Motto | "Science and Technology on a mission." |
---|---|
Established | 1952 by the University of California; 67 years ago |
Research type | Nuclear and basic science |
Budget | $1.5 billion |
Director | William H. Goldstein |
Staff | 5,800 |
Location | Livermore, California, U.S. 37.69°N 121.71°WCoordinates: 37.69°N 121.71°W |
Campus | 1 square mile (2.6 km2) |
Operating agency
| Lawrence Livermore National Security, LLC |
Website | www.llnl.gov www.llnsllc.com |
Map | |
Lawrence Livermore National Laboratory (LLNL) is a federal research facility in Livermore, California, United States, founded by the University of California, Berkeley in 1952. A Federally Funded Research and Development Center (FFRDC), it is primarily funded by the U.S. Department of Energy (DOE) and managed and operated by Lawrence Livermore National Security, LLC (LLNS), a partnership of the University of California, Bechtel, BWX Technologies, AECOM, and Battelle Memorial Institute in affiliation with the Texas A&M University System. In 2012, the laboratory had the synthetic chemical element livermorium named after it.
Overview
LLNL is self-described as "a premier research and development institution for science and technology applied to national security." Its principal responsibility is ensuring the safety, security and reliability of the nation's nuclear weapons
through the application of advanced science, engineering and
technology. The Laboratory also applies its special expertise and
multidisciplinary capabilities to preventing the proliferation and use of weapons of mass destruction, bolstering homeland security and solving other nationally important problems, including energy and environmental security, basic science and economic competitiveness.
The Laboratory is located on a one-square-mile (2.6 km2) site at the eastern edge of Livermore. It also operates a 7,000 acres (28 km2)
remote experimental test site, called Site 300, situated about 15 miles
(24 km) southeast of the main lab site. LLNL has an annual budget of
about $1.5 billion and a staff of roughly 5,800 employees.
History
Origins
LLNL was established in 1952 as the University of California Radiation Laboratory at Livermore, an offshoot of the existing UC Radiation Laboratory at Berkeley. It was intended to spur innovation and provide competition to the nuclear weapon design laboratory at Los Alamos in New Mexico, home of the Manhattan Project that developed the first atomic weapons. Edward Teller and Ernest Lawrence, director of the Radiation Laboratory at Berkeley, are regarded as the co-founders of the Livermore facility.
The new laboratory was sited at a former naval air station of World War II. It was already home to several UC Radiation Laboratory projects that were too large for its location in the Berkeley Hills
above the UC campus, including one of the first experiments in the
magnetic approach to confined thermonuclear reactions (i.e. fusion).
About half an hour southeast of Berkeley, the Livermore site provided
much greater security for classified projects than an urban university
campus.
Lawrence tapped 32-year-old Herbert York, a former graduate student of his, to run Livermore. Under York, the Lab had four main programs: Project Sherwood
(the magnetic-fusion program), Project Whitney (the weapons-design
program), diagnostic weapon experiments (both for the Los Alamos and
Livermore laboratories), and a basic physics program. York and the new
lab embraced the Lawrence "big science" approach, tackling challenging
projects with physicists, chemists, engineers, and computational
scientists working together in multidisciplinary teams. Lawrence died in
August 1958 and shortly after, the university's board of regents named
both laboratories for him, as the Lawrence Radiation Laboratory.
Historically, the Berkeley and Livermore laboratories have had
very close relationships on research projects, business operations, and
staff. The Livermore Lab was established initially as a branch of the
Berkeley laboratory. The Livermore lab was not officially severed
administratively from the Berkeley lab until 1971. To this day, in
official planning documents and records, Lawrence Berkeley National Laboratory is designated as Site 100, Lawrence Livermore National Lab as Site 200, and LLNL's remote test location as Site 300.
