Search This Blog

Friday, December 6, 2019

Emotion in animals

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Emotion_in_animals
 
A drawing of a cat by T. W. Wood in Charles Darwin's book The Expression of the Emotions in Man and Animals, described as acting "in an affectionate frame of mind".
 
Worldwide laws regarding the formal recognition of nonhuman animal sentience and suffering
  
National recognition of animal sentience
  
Partial recognition of animal sentience1
  
National recognition of animal suffering
  
Partial recognition of animal suffering2
  
No recognition of animal sentience or suffering
  
Unknown
1certain animals are excluded, only mental health is acknowledged, and/or the laws vary internally
2only includes domestic animals


Emotion is defined as any mental experience with high intensity and high hedonic content. The existence and nature of emotions in animals are believed to be correlated with those of humans and to have evolved from the same mechanisms. Charles Darwin was one of the first scientists to write about the subject, and his observational (and sometimes anecdotal) approach has since developed into a more robust, hypothesis-driven, scientific approach. Cognitive bias tests and learned helplessness models have shown feelings of optimism and pessimism in a wide range of species, including rats, dogs, cats, rhesus macaques, sheep, chicks, starlings, pigs, and honeybees. Jaak Panksepp played a large role in the study of animal emotion, basing his research on the neurological aspect. Mentioning seven core emotional feelings reflected through a variety of neuro-dynamic limbic emotional action systems, including seeking, fear, rage, lust, care, panic and play. Through brain stimulation and pharmacological challenges, such emotional responses can be effectively monitored.

Emotion has been observed and further researched through multiple different approaches including that of behaviourism, comparative, anecdotal, specifically Darwin's approach and what is most widely used today the scientific approach which has a number of subfields including functional, mechanistic, cognitive bias tests, self-medicating, spindle neurons, vocalizations and neurology.

While emotions in animals is still quite a controversial topic it has been studied in a extensive array of species both large and small including primates, rodents, elephants, horses, birds, dogs, cats, honeybees and crayfish. 

Etymology, definitions, and differentiation

The word "emotion" dates back to 1579, when it was adapted from the French word émouvoir, which means "to stir up". However, the earliest precursors of the word likely date back to the very origins of language.

Emotions have been described as discrete and consistent responses to internal or external events which have a particular significance for the organism. Emotions are brief in duration and consist of a coordinated set of responses, which may include physiological, behavioural, and neural mechanisms. Emotions have also been described as the result of evolution because they provided good solutions to ancient and recurring problems that faced ancestors.

Laterality

It has been proposed that negative, withdrawal-associated emotions are processed predominantly by the right hemisphere, whereas the left hemisphere is largely responsible for processing positive, approach-related emotions. This has been called the "laterality-valence hypothesis".

Basic and complex human emotions

In humans, a distinction is sometimes made between "basic" and "complex" emotions. Six emotions have been classified as basic: anger, disgust, fear, happiness, sadness and surprise. Complex emotions would include contempt, jealousy and sympathy. However, this distinction is difficult to maintain, and animals are often said to express even the complex emotions.

Background

Behaviourist approach

A squirrel communicating with its pup
 
Prior to the development of animal sciences such as comparative psychology and ethology, interpretation of animal behaviour tended to favour a minimalistic approach known as behaviourism. This approach refuses to ascribe to an animal a capability beyond the least demanding that would explain a behaviour; anything more than this is seen as unwarranted anthropomorphism. The behaviourist argument is, why should humans postulate consciousness and all its near-human implications in animals to explain some behaviour, if mere stimulus-response is a sufficient explanation to produce the same effects? 

Some behaviourists, such as John B. Watson, claim that stimulus–response models provide a sufficient explanation for animal behaviours that have been described as emotional, and that all behaviour, no matter how complex, can be reduced to a simple stimulus-response association. Watson described that the purpose of psychology was "to predict, given the stimulus, what reaction will take place; or given the reaction, state what the situation or stimulus is that has caused the reaction".
The cautious wording of Dixon exemplifies this viewpoint:


Moussaieff Masson and McCarthy describe a similar view (with which they disagree):


Because of the philosophical questions of consciousness and mind that are involved, many scientists have stayed away from examining animal and human emotion, and have instead studied measurable brain functions through neuroscience.

Comparative approach

In 1903, C. Lloyd Morgan published Morgan's Canon, a specialised form of Occam's razor used in ethology, in which he stated:

Darwin's approach

Charles Darwin initially planned to include a chapter on emotion in The Descent of Man but as his ideas progressed they expanded into a book, The Expression of the Emotions in Man and Animals. Darwin proposed that emotions are adaptive and serve a communicative and motivational function, and he stated three principles that are useful in understanding emotional expression: First, The Principle of Serviceable Habits takes a Lamarckian stance by suggesting that emotional expressions that are useful will be passed on to the offspring. Second, The Principle of Antithesis suggests that some expressions exist merely because they oppose an expression that is useful. Third, The Principle of the Direct Action of the Excited Nervous System on the Body suggests that emotional expression occurs when nervous energy has passed a threshold and needs to be released.

Darwin saw emotional expression as an outward communication of an inner state, and the form of that expression often carries beyond its original adaptive use. For example, Darwin remarks that humans often present their canine teeth when sneering in rage, and he suggests that this means that a human ancestor probably utilized their teeth in aggressive action. A domestic dog's simple tail wag may be used in subtly different ways to convey many meanings as illustrated in Darwin's The Expression of the Emotions in Man and Animals published in 1872.

Anecdotal approach

Evidence for emotions in animals has been primarily anecdotal, from individuals who interact with pets or captive animals on a regular basis. However, critics of animals having emotions often suggest that anthropomorphism is a motivating factor in the interpretation of the observed behaviours. Much of the debate is caused by the difficulty in defining emotions and the cognitive requirements thought necessary for animals to experience emotions in a similar way to humans. The problem is made more problematic by the difficulties in testing for emotions in animals. What is known about human emotion is almost all related or in relation to human communication.

