Search This Blog

Wednesday, March 11, 2020

Helicobacter pylori

From Wikipedia, the free encyclopedia
 
Helicobacter pylori
Other namesCampylobacter pylori
Immunohistochemical detection of Helicobacter (1) histopatholgy.jpg
Immunohistochemical staining of H. pylori (brown) from a gastric biopsy
Pronunciation
SpecialtyInfectious disease, gastroenterology
SymptomsNone, abdominal pain, nausea
ComplicationsStomach ulcer, stomach cancer
CausesHelicobacter pylori spread by fecal oral route
Diagnostic methodUrea breath test, fecal antigen assay, tissue biopsy
MedicationProton pump inhibitor, clarithromycin, amoxicillin, metronidazole
Frequency>50%

Helicobacter pylori, previously known as Campylobacter pylori, is a gram-negative, helically-shaped, microaerophilic bacterium usually found in the stomach. Its helical shape (from which the genus name, helicobacter, derives) is thought to have evolved in order to penetrate the mucoid lining of the stomach and thereby establish infection. The bacterium was first identified in 1982 by Australian doctors Barry Marshall and Robin Warren, who found that it was present in a person with chronic gastritis and gastric ulcers, conditions not previously believed to have a microbial cause. HP has been associated with the mucosa-associated lymphoid tissue in the stomach, esophagus, colon, rectum, or tissues around the eye (termed extranodal marginal zone B-cell lymphoma of the cited organ), and of lymphoid tissue in the stomach (termed diffuse large B-cell lymphoma).

Many investigators have proposed causal associations between H. pylori and a wide range of other diseases (e.g. idiopathic thrombocytopenic purpura, iron deficiency anemia, atherosclerosis, Alzheimer's disease, multiple sclerosis, coronary artery disease, periodontitis, Parkinson's disease, Guillain–Barré syndrome, rosacea, psoriasis, chronic urticaria, spot baldness, various autoimmune skin diseases, Henoch–Schönlein purpura, low blood levels of vitamin B12, autoimmune neutropenia, the antiphospholipid syndrome, plasma cell dyscrasias, central serous chorioretinitis, open angle glaucoma, blepharitis, diabetes mellitus, the metabolic syndrome, various types of allergies, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, hepatic fibrosis, and liver cancer). The bacterial infection has also been proposed to have protective effects for its hosts against infections by other pathogens, asthma, obesity, celiac disease, inflammatory bowel disease, rhinitis, atopic dermatitis, gastroesophageal reflux disease, and esophageal cancer. However, these deleterious and protective effects have frequently been based on correlative rather than direct relationship studies and have often been contradicted by other studies that show either the opposite or no effect on the cited disease. Consequently, many of these relationships are currently regarded as questionable and in need of more definitive studes. They are not considered further here.

Some studies suggest that H. pylori plays an important role in the natural stomach ecology, e.g. by influencing the type of bacteria that colonize the gastrointestinal tract. Other studies suggest that non-pathogenic strains of H. pylori may be beneficial, e.g., by normalizing stomach acid secretion, and may play a role in regulating appetite, since the bacterium's presence in the stomach results in a persistent but reversible reduction in the level of ghrelin, a hormone that increases appetite.

In general, over 50% of the world's population has H. pylori in their upper gastrointestinal tracts with this infection (or colonization) being more common in developing countries. In recent decades, however the prevalence of H. pylori colonization of the gastrointestinal tract has declined in many countries. This is attributed to improved socioeconomic conditions: in the United States of America, for example, the prevalence of H. pylori, as detected by endoscopy conducted on a referral population, fell from 65.8 to 6.8% over a recent 10-year period while over the same time period in some developing countries H. pylori colonization remained very common with prevalence levels as high as 80%. In all events, H. pylori infection is usually asymptomatic, being associated with overt disease (commonly gastritis or peptic ulcers rather than the relatively very rarely occurring cancers) in less than 20% of cases.