Renaming
The laboratory was renamed Lawrence Livermore Laboratory (LLL)
in 1971. On October 1, 2007 LLNS assumed management of LLNL from the
University of California, which had exclusively managed and operated the
Laboratory since its inception 55 years before. The laboratory was
honored in 2012 by having the synthetic chemical element livermorium
named after it. The LLNS takeover of the laboratory has been
controversial. In May 2013, an Alameda County jury awarded over $2.7
million to five former laboratory employees who were among 430 employees
LLNS laid off during 2008. The jury found that LLNS breached a contractual obligation to terminate the employees only for "reasonable cause."
The five plaintiffs also have pending age discrimination claims
against LLNS, which will be heard by a different jury in a separate
trial. There are 125 co-plaintiffs awaiting trial on similar claims against LLNS. The May 2008 layoff was the first layoff at the laboratory in nearly 40 years.
On March 14, 2011, the City of Livermore officially expanded the
city's boundaries to annex LLNL and move it within the city limits. The
unanimous vote by the Livermore city council expanded Livermore's
southeastern boundaries to cover 15 land parcels covering 1,057 acres
(4.28 km2) that comprise the LLNL site. The site was formerly
an unincorporated area of Alameda County. The LLNL campus continues to
be owned by the federal government.
Major projects
Nuclear weapons
From its inception, Livermore focused on new weapon design concepts; as a result, its first three nuclear tests
were unsuccessful. The lab persevered and its subsequent designs proved
increasingly successful. In 1957, the Livermore Lab was selected to
develop the warhead for the Navy's Polaris missile.
This warhead required numerous innovations to fit a nuclear warhead
into the relatively small confines of the missile nosecone.
During the Cold War, many Livermore-designed warheads entered service. These were used in missiles ranging in size from the Lance surface-to-surface tactical missile to the megaton-class Spartan antiballistic missile. Over the years, LLNL designed the following warheads: W27 (Regulus cruise missile; 1955; joint with Los Alamos), W38 (Atlas/Titan ICBM; 1959), B41 (B52 bomb; 1957), W45 (Little John/Terrier missiles; 1956), W47 (Polaris SLBM; 1957), W48 (155-mm howitzer; 1957), W55 (submarine rocket; 1959), W56 (Minuteman ICBM; 1960), W58 (Polaris SLBM; 1960), W62 (Minuteman ICBM; 1964), W68 (Poseidon SLBM; 1966), W70 (Lance missile; 1969), W71 (Spartan missile; 1968), W79 (8-in. artillery gun; 1975), W82 (155-mm howitzer; 1978), B83 (modern strategic bomb; 1979), and W87 (Peacekeeper/MX ICBM; 1982). The W87 and the B83 are the only LLNL designs still in the U.S. nuclear stockpile.
With the collapse of the Soviet Union in 1991 and the end of the Cold War,
the United States began a moratorium on nuclear testing and development
of new nuclear weapon designs. To sustain existing warheads for the
indefinite future, a science-based Stockpile Stewardship
Program (SSP) was defined that emphasized the development and
application of greatly improved technical capabilities to assess the
safety, security, and reliability of existing nuclear warheads without
the use of nuclear testing. Confidence in the performance of weapons,
without nuclear testing, is maintained through an ongoing process of
stockpile surveillance, assessment and certification, and refurbishment
or weapon replacement.
With no new designs of nuclear weapons, the warheads in the U.S.
stockpile must continue to function far past their original expected
lifetimes. As components and materials age, problems can arise.
Stockpile Life Extension Programs can extend system lifetimes, but they
also can introduce performance uncertainties and require maintenance of
outdated technologies and materials. Because there is concern that it
will become increasingly difficult to maintain high confidence in the
current warheads for the long term, the Department of Energy/National
Nuclear Security Administration initiated the Reliable Replacement Warhead
(RRW) Program. RRW designs could reduce uncertainties, ease maintenance
demands, and enhance safety and security. In March 2007, the LLNL
design was chosen for the Reliable Replacement Warhead. Since that time, Congress has not allocated funding for any further development of the RRW.