Scientific approach

In recent years, the scientific community has become increasingly supportive of the idea of emotions in animals. Scientific research has provided insight into similarities of physiological changes between humans and animals when experiencing emotion.

Much support for animal emotion and its expression results from the notion that feeling emotions doesn't require significant cognitive processes, rather, they could be motivated by the processes to act in an adaptive way, as suggested by Darwin. Recent attempts in studying emotions in animals have led to new constructions in experimental and information gathering. Professor Marian Dawkins suggested that emotions could be studied on a functional or a mechanistic basis. Dawkins suggests that merely mechanistic or functional research will provide the answer on its own, but suggests that a mixture of the two would yield the most significant results.

Functional

Functional approaches rely on understanding what roles emotions play in humans and examining that role in animals. A widely used framework for viewing emotions in a functional context is that described by Oatley and Jenkins who see emotions as having three stages: (i) appraisal in which there is a conscious or unconscious evaluation of an event as relevant to a particular goal. An emotion is positive when that goal is advanced and negative when it is impeded (ii) action readiness where the emotion gives priority to one or a few kinds of action and may give urgency to one so that it can interrupt or compete with others and (iii) physiological changes, facial expression and then behavioural action. The structure, however, may be too broad and could be used to include all the animal kingdom as well as some plants.

Mechanistic

The second approach, mechanistic, requires an examination of the mechanisms that drive emotions and search for similarities in animals.

The mechanistic approach is utilized extensively by Paul, Harding and Mendl. Recognizing the difficulty in studying emotion in non-verbal animals, Paul et al. demonstrate possible ways to better examine this. Observing the mechanisms that function in human emotion expression, Paul et al. suggest that concentration on similar mechanisms in animals can provide clear insights into the animal experience. They noted that in humans, cognitive biases vary according to emotional state and suggested this as a possible starting point to examine animal emotion. They propose that researchers may be able to use controlled stimuli which have a particular meaning to trained animals to induce particular emotions in these animals and assess which types of basic emotions animals can experience.

Cognitive bias test

Is the glass half empty or half full?
 
A cognitive bias is a pattern of deviation in judgment, whereby inferences about other animals and situations may be drawn in an illogical fashion. Individuals create their own "subjective social reality" from their perception of the input. It refers to the question "Is the glass half empty or half full?", used as an indicator of optimism or pessimism. To test this in animals, an individual is trained to anticipate that stimulus A, e.g. a 20 Hz tone, precedes a positive event, e.g. highly desired food is delivered when a lever is pressed by the animal. The same individual is trained to anticipate that stimulus B, e.g. a 10 Hz tone, precedes a negative event, e.g. bland food is delivered when the animal presses a lever. The animal is then tested by being played an intermediate stimulus C, e.g. a 15 Hz tone, and observing whether the animal presses the lever associated with the positive or negative reward, thereby indicating whether the animal is in a positive or negative mood. This might be influenced by, for example, the type of housing the animal is kept in.

Using this approach, it has been found that rats which are subjected to either handling or playful, experimenter-administered manual stimulation (tickling) showed different responses to the intermediate stimulus: rats exposed to tickling were more optimistic. The authors stated that they had demonstrated "...for the first time a link between the directly measured positive affective state and decision making under uncertainty in an animal model." 

Cognitive biases have been shown in a wide range of species including rats, dogs, rhesus macaques, sheep, chicks, starlings and honeybees.

Self-medication with psychoactive drugs

Humans can suffer from a range of emotional or mood disorders such as depression, anxiety, fear and panic. To treat these disorders, scientists have developed a range of psychoactive drugs such as anxiolytics. Many of these drugs are developed and tested by using a range of laboratory species. It is inconsistent to argue that these drugs are effective in treating human emotions whilst denying the experience of these emotions in the laboratory animals on which they have been developed and tested.

Standard laboratory cages prevent mice from performing several natural behaviours for which they are highly motivated. As a consequence, laboratory mice sometimes develop abnormal behaviours indicative of emotional disorders such as depression and anxiety. To improve welfare, these cages are sometimes enriched with items such as nesting material, shelters and running wheels. Sherwin and Ollson tested whether such enrichment influenced the consumption of Midazolam, a drug widely used to treat anxiety in humans. Mice in standard cages, standard cages but with unpredictable husbandry, or enriched cages, were given a choice of drinking either non-drugged water or a solution of the Midazolam. Mice in the standard and unpredictable cages drank a greater proportion of the anxiolytic solution than mice from enriched cages, indicating that mice from the standard and unpredictable laboratory caging may have been experiencing greater anxiety than mice from the enriched cages. 

Spindle neurons

Spindle neurons are specialised cells found in three very restricted regions of the human brain – the anterior cingulate cortex, the frontoinsular cortex and the dorsolateral prefrontal cortex. The first two of these areas regulate emotional functions such as empathy, speech, intuition, rapid "gut reactions" and social organization in humans. Spindle neurons are also found in the brains of humpback whales, fin whales, killer whales, sperm whales, bottlenose dolphin, Risso's dolphin, beluga whales, and the African and Asian elephants.

Whales have spindle cells in greater numbers and are maintained for twice as long as humans. The exact function of spindle cells in whale brains is still not understood, but Hof and Van Der Gucht believe that they act as some sort of "high-speed connections that fast-track information to and from other parts of the cortex". They compared them to express trains that bypass unnecessary connections, enabling organisms to instantly process and act on emotional cues during complex social interactions. However, Hof and Van Der Gucht clarify that they do not know the nature of such feelings in these animals and that we cannot just apply what we see in great apes or ourselves to whales. They believe that more work is needed to know whether emotions are the same for humans and whales. 

Vocalizations

Though non-human animals cannot provide useful verbal feedback about the experiential and cognitive details of their feelings, various emotional vocalizations of other animals may be indicators of potential affective states. Beginning with Darwin and his research, it has been known that chimpanzees and other great apes perform laugh-like vocalizations, providing scientists with more symbolic self-reports of their emotional experiences.

