable fiction

  • DARPA is well known as a high-tech government agency, and as such has many appearances in popular fiction. Some realistic references to DARPA in fiction are as "ARPA" in Tom Swift and the Visitor from Planet X (DARPA consults on a technical threat), in episodes of television program The West Wing (the ARPA-DARPA distinction), the television program Numb3rs (DARPA research into creating the first self-aware computer), and in the motion picture Executive Decision (use of a one-of-a-kind experimental prototype in an emergency).
  • DARPA is depicted in the visual novel/anime series Steins;Gate 0 as DURPA, a shadowy government organization that has been researching time travel in order to gain an advantage against Russia, which is also developing time travel in the upcoming World War III.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...