Plutonium research
LLNL conducts research into the properties and behavior of plutonium
to learn how plutonium performs as it ages and how it behaves under
high pressure (e.g., with the impact of high explosives). Plutonium has
seven temperature-dependent solid allotropes. Each possesses a different density and crystal structure.
Alloys of plutonium are even more complex; multiple phases can be
present in a sample at any given time. Experiments are being conducted
at LLNL and elsewhere to measure the structural, electrical and chemical
properties of plutonium and its alloys and to determine how these
materials change over time. Such measurements will enable scientists to
better model and predict plutonium's long-term behavior in the aging
stockpile.
The Lab's plutonium research is conducted in a specially designed
facility called the SuperBlock, with emphasis on safety and security.
Work with highly enriched uranium is also conducted here. In March 2008,
the National Nuclear Security Administration
(NNSA) presented its preferred alternative for the transformation of
the nation's nuclear weapons complex. Under this plan, LLNL would be a
center of excellence for nuclear design and engineering, a center of
excellence for high explosive research and development, and a science
magnet in high-energy-density (i.e., laser) physics. In addition, most of its special nuclear material would be removed and consolidated at a more central, yet-to-be-named site.
On September 30, 2009, the NNSA announced that about two thirds
of the special nuclear material (e.g., plutonium) at LLNL requiring the
highest level of security protection had been removed from LLNL. The
move was part of NNSA's efforts initiated in October 2006 to consolidate
special nuclear material at five sites by 2012, with significantly
reduced square footage at those sites by 2017. The federally mandated
project intends to improve security and reduce security costs, and is
part of NNSA's overall effort to transform the Cold War era "nuclear
weapons" enterprise into a 21st-century "nuclear security" enterprise.
The original date to remove all high-security nuclear material from
LLNL, based on equipment capability and capacity, was 2014. NNSA and
LLNL developed a timeline to remove this material as early as possible,
accelerating the target completion date to 2012.
Global security program
The
Lab's work in global security aims to reduce and mitigate the dangers
posed by the spread or use of weapons of mass destruction and by threats
to energy and environmental security. Livermore has been working on
global security and homeland security for decades, predating both the
collapse of the Soviet Union in 1991 and the September 11, 2001,
terrorist attacks. LLNL staff have been heavily involved in the
cooperative nonproliferation programs with Russia to secure at-risk
weapons materials and assist former weapons workers in developing
peaceful applications and self-sustaining job opportunities for their
expertise and technologies.
In the mid-1990s, Lab scientists began efforts to devise improved
biodetection capabilities, leading to miniaturized and autonomous
instruments that can detect biothreat agents in a few minutes instead of
the days to weeks previously required for DNA analysis.
Today, Livermore researchers address a spectrum of threats –
radiological/nuclear, chemical, biological, explosives, and cyber. They
combine physical and life sciences, engineering, computations, and
analysis to develop technologies that solve real-world problems.
Activities are grouped into five programs:
- Nonproliferation. Preventing the spread of materials, technology and expertise related to weapons of mass destruction (WMD) and detecting WMD proliferation activities worldwide.
- Domestic security: Anticipating, innovating and delivering technological solutions to prevent and mitigate devastating high-leverage attacks on U.S. soil.
- Defense: Developing and demonstrating new concepts and capabilities to help the Department of Defense prevent and deter harm to the nation, its citizens and its military forces.
- Intelligence: Working at the intersection of science, technology and analysis to provide insight into the threats to national security posed by foreign entities.
- Energy and environmental security: Furnishing scientific understanding and technological expertise to devise energy and environmental solutions at global, regional and local scales.
Other programs
LLNL
supports capabilities in a broad range of scientific and technical
disciplines, applying current capabilities to existing programs and
developing new science and technologies to meet future national needs.