Research with rats has revealed that under particular conditions, they emit 50-kHz ultrasonic vocalisations (USV) which have been postulated to reflect a positive affective state (emotion) analogous to primitive human joy; these calls have been termed "laughter". The 50 kHz USVs in rats are uniquely elevated by hedonic stimuli—such as tickling, rewarding electrical brain stimulation, amphetamine injections, mating, play, and aggression—and are suppressed by aversive stimuli.[6] Of all manipulations that elicit 50 kHz chirps in rats, tickling by humans elicits the highest rate of these calls.

Some vocalizations of domestic cats, such as purring, are well known to be produced in situations of positive valence, such as mother kitten interactions, contacts with familiar partner, or during tactile stimulation with inanimate objects as when rolling and rubbing. Therefore, purring can be generally considered as an indicator of "pleasure" in cats.

Low pitched bleating in sheep has been associated with some positive-valence situations, as they are produced by males as an estrus female is approaching or by lactating mothers while licking and nursing their lambs.

Neurological

Neuroscientific studies based off of the instinctual, emotional action tendencies of non-human animals accompanied by the brains neurochemical and electrical changes are deemed to best monitor relative primary process emotional/affective states. Predictions based off the research conducted on animals is what leads analysis of the neural infrastructure relevant in humans. Psycho-neuro-ethological triangulation with both humans and animals allows for further experimentation into animal emotions. Utilizing specific animals that exhibit indicators of emotional states to decode underlying neural systems aids in the discovery of critical brain variables that regulate animal emotional expressions. Comparing the results of the animals converse experiments occur predicting the affective changes that should result in humans. Specific studies where there is an increase or decrease of playfulness or separation distress vocalizations in animals, comparing humans that exhibit the predicted increases or decreases in feelings of joy or sadness, the weight of evidence constructs a concrete neural hypothesis concerning the nature of affect supporting all relevant species.

Criticism

The argument that animals experience emotions is sometimes rejected due to a lack of evidence, and those who do not believe in the idea of animal intelligence, often argue that anthropomorphism plays a role in individuals' perspectives. Those who reject that animals have the capacity to experience emotion do so mainly by referring to inconsistencies in studies that have endorsed the belief emotions exist. Having no linguistic means to communicate emotion beyond behavioral response interpretation, the difficulty of providing an account of emotion in animals relies heavily on interpretive experimentation, that relies on results from human subjects.

Some people oppose the concept of animal emotions and suggest that emotions are not universal, including in humans. If emotions are not universal, this indicates that there is not a phylogenetic relationship between human and non-human emotion. The relationship drawn by proponents of animal emotion, then, would be merely a suggestion of mechanistic features that promote adaptivity, but lack the complexity of human emotional constructs. Thus, a social life-style may play a role in the process of basic emotions developing into more complex emotions.

Darwin concluded, through a survey, that humans share universal emotive expressions and suggested that animals likely share in these to some degree. Social constructionists disregard the concept that emotions are universal. Others hold an intermediate stance, suggesting that basic emotional expressions and emotion are universal but the intricacies are developed culturally. A study by Elfenbein and Ambady indicated that individuals within a particular culture are better at recognising other cultural members' emotions.

Examples

Primates

Primates, in particular great apes, are candidates for being able to experience empathy and theory of mind. Great apes have complex social systems; young apes and their mothers have strong bonds of attachment and when a baby chimpanzee or gorilla dies, the mother will not uncommonly carry the body around for several days. Jane Goodall has described chimpanzees as exhibiting mournful behavior. Koko, a gorilla trained to use sign language, was reported to have expressed vocalizations indicating sadness after the death of her pet cat, All Ball.

Beyond such anecdotal evidence, support for empathetic reactions has come from experimental studies of rhesus macaques. Macaques refused to pull a chain that delivered food to themselves if doing so also caused a companion to receive an electric shock. This inhibition of hurting another conspecific was more pronounced between familiar than unfamiliar macaques, a finding similar to that of empathy in humans. 

Furthermore, there has been research on consolation behavior in chimpanzees. De Waal and Aureli found that third-party contacts attempt to relieve the distress of contact participants by consoling (e.g. making contact, embracing, grooming) recipients of aggression, especially those that have experienced more intense aggression. Researchers were unable to replicate these results using the same observation protocol in studies of monkeys, demonstrating a possible difference in empathy between monkeys and apes.

Other studies have examined emotional processing in the great apes. Specifically, chimpanzees were shown video clips of emotionally charged scenes, such as a detested veterinary procedure or a favorite food, and then were required to match these scenes with one of two species-specific facial expressions: "happy" (a play-face) or "sad" (a teeth-baring expression seen in frustration or after defeat). The chimpanzees correctly matched the clips to the facial expressions that shared their meaning, demonstrating that they understand the emotional significance of their facial expressions. Measures of peripheral skin temperature also indicated that the video clips emotionally affected the chimpanzees.

Rodents

In 1998, Jaak Panksepp proposed that all mammalian species are equipped with brains capable of generating emotional experiences. Subsequent work examined studies on rodents to provide foundational support for this claim. One of these studies examined whether rats would work to alleviate the distress of a conspecific. Rats were trained to press a lever to avoid the delivery of an electric shock, signaled by a visual cue, to a conspecific. They were then tested in a situation in which either a conspecific or a Styrofoam block was hoisted into the air and could be lowered by pressing a lever. Rats that had previous experience with conspecific distress demonstrated greater than ten-fold more responses to lower a distressed conspecific compared to rats in the control group, while those who had never experienced conspecific distress expressed greater than three-fold more responses to lower a distressed conspecific relative to the control group. This suggests that rats will actively work to reduce the distress of a conspecific, a phenomenon related to empathy. Comparable results have also been found in similar experiments designed for monkeys.