Signs and symptoms

Up to 90% of people infected with H. pylori never experience symptoms or complications. However, individuals infected with H. pylori have a 10 to 20% lifetime risk of developing peptic ulcers. Acute infection may appear as an acute gastritis with abdominal pain (stomach ache) or nausea. Where this develops into chronic gastritis, the symptoms, if present, are often those of non-ulcer dyspepsia: stomach pains, nausea, bloating, belching, and sometimes vomiting. Pain typically occurs when the stomach is empty, between meals, and in the early morning hours, but it can also occur at other times. Less common ulcer symptoms include nausea, vomiting, and loss of appetite. Bleeding in the stomach can also occur as evidenced by the passage of black stools; prolonged bleeding may cause anemia leading to weakness and fatigue. If bleeding is heavy, hematemesis, hematochezia, or melena may occur. Inflammation of the pyloric antrum, which connects the stomach to the duodenum, is more likely to lead to duodenal ulcers, while inflammation of the corpus (i.e. body of the stomach) is more likely to lead to gastric ulcers. Individuals infected with H. pylori may also develop colorectal or gastric polyps, i.e. a non-cancerous growth of tissue projecting from the mucous membranes of these organs. Usually, these polyps are asymptomatic but gastric polyps may be the cause of dyspepsia, heartburn, bleeding from the upper gastrointestinal tract, and, rarely, gastric outlet obstruction while colorectal polyps may be the cause of rectal bleeding, anemia, constipation, diarrhea, weight loss, and abdominal pain.

Individuals with chronic H. pylori infection have an increased risk of acquiring a cancer that is directly related to this infection. These cancers are stomach adenocarcinoma, less commonly diffuse large B-cell lymphoma of the stomach, or extranodal marginal zone B-cell lymphomas of the stomach, or, more rarely, of the colon, rectum, esophagus, or ocular adenexa (i.e. orbit, conjunctiva, and/or eyelids). The signs, symptoms, pathophysiology, and diagnoses of these cancers are given in the cited linkages.

Microbiology

Helicobacter pylori
EMpylori.jpg
Scientific classification edit
Domain: Bacteria
Phylum: Proteobacteria
Class: Epsilonproteobacteria
Order: Campylobacterales
Family: Helicobacteraceae
Genus: Helicobacter
Species:
H. pylori
Binomial name
Helicobacter pylori
(Marshall et al. 1985) Goodwin et al., 1989

Morphology

Helicobacter pylori is a helix-shaped (classified as a curved rod, not spirochaete) Gram-negative bacterium about 3 μm long with a diameter of about 0.5μm. H. pylori can be demonstrated in tissue by Gram stain, Giemsa stain, haematoxylin–eosin stain, Warthin–Starry silver stain, acridine orange stain, and phase-contrast microscopy. It is capable of forming biofilms and can convert from spiral to a possibly viable but nonculturable coccoid form.

Helicobacter pylori has four to six flagella at the same location; all gastric and enterohepatic Helicobacter species are highly motile owing to flagella. The characteristic sheathed flagellar filaments of Helicobacter are composed of two copolymerized flagellins, FlaA and FlaB.

Physiology

Helicobacter pylori is microaerophilic—that is, it requires oxygen, but at lower concentration than in the atmosphere. It contains a hydrogenase that can produce energy by oxidizing molecular hydrogen (H2) made by intestinal bacteria. It produces oxidase, catalase, and urease.

H. pylori possesses five major outer membrane protein families. The largest family includes known and putative adhesins. The other four families are porins, iron transporters, flagellum-associated proteins, and proteins of unknown function. Like other typical Gram-negative bacteria, the outer membrane of H. pylori consists of phospholipids and lipopolysaccharide (LPS). The O antigen of LPS may be fucosylated and mimic Lewis blood group antigens found on the gastric epithelium. The outer membrane also contains cholesterol glucosides, which are present in few other bacteria.

Genome

Helicobacter pylori consists of a large diversity of strains, and hundreds of genomes have been completely sequenced. The genome of the strain "26695" consists of about 1.7 million base pairs, with some 1,576 genes. The pan-genome, that is a combined set of 30 sequenced strains, encodes 2,239 protein families (orthologous groups, OGs). Among them, 1248 OGs are conserved in all the 30 strains, and represent the universal core. The remaining 991 OGs correspond to the accessory genome in which 277 OGs are unique (i.e., OGs present in only one strain).