- The LLNL chemistry, materials, and life science research focuses on chemical engineering, nuclear chemistry, materials science, and biology and bio-nanotechnology.
- Physics thrust areas include condensed matter and high-pressure physics, optical science and high energy density physics, medical physics and biophysics, and nuclear, particle and accelerator physics.
- In the area of energy and environmental science, Livermore's emphasis is on carbon and climate, energy, water and the environment, and the national nuclear waste repository.
- The LLNL engineering activities include micro- and nanotechnology, lasers and optics, biotechnology, precision engineering, nondestructive characterization, modeling and simulation, systems and decision science, and sensors, imaging and communications.
- The LLNL is very strong in computer science, with thrust areas in computing applications and research, integrated computing and communications systems, and cyber security.
Lawrence Livermore National Laboratory has worked out several energy technologies in the field of coal gasification, shale oil extraction, geothermal energy, advanced battery research, solar energy, and fusion energy. Main oil shale processing technologies worked out by the Lawrence Livermore National Laboratory are LLNL HRS (hot-recycled-solid), LLNL RISE (in situ extraction technology) and LLNL radiofrequency technologies.
Key accomplishments
Over its 60-year history, Lawrence Livermore has made many scientific and technological achievements, including:
- Critical contributions to the U.S. nuclear deterrence effort through the design of nuclear weapons to meet military requirements and, since the mid-1990s, through the Stockpile Stewardship Program, by which the safety and reliability of the enduring stockpile is ensured without underground nuclear testing.
- Design, construction, and operation of a series of ever larger, more powerful, and more capable laser systems, culminating in the 192-beam National Ignition Facility (NIF), completed in 2009.
- Advances in particle accelerator and fusion technology, including magnetic fusion, free-electron lasers, accelerator mass spectrometry, and inertial confinement fusion.
- Breakthroughs in high-performance computing, including the development of novel concepts for massively parallel computing and the design and application of computers that can carry out hundreds of trillions of operations per second.
- Development of technologies and systems for detecting nuclear, radiological, chemical, biological, and explosive threats to prevent and mitigate WMD proliferation and terrorism.
- Development of extreme ultraviolet lithography (EUVL) for fabricating next-generation computer chips.
- First-ever detection of massive compact halo objects (MACHOs), a suspected but previously undetected component of dark matter.
- Advances in genomics, biotechnology, and biodetection, including major contributions to the complete sequencing of the human genome though the Joint Genome Institute and the development of rapid PCR (polymerase chain reaction) technology that lies at the heart of today's most advanced DNA detection instruments.
- Development and operation of the National Atmospheric Release Advisory Center (NARAC), which provides real-time, multi-scale (global, regional, local, urban) modeling of hazardous materials released into the atmosphere.
- Development of highest resolution global climate models and contributions to the International Panel on Climate Change which, together with former vice president Al Gore, was awarded the 2007 Nobel Peace Prize.
- Co-discoverers of new superheavy elements 113, 114, 115, 116, 117, and 118.
- Invention of new healthcare technologies, including a microelectrode array for construction of an artificial retina, a miniature glucose sensor for the treatment of diabetes, and a compact proton therapy system for radiation therapy.
On July 17, 2009 LLNL announced that the Laboratory had received
eight R&D 100 Awards – more than it had ever received in the annual
competition. The previous LLNL record of seven awards was reached five
times – in 1987, 1988, 1997, 1998 and 2006.
Also known as the "Oscars of invention", the awards are given
each year for the development of cutting-edge scientific and engineering
technologies with commercial potential. The awards raise LLNL's total
number of awards since 1978 to 129.
On October 12, 2016, LLNL released the results of computerized
modeling of Mars' moon Phobos, finding that it has a connection with
keeping the Earth safe from asteroids.
Key facilities
- Biosecurity and Nanoscience Laboratory. Researchers apply advances in nanoscience to develop novel technologies for the detection, identification, and characterization of harmful biological pathogens (viruses, spores, and bacteria) and chemical toxins.