Langford et al. examined empathy in rodents using an approach based in neuroscience. They reported that (1) if two mice experienced pain together, they expressed greater levels of pain-related behavior than if pain was experienced individually, (2) if experiencing different levels of pain together, the behavior of each mouse was modulated by the level of pain experienced by its social partner, and (3) sensitivity to a noxious stimulus was experienced to the same degree by the mouse observing a conspecific in pain as it was by the mouse directly experiencing the painful stimulus. The authors suggest this responsiveness to the pain of others demonstrated by mice is indicative of emotional contagion, a phenomenon associated with empathy, which has also been reported in pigs. One behaviour associated with fear in rats is freezing. If female rats experience electric shocks to the feet and then witness another rat experiencing similar footshocks, they freeze more than females without any experience of the shocks. This suggests empathy in experienced rats witnessing another individual being shocked. Furthermore, the demonstrator's behaviour was changed by the behaviour of the witness; demonstrators froze more following footshocks if their witness froze more creating an empathy loop.

Several studies have also shown rodents can respond to a conditioned stimulus that has been associated with the distress of a conspecific, as if it were paired with the direct experience of an unconditioned stimulus. These studies suggest that rodents are capable of shared affect, a concept critical to empathy. 

Horses

Although not direct evidence that horses experience emotions, a 2016 study showed that domestic horses react differently to seeing photographs of positive (happy) or negative (angry) human facial expressions. When viewing angry faces, horses look more with their left eye which is associated with perceiving negative stimuli. Their heart rate also increases more quickly and they show more stress-related behaviours. One rider wrote, 'Experienced riders and trainers can learn to read the subtle moods of individual horses according to wisdom passed down from one horseman to the next, but also from years of trial-and-error. I suffered many bruised toes and nipped fingers before I could detect a curious swivel of the ears, irritated flick of the tail, or concerned crinkle above a long-lashed eye.' This suggests that horses have emotions and display them physically but is not concrete evidence.

Birds

Marc Bekoff reported accounts of animal behaviour which he believed was evidence of animals being able to experience emotions in his book The Emotional Lives of Animals. The following is an excerpt from his book: 


Bystander affiliation is believed to represent an expression of empathy in which the bystander tries to console a conflict victim and alleviate their distress. There is evidence for bystander affiliation in ravens (e.g. contact sitting, preening, or beak-to-beak or beak-to-body touching) and also for solicited bystander affiliation, in which there is post-conflict affiliation from the victim to the bystander. This indicates that ravens may be sensitive to the emotions of others, however, relationship value plays an important role in the prevalence and function of these post-conflict interactions.

The capacity of domestic hens to experience empathy has been studied. Mother hens show one of the essential underpinning attributes of empathy: the ability to be affected by, and share, the emotional state of their distressed chicks. However, evidence for empathy between familiar adult hens has not yet been found.

Dogs

A drawing by Konrad Lorenz showing facial expressions of a dog
 
Some research indicates that domestic dogs may experience negative emotions in a similar manner to humans, including the equivalent of certain chronic and acute psychological conditions. Much of this is from studies by Martin Seligman on the theory of learned helplessness as an extension of his interest in depression:
A dog that had earlier been repeatedly conditioned to associate an audible stimulus with inescapable electric shocks did not subsequently try to escape the electric shocks after the warning was presented, even though all the dog would have had to do is jump over a low divider within ten seconds. The dog didn't even try to avoid the "aversive stimulus"; it had previously "learned" that nothing it did would reduce the probability of it receiving a shock. A follow-up experiment involved three dogs affixed in harnesses, including one that received shocks of identical intensity and duration to the others, but the lever which would otherwise have allowed the dog a degree of control was left disconnected and didn't do anything. The first two dogs quickly recovered from the experience, but the third dog suffered chronic symptoms of clinical depression as a result of this perceived helplessness.
A further series of experiments showed that, similar to humans, under conditions of long-term intense psychological stress, around one third of dogs do not develop learned helplessness or long-term depression. Instead these animals somehow managed to find a way to handle the unpleasant situation in spite of their past experience. The corresponding characteristic in humans has been found to correlate highly with an explanatory style and optimistic attitude that views the situation as other than personal, pervasive, or permanent. 

Since these studies, symptoms analogous to clinical depression, neurosis, and other psychological conditions have also been accepted as being within the scope of emotion in domestic dogs. The postures of dogs may indicate their emotional state. In some instances, the recognition of specific postures and behaviors can be learned.

Psychology research has shown that when humans gaze at the face of another human, the gaze is not symmetrical; the gaze instinctively moves to the right side of the face to obtain information about their emotions and state. Research at the University of Lincoln shows that dogs share this instinct when meeting a human, and only when meeting a human (i.e. not other animals or other dogs). They are the only non-primate species known to share this instinct.

The existence and nature of personality traits in dogs have been studied (15,329 dogs of 164 different breeds). Five consistent and stable "narrow traits" were identified, described as playfulness, curiosity/fearlessness, chase-proneness, sociability and aggressiveness. A further higher order axis for shyness–boldness was also identified.

Dogs presented with images of either human or dog faces with different emotional states (happy/playful or angry/aggressive) paired with a single vocalization (voices or barks) from the same individual with either a positive or negative emotional state or brown noise. Dogs look longer at the face whose expression is congruent to the emotional state of the vocalization, for both other dogs and humans. This is an ability previously known only in humans. The behavior of a dog can not always be an indication of its friendliness. This is because when a dog wags its tail, most people interpret this as the dog expressing happiness and friendliness. Though indeed tail wagging can express these positive emotions, tail wagging is also an indication of fear, insecurity, challenging of dominance, establishing social relationships or a warning that the dog may bite.

Some researchers are beginning to investigate the question of whether dogs have emotions with the help of magnetic resonance imaging.