Transcriptome

In 2010, Sharma et al. presented a comprehensive analysis of transcription at single-nucleotide resolution by differential RNA-seq that confirmed the known acid induction of major virulence loci, such as the urease (ure) operon or the cag pathogenicity island (see below). More importantly, this study identified a total of 1,907 transcriptional start sites, 337 primary operons, and 126 additional suboperons, and 66 monocistrons. Until 2010, only about 55 transcriptional start sites (TSSs) were known in this species. Notably, 27% of the primary TSSs are also antisense TSSs, indicating that—similar to E. coliantisense transcription occurs across the entire H. pylori genome. At least one antisense TSS is associated with about 46% of all open reading frames, including many housekeeping genes. Most (about 50%) of the 5' UTRs are 20–40 nucleotides (nt) in length and support the AAGGag motif located about 6 nt (median distance) upstream of start codons as the consensus Shine–Dalgarno sequence in H. pylori.

Genes involved in virulence and pathogenesis

Study of the H. pylori genome is centered on attempts to understand pathogenesis, the ability of this organism to cause disease. About 29% of the loci have a colonization defect when mutated. Two of sequenced strains have an around 40-kb-long Cag pathogenicity island (a common gene sequence believed responsible for pathogenesis) that contains over 40 genes. This pathogenicity island is usually absent from H. pylori strains isolated from humans who are carriers of H. pylori, but remain asymptomatic.

The cagA gene codes for one of the major H. pylori virulence proteins. Bacterial strains with the cagA gene are associated with an ability to cause ulcers. The cagA gene codes for a relatively long (1186-amino acid) protein. The cag pathogenicity island (PAI) has about 30 genes, part of which code for a complex type IV secretion system. The low GC-content of the cag PAI relative to the rest of the Helicobacter genome suggests the island was acquired by horizontal transfer from another bacterial species. The serine protease HtrA also plays a major role in the pathogenesis of H. pylori. The HtrA protein enables the bacterium to transmigrate across the host cells' epithelium, and is also needed for the translocation of CagA. 

Pathophysiology

Adaptation to the stomach

Diagram showing how H. pylori reaches the epithelium of the stomach
 
To avoid the acidic environment of the interior of the stomach (lumen), H. pylori uses its flagella to burrow into the mucus lining of the stomach to reach the epithelial cells underneath, where it is less acidic. H. pylori is able to sense the pH gradient in the mucus and move towards the less acidic region (chemotaxis). This also keeps the bacteria from being swept away into the lumen with the bacteria's mucus environment, which is constantly moving from its site of creation at the epithelium to its dissolution at the lumen interface.

H. pylori urease enzyme diagram

H. pylori is found in the mucus, on the inner surface of the epithelium, and occasionally inside the epithelial cells themselves. It adheres to the epithelial cells by producing adhesins, which bind to lipids and carbohydrates in the epithelial cell membrane. One such adhesin, BabA, binds to the Lewis b antigen displayed on the surface of stomach epithelial cells. H. pylori adherence via BabA is acid sensitive and can be fully reversed by decreased pH. It has been proposed that BabA's acid responsiveness enables adherence while also allowing an effective escape from unfavorable environment at pH that is harmful to the organism. Another such adhesin, SabA, binds to increased levels of sialyl-Lewis x antigen expressed on gastric mucosa.

In addition to using chemotaxis to avoid areas of low pH, H. pylori also neutralizes the acid in its environment by producing large amounts of urease, which breaks down the urea present in the stomach to carbon dioxide and ammonia. These react with the strong acids in the environment to produce a neutralized area around H. pylori. Urease knockout mutants are incapable of colonization. In fact, urease expression is not only required for establishing initial colonization but also for maintaining chronic infection.

Inflammation, gastritis and ulcer

Helicobacter pylori harms the stomach and duodenal linings by several mechanisms. The ammonia produced to regulate pH is toxic to epithelial cells, as are biochemicals produced by H. pylori such as proteases, vacuolating cytotoxin A (VacA) (this damages epithelial cells, disrupts tight junctions and causes apoptosis), and certain phospholipases. Cytotoxin associated gene CagA can also cause inflammation and is potentially a carcinogen.

Colonization of the stomach by H. pylori can result in chronic gastritis, an inflammation of the stomach lining, at the site of infection. Helicobacter cysteine-rich proteins (Hcp), particularly HcpA (hp0211), are known to trigger an immune response, causing inflammation. H. Pylori has been shown to increase the levels of COX2 in H. Pylori positive gastritis. Chronic gastritis is likely to underlie H. pylori-related diseases.