- Center for Accelerator Mass Spectrometry: LLNL's Center for Accelerator Mass Spectrometry (CAMS) develops and applies a wide range of isotopic and ion-beam analytical tools used in basic research and technology development, addressing a spectrum of scientific needs important to the Laboratory, the university community, and the nation. CAMS is the world's most versatile and productive accelerator mass spectrometry facility, performing more than 25,000 AMS measurement operations per year.
- High Explosives Applications Facility and Energetic Materials Center: At HEAF, teams of scientists, engineers, and technicians address nearly all aspects of high explosives: research, development and testing, material characterization, and performance and safety tests. HEAF activities support the Laboratory's Energetic Materials Center, a national resource for research and development of explosives, pyrotechnics, and propellants.
- National Atmospheric Release Advisory Center: NARAC is a national support and resource center for planning, real-time assessment, emergency response, and detailed studies of incidents involving a wide variety of hazards, including nuclear, radiological, chemical, biological, and natural atmospheric emissions.
- National Ignition Facility: This 192-beam, stadium-size laser system will be used to compress fusion targets to conditions required for thermonuclear burn. Experiments at NIF will study physical processes at conditions that exist only in the interior of stars and in exploding nuclear weapons (see National Ignition Facility and photon science).
- Superblock: This unique high-security facility houses modern equipment for research and engineering testing of nuclear materials and is the place where plutonium expertise is developed, nurtured, and applied. Research on highly enriched uranium also is performed here.
- Livermore Computing Complex: LLNL's Livermore Computing Complex houses some of the world's most powerful computers, including the 20 petaflop Sequoia, the 5-petaflop Vulcan system; Jade and Quartz systems at 3 petaflops each; the 970-teraflop Zin system; 431-teraflop Cab system; and additional large multi-core, multi-socket Linux clusters with various processor types. The newest machine, Sierra, occupied the No. 3 position on the TOP500 list in June 2018. The complex has nearly 10,000 square feet of machine floor space, supporting both classified and unclassified national security programs.
- Titan Laser: Titan is a combined nanosecond-long pulse and ultrashort-pulse (subpicosecond) laser, with hundreds of joules of energy in each beam. This petawatt-class laser is used for a range of high-energy density physics experiments, including the science of fast ignition for inertial confinement fusion energy.
Largest computers
Throughout
its history, LLNL has been a leader in computers and scientific
computing. Even before the Livermore Lab opened its doors, E.O. Lawrence
and Edward Teller recognized the importance of computing and the
potential of computational simulation. Their purchase of one of the
first UNIVAC computers set the precedent for LLNL's history of acquiring
and exploiting the fastest and most capable supercomputers in the
world. A succession of increasingly powerful and fast computers have
been used at the Lab over the years. LLNL researchers use supercomputers
to answer questions about subjects such as materials science
simulations, global warming, and reactions to natural disasters.
LLNL has a long history of developing computing software
and systems. Initially, there was no commercially available software,
and computer manufacturers considered it the customer's responsibility
to develop their own. Users of the early computers had to write not only
the codes to solve their technical problems, but also the routines to
run the machines themselves. Today, LLNL computer scientists focus on
creating the highly complex physics models, visualization codes, and
other unique applications tailored to specific research requirements. A
great deal of software also has been written by LLNL personnel to
optimize the operation and management of the computer systems, including
operating system extensions such as CHAOS (Linux Clustering) and resource management packages such as SLURM. LLNL also initiated and continues leading the development of ZFS on Linux, the official port of ZFS to the Linux operating system.
Livermore Valley Open Campus (LVOC)
In August 2009 a joint venture was announced between Sandia National Laboratories/California
campus and LLNL to create an open, unclassified research and
development space called the Livermore Valley Open Campus (LVOC). The
motivation for the LVOC stems from current and future national security
challenges that require increased coupling to the private sector to
understand threats and deploy solutions in areas such as high
performance computing, energy and environmental security, cyber
security, economic security, and non-proliferation.