Elephants

Elephants are known for their empathy towards members of the same species as well as their cognitive memory. While this is true scientists continuously debate the extent to which elephants feel emotion. Observations show that elephants, like humans, are concerned with distressed or deceased individuals, and render assistance to the ailing and show a special interest in dead bodies of their own kind, however this view is interpreted as being anthropomorphic

Elephants have recently been suggested to pass mirror self-recognition tests, and such tests have been linked to the capacity for empathy. However, the experiment showing such actions did not follow the accepted protocol for tests of self-recognition, and earlier attempts to show mirror self-recognition in elephants have failed, so this remains a contentious claim. 

Elephants are also deemed to show emotion through vocal expression, specifically the rumble vocalization. Rumbles are frequency modulated, harmonically rich calls with fundamental frequencies in the infrasonic range, with clear formant structure. Elephants exhibit negative emotion and/or increased emotional intensity through their rumbles, based on specific periods of social interaction and agitation. 

Cats

Cat's response to a fear inducing stimulus.
 
It has been postulated that domestic cats can learn to manipulate their owners through vocalizations that are similar to the cries of human babies. Some cats learn to add a purr to the vocalization, which makes it less harmonious and more dissonant to humans, and therefore harder to ignore. Individual cats learn to make these vocalizations through trial-and-error; when a particular vocalization elicits a positive response from a human, the probability increases that the cat will use that vocalization in the future.

Growling can be an expression of annoyance or fear, similar to humans. When annoyed or angry, a cat wriggles and thumps its tail much more vigorously than when in a contented state. In larger felids such as lions, what appears to be irritating to them varies between individuals. A male lion may let his cubs play with his mane or tail, or he may hiss and hit them with his paws. Domestic male cats also have variable attitudes towards their family members, for example, older male siblings tend not to go near younger or new siblings and may even show hostility toward them. 

Hissing is also a vocalization associated with either offensive or defensive aggression. They are usually accompanied by a postural display intended to have a visual effect on the perceived threat. Cats hiss when they are startled, scared, angry, or in pain, and also to scare off intruders into their territory. If the hiss and growl warning does not remove the threat, an attack by the cat may follow. Kittens as young as two to three weeks will potentially hiss when first picked up by a human. 

Honeybees

Honeybees become pessimistic after being shaken
 
Honeybees ("Apis mellifera carnica") were trained to extend their proboscis to a two-component odour mixture (CS+) predicting a reward (e.g., 1.00 or 2.00 M sucrose) and to withhold their proboscis from another mixture (CS−) predicting either punishment or a less valuable reward (e.g., 0.01 M quinine solution or 0.3 M sucrose). Immediately after training, half of the honeybees were subjected to vigorous shaking for 60 s to simulate the state produced by a predatory attack on a concealed colony. This shaking reduced levels of octopamine, dopamine, and serotonin in the hemolymph of a separate group of honeybees at a time point corresponding to when the cognitive bias tests were performed. In honeybees, octopamine is the local neurotransmitter that functions during reward learning, whereas dopamine mediates the ability to learn to associate odours with quinine punishment. If flies are fed serotonin, they are more aggressive; flies depleted of serotonin still exhibit aggression, but they do so much less frequently.

Within 5 minutes of the shaking, all the trained bees began a sequence of unreinforced test trials with five odour stimuli presented in a random order for each bee: the CS+, the CS−, and three novel odours composed of ratios intermediate between the two learned mixtures. Shaken honeybees were more likely to withhold their mouthparts from the CS− and from the most similar novel odour. Therefore, agitated honeybees display an increased expectation of bad outcomes similar to a vertebrate-like emotional state. The researchers of the study stated that, "Although our results do not allow us to make any claims about the presence of negative subjective feelings in honeybees, they call into question how we identify emotions in any non-human animal. It is logically inconsistent to claim that the presence of pessimistic cognitive biases should be taken as confirmation that dogs or rats are anxious but to deny the same conclusion in the case of honeybees."

Crayfish

The freshwater crayfish Procambarus clarkii
 
Crayfish naturally explore new environments but display a general preference for dark places. A 2014 study on the freshwater crayfish Procambarus clarkii tested their responses in a fear paradigm, the elevated plus maze in which animals choose to walk on an elevated cross which offers both aversive and preferable conditions (in this case, two arms were lit and two were dark). Crayfish which experienced an electric shock displayed enhanced fearfulness or anxiety as demonstrated by their preference for the dark arms more than the light. Furthermore, shocked crayfish had relatively higher brain serotonin concentrations coupled with elevated blood glucose, which indicates a stress response. Moreover, the crayfish calmed down when they were injected with the benzodiazepine anxiolytic, chlordiazepoxide, used to treat anxiety in humans, and they entered the dark as normal. The authors of the study concluded "...stress-induced avoidance behavior in crayfish exhibits striking homologies with vertebrate anxiety."

A follow-up study using the same species confirmed the anxiolytic effect of chlordiazepoxide, but moreover, the intensity of the anxiety-like behaviour was dependent on the intensity of the electric shock until reaching a plateau. Such a quantitative relationship between stress and anxiety is also a very common feature of human and vertebrate anxiety.

Paternal care

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Paternal_care
 
In biology, paternal care is parental investment provided by a male to his own offspring. It is a complex social behaviour in vertebrates associated with animal mating systems, life history traits, and ecology. Paternal care may provided in concert with the mother (biparental care) or, more rarely, by the male alone (so called exclusive paternal care).

The provision of care, by either males or females, is presumed to increase growth rates, quality, and/or survival of young, and hence ultimately increase the inclusive fitness of parents. In a variety of vertebrate species (e.g., about 80% of birds and about 6% of mammals), both males and females invest heavily in their offspring. Many of these biparental species are socially monogamous, so individuals remain with their mate for at least one breeding season.

Exclusive paternal care has evolved multiple times in a variety of organisms, including invertebrates, fishes, and amphibians.