Ulcers in the stomach and duodenum result when the consequences of inflammation allow stomach acid and the digestive enzyme pepsin to overwhelm the mechanisms that protect the stomach and duodenal mucous membranes. The location of colonization of H. pylori, which affects the location of the ulcer, depends on the acidity of the stomach. In people producing large amounts of acid, H. pylori colonizes near the pyloric antrum (exit to the duodenum) to avoid the acid-secreting parietal cells at the fundus (near the entrance to the stomach). In people producing normal or reduced amounts of acid, H. pylori can also colonize the rest of the stomach.

The inflammatory response caused by bacteria colonizing near the pyloric antrum induces G cells in the antrum to secrete the hormone gastrin, which travels through the bloodstream to parietal cells in the fundus. Gastrin stimulates the parietal cells to secrete more acid into the stomach lumen, and over time increases the number of parietal cells, as well. The increased acid load damages the duodenum, which may eventually result in ulcers forming in the duodenum.

When H. pylori colonizes other areas of the stomach, the inflammatory response can result in atrophy of the stomach lining and eventually ulcers in the stomach. This also may increase the risk of stomach cancer.

Cag pathogenicity island

The pathogenicity of H. pylori may be increased by genes of the cag pathogenicity island; about 50–70% of H. pylori strains in Western countries carry it. Western people infected with strains carrying the cag PAI have a stronger inflammatory response in the stomach and are at a greater risk of developing peptic ulcers or stomach cancer than those infected with strains lacking the island. Following attachment of H. pylori to stomach epithelial cells, the type IV secretion system expressed by the cag PAI "injects" the inflammation-inducing agent, peptidoglycan, from their own cell walls into the epithelial cells. The injected peptidoglycan is recognized by the cytoplasmic pattern recognition receptor (immune sensor) Nod1, which then stimulates expression of cytokines that promote inflammation.

The type-IV secretion apparatus also injects the cag PAI-encoded protein CagA into the stomach's epithelial cells, where it disrupts the cytoskeleton, adherence to adjacent cells, intracellular signaling, cell polarity, and other cellular activities. Once inside the cell, the CagA protein is phosphorylated on tyrosine residues by a host cell membrane-associated tyrosine kinase (TK). CagA then allosterically activates protein tyrosine phosphatase/protooncogene Shp2. Pathogenic strains of H. pylori have been shown to activate the epidermal growth factor receptor (EGFR), a membrane protein with a TK domain. Activation of the EGFR by H. pylori is associated with altered signal transduction and gene expression in host epithelial cells that may contribute to pathogenesis. A C-terminal region of the CagA protein (amino acids 873–1002) has also been suggested to be able to regulate host cell gene transcription, independent of protein tyrosine phosphorylation. A great deal of diversity exists between strains of H. pylori, and the strain that infects a person can predict the outcome.

Cancer

Two related mechanisms by which H. pylori could promote cancer are under investigation. One mechanism involves the enhanced production of free radicals near H. pylori and an increased rate of host cell mutation. The other proposed mechanism has been called a "perigenetic pathway", and involves enhancement of the transformed host cell phenotype by means of alterations in cell proteins, such as adhesion proteins. H. pylori has been proposed to induce inflammation and locally high levels of TNF-α and/or interleukin 6 (IL-6). According to the proposed perigenetic mechanism, inflammation-associated signaling molecules, such as TNF-α, can alter gastric epithelial cell adhesion and lead to the dispersion and migration of mutated epithelial cells without the need for additional mutations in tumor suppressor genes, such as genes that code for cell adhesion proteins.

The strain of H. pylori a person is exposed to may influence the risk of developing gastric cancer. Strains of H. pylori that produce high levels of two proteins, vacuolating toxin A (VacA) and the cytotoxin-associated gene A (CagA), appear to cause greater tissue damage than those that produce lower levels or that lack those genes completely. These proteins are directly toxic to cells lining the stomach and signal strongly to the immune system that an invasion is under way. As a result of the bacterial presence, neutrophils and macrophages set up residence in the tissue to fight the bacteria assault.

Survival of Helicobacter pylori

The pathogenesis of H. pylori depends on its ability to survive in the harsh gastric environment characterized by acidity, peristalsis, and attack by phagocytes accompanied by release of reactive oxygen species. In particular, H. pylori elicits an oxidative stress response during host colonization. This oxidative stress response induces potentially lethal and mutagenic oxidative DNA adducts in the H. pylori genome.