The LVOC is modeled after research and development campuses found
at major industrial research parks and other U.S. Department of Energy
laboratories with campus-like security, a set of business and operating
rules devised to enhance and accelerate international scientific
collaboration and partnerships with U.S. government agencies, industry
and academia. Ultimately, the LVOC will consist of an approximately
110-acre parcel along the eastern edge of the Livermore Laboratory and
Sandia sites, and will house additional conference space, collaboration
facilities and a visitor's center to support educational and research
activities.
Objectives of LVOC
- Enhance the two laboratories' national security missions by substantially increasing engagement with the private sector and academic community.
- Stay at the forefront of the science, technology and engineering fields.
- Ensure a quality future workforce by expanding opportunities for open engagement of the broader scientific community.
Sponsors
LLNL's principal sponsor is the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Office of Defense Programs, which supports its stockpile stewardship and advanced scientific computing programs. Funding to support LLNL's global security and homeland security work comes from the DOE/NNSA Office of Defense Nuclear Nonproliferation as well as the Department of Homeland Security. LLNL also receives funding from DOE's Office of Science, Office of Civilian Radioactive Waste Management, and Office of Nuclear Energy. In addition, LLNL conducts work-for-others research and development for various Defense Department sponsors, other federal agencies, including NASA, Nuclear Regulatory Commission (NRC), National Institutes of Health, and Environmental Protection Agency, a number of California State agencies, and private industry.
Budget
For Fiscal Year 2009 LLNL spent $1.497 billion on research and laboratory operations activities:
Research/Science Budget:
- National Ignition Facility - $301.1 million
- Nuclear Weapon Deterrent (Safety/Security/Reliability) - $227.2 million
- Advance Simulation and Computing - $221.9 million
- Nonproliferation - $152.2 million
- Department of Defense - $125.9 million
- Basic and Applied Science - $86.6 million
- Homeland Security - $83.9 million
- Energy - $22.4 million
Site Management/Operations Budget:
- Safeguards/Security - $126.5 million
- Facility Operations - $118.2 million
- Environmental Restoration - $27.3 million
Directors
The
LLNL Director is appointed by the board of governors of Lawrence
Livermore National Security, LLC (LLNS) and reports to the board. The
laboratory director also serves as the president of LLNS. Over the
course of its history, the following scientists have served as LLNL
director:
- 1952–1958 Herbert York
- 1958–1960 Edward Teller
- 1960–1961 Harold Brown
- 1961–1965 John S. Foster, Jr.
- 1965–1971 Michael M. May
- 1971–1988 Roger E. Batzel
- 1988–1994 John H. Nuckolls
- 1994–2002 C. Bruce Tarter
- 2002–2006 Michael R. Anastasio
- 2006–2011 George H. Miller
- 2011–2013 Penrose C. Albright
- 2013–2014 Bret Knapp, acting director
- 2014–present William H. Goldstein
Organization
The
LLNL Director is supported by a senior executive team consisting of the
Deputy Director, the Deputy Director for Science and Technology,
Principal Associate Directors, and other senior executives who manage
areas/functions directly reporting to the Laboratory Director.