Mammals

Male mammals may invest heavily in reproduction through efforts to enhance reproductive success (e.g., courtship displays, intrasexual combat) or to provide paternal care. However, the costs of paternal care have rarely been studied in mammals, in large part because only 5-10% of mammals exhibit such care. Nonetheless, in those species in which males do provide extensive care for their offspring (i.e., biparental species, including humans), indirect evidence suggests that its costs can be substantial. For example, mammalian fathers that care for their young may undergo systematic changes in body mass and in circulating or excreted concentrations of a number of hormones (e.g., androgens, glucocorticoids, leptin) as a function of reproductive status, and several of these hormones have important effects on body composition, metabolism, and organismal performance. Nonetheless, the energetic and performance consequences of male parental investment have rarely been investigated directly in mammals.

In mammals, paternal care is found most commonly in primates, rodents and canids

Humans

Human cultures and societies vary widely in the expression of paternal care. Some cultures recognize paternal care via celebration of Father's Day. According to CARTA , human paternal care is a derived characteristic (evolved in humans or our recent ancestors) and one of the defining characteristics of Homo sapiens. Different aspects of human paternal care (direct, indirect, fostering social or moral development) may have evolved at different points in our history, and together they form a unique suite of behaviors as compared with the great apes. One study of humans has found evidence suggesting a possible evolutionary trade-off between mating success and parenting involvement; specifically, fathers with smaller testes tend to be more involved in care of their children.

Research on the effects of paternal care on human happiness have yielded conflicting results. However, one recent study concluded that fathers generally report higher levels of happiness, positive emotion, and meaning in life as compared with non-fathers.

According to the United States Census Bureau, approximately one third of children in the U.S. grow up without their biological father in their home. Numerous studies have documented negative consequences of being raised in a home that lacks a father, including increased likelihood of living in poverty, having behavioral problems, committing crimes, spending time in prison, abusing drugs or alcohol, becoming obese, and dropping out of school.

Non-human primates

In non-human primates, paternal investment is often dependent on the type of mating system exhibited by each species. Mating systems influence paternity certainty and the likelihood that a male is providing care towards his own biological offspring. Paternal certainty is high in monogamous pair-bonded species and males are less likely to be at risk for caring for unrelated offspring and not contributing to their own fitness. In contrast, polygamous primate societies create paternity uncertainty and males are more at risk of providing care for unrelated offspring and compromising their own fitness. Paternal care by male non-human primates motivated by biological paternity utilize past mating history and phenotypic matching in order to recognize their own offspring. Comparing male care efforts exhibited by the same species can provide insight on the significant relationship between paternity certainty and the amount of paternal care exhibited by a male. For example, Siamangs (Symphalangus syndactylus) utilize both polyandrous and monogamous mating systems but, it was found that monogamous males are more likely to carry infants and contribute to parental duties compared to those in promiscuous mating systems. Studies in Primatology have used primate mating systems and social organization to help theorize the evolutionary significance of paternal care in Primates.

Strepsirrhines

Ring tailed Lemur
 
Strepsirrhini is a suborder of the order Primates and includes lemurs, lorises, and bush babies. In this sub-order, males exhibit the lowest levels of paternal care for infants among primates. Examples of observed male care in this group include playing, grooming, and occasionally transporting infants. Males have also been observed interacting with infants while mothers park them and temporarily leave in order to feed. When female strepsirrhines park or nest their infants in nearby trees, males frequently use this as an opportunity to play with the unattended infants. In this suborder, male care and affection is directed toward multiple infants including non-biological offspring, and young strepsirrhines can be found interacting with various males. Paternal care does not influence infant growth rates or shorten inter-birth intervals of mothers as it can in haplorrhines. Strepsirrhini males exhibit the lowest intensity of care towards infants in non-human primates. 

Strepsirrhines are constrained by their life history traits and reproductive rates are not flexible within this group of primates. This group of primates are programmed to give birth when food is abundant resulting in strict seasonal breeding periods. Shortening inter-birth intervals, which is theorized to be a possible outcome of increased male care, is not beneficial for Strepsirrhine mothers and can decrease infant survival. Studies also show that paternity can be highly skewed in Strepsirrhines, with only one or few male members being the only biological father within a single group. Instead of relying on a singular paternal figure, female mothers in this group rely on alloparenting from other group members. Infant parking and strict reproductive schedules are more beneficial for successful infant development in Strepsirrhines. 

Haplorrhines

Chimpanzee infant
 
Haplorhini, a sub-order of the order Primate, includes tarsiers, New World Monkeys, Old World monkeys, apes, and humans. Haplorrhini is broken into two sister groups which are commonly distinguished by the characteristic of the primate nose: Catarrhini (narrow turned down nose) and Platyrrhini (flat nose). Paternal care is highly variable between the two sister groups and the species within them.

Catarrhines

Catarrhini is composed of Old World Monkeys (Cercopithecidae) and Apes (Hylobatidae and Hominoidea). These primates are geographically located in Africa, Asia, and Madagascar.

Cercopithecines, the largest primate family, include primates species such as baboons, macaques, colobus, and vervet monkeys.

Apes consist of species of gibbons, siamangs, chimpanzees, gorillas, orangutans and humans.

Catarrhines (non-human) are often organized into a multimale-multifemale social systems and utilize polygamous mating systems which results in paternity uncertainty. It is predicted that males in promiscuous mating systems do not engage in infant care due to the high costs of caring for an infant and missing opportunities to mate with receptive females. Male care in this group of primates is often portrayed through actions such as grooming, carrying, tolerance of the infant, as well as protection against agonistic interactions and infanticide. High ranking males can also provide access to food for developing infants. Direct care such as grooming and playing is not as common compared to male intervention on behalf of the infant when it is being harassed by conspecifics.