The Directors Office is organized into these functional areas/offices:
- Chief Information Office
- Contractor Assurance and Continuous Improvement
- Environment, Safety and Health
- Government and External Relations
- Independent Audit and Oversight
- Office of General Counsel
- Prime Contract Management Office
- Quality Assurance Office
- Security Organization
- LLNS, LLC Parent Oversight Office
The Laboratory is organized into four principal directorates, each headed by a Principal Associate Director:
- Global Security
- Weapons and Complex Integration
- National Ignition Facility and Photon Science
- Operations and Business
- Business
- Facilities & Infrastructure
- Institutional Facilities Management
- Integrated Safety Management System Project Office
- Nuclear Operations
- Planning and Financial Management
- Staff Relations
- Strategic Human Resources Management
Three other directorates are each headed by an Associate Director who reports to the LLNL Director:
- Computation
- Engineering
- Physical & Life Sciences
Corporate management
The LLNL Director reports to the Lawrence Livermore National Security, LLC
(LLNS) Board of Governors, a group of key scientific, academic,
national security and business leaders from the LLNS partner companies
that jointly own and control LLNS. The LLNS Board of Governors has a
total of 16 positions, with six of these Governors constituting an
Executive Committee. All decisions of the Board are made by the
Governors on the Executive Committee. The other Governors are advisory
to the Executive Committee and do not have voting rights.
The University of California is entitled to appoint three
Governors to the Executive Committee, including the Chair. Bechtel is
also entitled to appoint three Governors to the Executive Committee,
including the Vice Chair. One of the Bechtel Governors must be a
representative of Babcock & Wilcox (B&W) or the Washington
Division of URS Corporation (URS), who is nominated jointly by B&W
and URS each year, and who must be approved and appointed by Bechtel.
The Executive Committee has a seventh Governor who is appointed by
Battelle; they are non-voting and advisory to the Executive Committee.
The remaining Board positions are known as Independent Governors (also
referred to as Outside Governors), and are selected from among
individuals, preferably of national stature, and can not be employees or
officers of the partner companies.
The University of California-appointed Chair has tie-breaking
authority over most decisions of the Executive Committee. The Board of
Governors is the ultimate governing body of LLNS and is charged with
overseeing the affairs of LLNS in its operations and management of LLNL.
LLNS managers and employees who work at LLNL, up to and including
the President/Laboratory Director, are generally referred to as
Laboratory Employees. All Laboratory Employees report directly or
indirectly to the LLNS President. While most of the work performed by
LLNL is funded by the federal government, Laboratory employees are paid
by LLNS which is responsible for all aspects of their employment
including providing health care benefits and retirement programs.
Within the Board of Governors, authority resides in the Executive
Committee to exercise all rights, powers, and authorities of LLNS,
excepting only certain decisions that are reserved to the parent
companies. The LLNS Executive Committee is free to appoint officers or
other managers of LLNS and LLNL, and may delegate its authorities as it
deems appropriate to such officers, employees, or other representatives
of LLNS/LLNL. The Executive Committee may also retain auditors,
attorneys, or other professionals as necessary. For the most part the
Executive Committee has appointed senior managers at LLNL as the primary
officers of LLNS. As a practical matter most operational decisions are
delegated to the President of LLNS, who is also the Laboratory Director.
The positions of President/Laboratory Director and Deputy Laboratory
Director are filled by joint action of the Chair and Vice Chair of the
Executive Committee, with the University of California nominating the
President/Laboratory Director and Bechtel nominating the Deputy
Laboratory Director.
The current LLNS Chairman is Norman J. Pattiz, founder and chairman of Westwood One,
America's largest radio network, who also currently serves on the Board
of Regents of the University of California. The Vice Chairman is J.
Scott Ogilvie, president of Bechtel Systems & Infrastructure, Inc.,
who also serves on the Board of Directors of Bechtel Group, Inc. (BGI)
and on the BGI Audit Committee.
Public protests
The
Livermore Action Group organized many mass protests, from 1981 to 1984,
against nuclear weapons which were being produced by the Lawrence
Livermore National Laboratory. Peace activists Ken Nightingale and
Eldred Schneider were involved. On June 22, 1982, more than 1,300 anti-nuclear protesters were arrested in a nonviolent demonstration.
More recently, there has been an annual protest against nuclear weapons
research at Lawrence Livermore. In August 2003, 1,000 people protested
at Livermore Labs against "new-generation nuclear warheads". In the 2007 protest, 64 people were arrested. More than 80 people were arrested in March 2008 while protesting at the gates.