Baboon and her infant
 
In Cercopiths, male involvement in the infant's interactions with others is common in many species of baboons but between species paternal care is not always biased towards biological offspring. Male Savannah baboons (Papio cynocephalus) direct care towards their own biological offspring. Males in this species are more likely to intervene and protect infants from harassment against other group members when the infant is predicted to be their own. Studies have shown that male Savannah baboons selectively choose to remain in closer proximity to their own offspring and engage in long-term investment beyond early infancy, when the infant is at greatest risk for infanticide. Infants receiving paternal investment in Savannah baboons have shown enhanced fitness and accelerated maturation through males creating a safe zone for infants to exist in. Similarly to Savannah Baboons, Yellow baboon (Papio cynocephalus) males provide elevated care for their own offspring. Long-term care and investment beyond early infancy is better linked to paternity in this species and affecting infant growth and development. Male baboons also direct care towards unrelated offspring based on male affiliations with female mothers. Baboon males and females within a social group often exhibit “friendships” with females which begin during birth of her infant and has been observed to end abruptly if the infant dies. Males establish associations with females in which they have previously mated resulting in affiliative behaviour and protection towards her offspring. Relationships created by male and female members are significant for infant survival in Chacma baboons (Papio ursinus) because the risk of infanticide in early infancy is higher in this species. Paternal care in the form of protection for the infant is therefore more beneficial than long term investment in Chacma baboons and is believed to be directed towards both biological and non-biological infants in the group.

Rhesus Macaque
 
Similarly to baboons, paternal roles and the underlying mechanisms as to why paternal care evolved vary within macaque species. In Sulawesi crested macaques (Macaca nigra) both male rank and the relationship to the mother predicted male care towards an infant instead of true biological paternity. In both Sulawesi and Barbary macaques (Macaca sylvanus) males adopted a “care-then-mate” strategy, in which care is provided to infants regardless of paternity in order for the male to increase future mating opportunities with the mother. In both species, it was observed that male macaques are more likely to initiate care towards and positively interact with the infant in the presence of the mother. In Assamese macaques (Macaca assamensis) biological paternity was the most significant predictor of male affiliations with infants and therefore males biased care towards infants presumed to be their own. Observers found that Assamese males were more likely to engage and provide care for infants in the absence of their mothers reducing the likelihood that care provided to infants will impress the mother and secure access to mating possibilities. In Rhesus macaques, male's providing protection and greater access to food resulted in higher weight gain for both male and female infants. This had a positive effect on infant survival and was significant in the first year of infancy when the risk of infanticide is the highest.

Chimpanzees (Pan troglodytes) are organized into fission-fusion social groups and provide an example of a polygamous mating society. Male chimpanzees often engage with infants in the form of grooming, playing, and providing protection towards other group members. In both Western and Eastern chimpanzees it was found that males were more likely to engage with their own biological offspring meaning that male care is directed by paternity in this species. In both chimpanzee and bonobo social groups, high ranking alpha males sire approximately half of the offspring within their social group. More research needs to be done addressing how reproductive skew affects paternal care and infant-male relationships in non-human primates including chimpanzees and bonobos. 

Platyrrhines

Titi Monkey
 
Platyrrhini is a sub-order of the order Primate and are commonly referred to as the New World Monkeys. These primates occupy Central and South America, and Mexico. This group is broken into five families, range in body size, and include species such as spider monkeys, capuchins, and howler monkeys.

Among primate species, the highest levels of male care found in New World monkeys are observed in Owl monkeys (Aotus azarai ) and Titi monkeys (Callicebus caligatus). In both of these species, males and females are monogamous, pair-bonded, and exhibit bi-parental care for their offspring. The social group in both these species consists of female and male parents along with their offspring. Males in these species serve as the primary caregivers and play a major role in infant survival.

Male Titi monkeys are more involved than the mother in all aspects of male care except nursing, and engage in more social activities such as grooming, food sharing, play, and transportation of the infant. The bond between an infant and its father is established right after birth and maintained into adolescence making the father the infant's predominant attachment figure. Similarly, the male Owl monkey acts as the main caregiver and is crucial to the survival of his offspring. If a female gives birth to twins, the male is still responsible for transporting both the infants. In the absence of a father, infant mortality increases in both these species and it is unlikely that the infant will survive. One study found that the replacement of a male enacting as the role of the father resulted in higher mortality during infancy emphasizing the importance of the social bond created between father and offspring at birth.

White-faced Capuchin
 
In White‐faced Capuchins (Cebus capucinus) one study found that paternal care exhibited in the form of playful behaviour, proximity to, inspection of, and collecting discarded food items from infants was determined by male rank and dominance status rather than biological relatedness to the infant. Scientists believe that future research on kin recognition needs to be done on capuchins to determine if males choose to bias their care as well as in other non-human primates relying on phenotypic matching to distinguish biological offspring.

Evolutionary Perspectives on Paternal Care in Primates

Squirrel monkeys
 
The Theory of Paternal Investment: Differences in infant care between sexes stems from females investing more time and energy in their offspring than males, while males compete with one another for access to females. Although paternal care is rare among mammalians, males across many primate species still play a paternal role in infant care. 

The rise of paternity in several primate species can be explained by 3 different hypotheses

The Paternal Care hypothesis: Paternal care and investment will be designated to biological offspring, increasing the infant's chance of survival, and therefore increasing the male's own fitness. This hypothesis requires the on male to use recognition and behavioural cues to distinguish their own offspring from other infants. Paternal uncertainty is high in multimale-multifemale primate groups so males must use these cues to recognize and bias care towards their own offspring. This allows males to provide both short and long-term investment for infants. Primates living in monogamous pairs or single-male groups exhibit high paternity certainty and assist with the Paternal Care hypothesis. 

The Mating Effort hypothesis: Males provide care for infants in order to increase mating opportunities with females. This means that males are more likely to engage in affiliative behaviours with the infant in the presence of the mother as a form of male mating effort in order to enhance future reproductive success. This theory is independent of genetics and evolved independent of paternity. 

The Maternal Relief hypothesis: Males provide care infants to help reduce reproductive burdens of the female, ultimately resulting shorter inter-birth intervals and more successful offspring. This stems from the male alleviating the female from her parental duties in order to keep her resources from becoming depleted and subsequently allowing her to produce high quality milk for the infant. Similarly to the mating effort hypothesis, the maternal relief hypothesis is independent of genetics and does not require the male to be the biological father to take part in infant care.

Rodents

California mice (Peromyscus californicus) are well known for have intensive and sustained paternal behavior.
 
Several species of rodents have been studied as models of paternal care, including prairie voles (Microtus ochrogaster), Campbell's dwarf hamster, the Mongolian gerbil, and the African striped mouse. The California mouse (Peromyscus californicus) is a monogamous rodent that exhibits extensive and essential paternal care, and hence has been studied as a model organism for this phenomenon. One study of this species found that fathers had larger hindlimb muscles than did non-breeding males. Quantitative genetic analysis has identified several genomic regions that affect paternal care.

Birds

Fathers contribute equally with mothers to the care of offspring in as many as 90% of bird species, sometimes including incubating the eggs. Most paternal care is associated with biparental care in socially monogamous mating systems (about 81% of species), but in approximately 1% of species, fathers provide all care after eggs are laid. The unusually high incidence of paternal care in birds compared to other vertebrate taxa is often assumed to stem from the extensive resource requirements for production of flight-capable offspring. By contrast, in bats (the other extant flying vertebrate lineage), care of offspring is provided by females (although males may help guard pups in some species). In contrast to the large clutch sizes found in many bird species with biparental care, bats typically produce single offspring, which may be a limitation related to lack of male help. It has been suggested, though not without controversy, that paternal care is the ancestral form of parental care in birds.

Amphibians

Paternal care occurs in a number of species of anuran amphibians, including glass frogs.

Fish

Paternal care occurs in perhaps as many as half of the known species of certain families of teleost fish. One well-known example of paternal care is in seahorses, where males brood the eggs in a brood pouch until they are ready to hatch.

Males from the Centrarchidae (sunfish) family exhibit paternal parental care of their eggs and fry through a variety of behaviors such as nest guarding and nest fanning (aerating eggs).

In jawfish, the female lays the eggs and the male then takes them in his mouth. A male can have up to 400 eggs in his mouth at one time. The male can't feed while he hosts the young, but as the young get older, they spend more time out of the mouth. This is sometimes termed mouthbrooding

During the breeding season, male three-spined sticklebacks defend nesting territories. Males attract females to spawn in their nests and defend their breeding territory from intruders and predators. After spawning, the female leaves the male's territory and the male is solely responsible for the care of the eggs. During the ~6-day incubation period, the male 'fans' (oxygenates) the eggs, removes rotten eggs and debris, and defends the territory. Even after embryos hatch, father sticklebacks continue to tend their newly hatched offspring for ~7 days, chasing and retrieving fry that stray from the nest and spitting them back into the nest.

Arthropods

Paternal care is rare in arthropods, but occurs in some species, including the giant water bug and the arachnid Iporangaia pustulosa, a harvestman. In several species of crustaceans, males provide care of offspring by building and defending burrows or other nest sites. Exclusive paternal care, where males provide the sole investment after egg-laying, is the rarest form, and is known in only 13 taxa: giant water bugs, sea spiders, two genera of leaf-footed bugs, two genera of assassin bugs, three genera of phlaeothripid thrips, three genera of harvestmen, and in millipedes of the family Andrognathidae.

Theoretical models of the evolution of paternal care

Mathematical models related to the prisoner's dilemma suggest that when female reproductive costs are higher than male reproductive costs, males cooperate with females even when they do not reciprocate. In this view, paternal care is an evolutionary achievement that compensates for the higher energy demands that reproduction typically involves for mothers.

Other models suggest that basic life-history differences between males and females are adequate to explain the evolutionary origins of maternal, paternal, and bi-parental care. Specifically, paternal care is more likely if male adult mortality is high, and maternal care is more likely to evolve if female adult mortality is high. Basic life-history differences between the sexes can also cause evolutionary transitions among different sex-specific patterns of parental care.

Consequences for offspring survival and development

Care by fathers can have important consequences for survival and development of offspring in both humans and other species. Mechanisms underlying such effects may include protecting offspring from predators or environmental extremes (e.g., heat or cold), feeding them or, in some species, direct teaching of skills. Moreover, some studies indicate a potential epigenetic germline inheritance of paternal effects.

The effects of paternal care on offspring can be studied in various ways. One way is to compare species that vary in the degree of paternal care. For example, an extended duration of paternal care occurs in the gentoo penguin, as compared with other Pygoscelis species. It was found that their fledging period, the time between a chick's first trip to sea and its absolute independence from the group, was longer than other penguins of the same genus. The authors hypothesized that this was because it allowed chicks to better develop their foraging skills before becoming completely independent from their parents. By doing so, a chick may have a higher chance of survival and increase the population's overall fitness.

Proximate mechanisms

The proximate mechanisms of paternal care are not well understood for any organism. In vertebrates, at the level of hormonal control, vasopressin apparently underlies the neurochemical basis of paternal care; prolactin and testosterone may also be involved. As with other behaviors that affect Darwinian fitness, reward pathways in the brain may reinforce the expression of paternal care and may be involved in the formation of attachment bonds.

The mechanisms that underlie the onset of parental behaviors in female mammals have been characterized in a variety of species. In mammals, females undergo endocrine changes during gestation and lactation that "prime" mothers to respond maternally towards their offspring.

Paternal males do not undergo these same hormonal changes and so the proximate causes of the onset of parental behaviors must differ from those in females. There is little consensus regarding the processes by which mammalian males begin to express parental behaviors. In humans, evidence ties oxytocin to sensitive care-giving in both women and men, and with affectionate infant contact in women and stimulatory infant contact in men. In contrast, testosterone decreases in men who become involved fathers and testosterone may interfere with aspects of paternal care.

Placentophagia (the behavior of ingesting the afterbirth after parturition) has been proposed to have physiological consequences that could facilitate a male's responsiveness to offspring. Non-genomic transmission of paternal behavior from fathers to their sons has been reported to occur in laboratory studies of the biparental California mouse, but whether this involves (epigenetic) modifications or other mechanisms is not yet known.

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...