Vulnerability to oxidative stress and oxidative DNA damage occurs commonly in many studied bacterial pathogens, including Neisseria gonorrhoeae, Hemophilus influenzae, Streptococcus pneumoniae, S. mutans, and H. pylori. For each of these pathogens, surviving the DNA damage induced by oxidative stress appears supported by transformation-mediated recombinational repair. Thus, transformation and recombinational repair appear to contribute to successful infection.

Transformation (the transfer of DNA from one bacterial cell to another through the intervening medium) appears to be part of an adaptation for DNA repair. H. pylori is naturally competent for transformation. While many organisms are competent only under certain environmental conditions, such as starvation, H. pylori is competent throughout logarithmic growth. All organisms encode genetic programs for response to stressful conditions including those that cause DNA damage. In H. pylori, homologous recombination is required for repairing DNA double-strand breaks (DSBs). The AddAB helicase-nuclease complex resects DSBs and loads RecA onto single-strand DNA (ssDNA), which then mediates strand exchange, leading to homologous recombination and repair. The requirement of RecA plus AddAB for efficient gastric colonization suggests, in the stomach, H. pylori is either exposed to double-strand DNA damage that must be repaired or requires some other recombination-mediated event. In particular, natural transformation is increased by DNA damage in H. pylori, and a connection exists between the DNA damage response and DNA uptake in H. pylori, suggesting natural competence contributes to persistence of H. pylori in its human host and explains the retention of competence in most clinical isolates.

RuvC protein is essential to the process of recombinational repair, since it resolves intermediates in this process termed Holliday junctions. H. pylori mutants that are defective in RuvC have increased sensitivity to DNA-damaging agents and to oxidative stress, exhibit reduced survival within macrophages, and are unable to establish successful infection in a mouse model. Similarly, RecN protein plays an important role in DSB repair in H. pylori. An H. pylori recN mutant displays an attenuated ability to colonize mouse stomachs, highlighting the importance of recombinational DNA repair in survival of H. pylori within its host.

Diagnosis

H. pylori colonized on the surface of regenerative epithelium (Warthin-Starry silver stain)

Colonization with H. pylori is not a disease in and of itself, but a condition associated with a number of disorders of the upper gastrointestinal tract. Testing for H. pylori is not routinely recommended. Testing is recommended if peptic ulcer disease or low-grade gastric MALT lymphoma is present, after endoscopic resection of early gastric cancer, for first-degree relatives with gastric cancer, and in certain cases of dyspepsia. Several methods of testing exist, including invasive and noninvasive testing methods.

Noninvasive tests for H. pylori infection may be suitable and include blood antibody tests, stool antigen tests, or the carbon urea breath test (in which the patient drinks 14C—or 13C-labelled urea, which the bacterium metabolizes, producing labelled carbon dioxide that can be detected in the breath). It is not known which non-invasive test is more accurate for diagnosing a H. pylori infection, and the clinical significance of the levels obtained with these tests are not clear. Some drugs can affect H. pylori urease activity and give false negatives with the urea-based tests.

An endoscopic biopsy is an invasive means to test for H. pylori infection. Low-level infections can be missed by biopsy, so multiple samples are recommended. The most accurate method for detecting H. pylori infection is with a histological examination from two sites after endoscopic biopsy, combined with either a rapid urease test or microbial culture.

Transmission

Helicobacter pylori is contagious, although the exact route of transmission is not known. Person-to-person transmission by either the oral–oral or fecal–oral route is most likely. Consistent with these transmission routes, the bacteria have been isolated from feces, saliva, and dental plaque of some infected people. Findings suggest H. pylori is more easily transmitted by gastric mucus than saliva. Transmission occurs mainly within families in developed nations, yet can also be acquired from the community in developing countries. H. pylori may also be transmitted orally by means of fecal matter through the ingestion of waste-tainted water, so a hygienic environment could help decrease the risk of H. pylori infection.

Prevention

Due to H. pylori's role as a major cause of certain diseases (particularly cancers) and its consistently increasing antibiotic resistance, there is a clear need for new therapeutic strategies to prevent or remove the bacterium from colonizing humans. Much work has been done on developing viable vaccines aimed at providing an alternative strategy to control H. pylori infection and related diseases. Researchers are studying different adjuvants, antigens, and routes of immunization to ascertain the most appropriate system of immune protection; however, most of the research only recently moved from animal to human trials. An economic evaluation of the use of a potential H. pylori vaccine in babies found its introduction could, at least in the Netherlands, prove cost-effective for the prevention of peptic ulcer and stomach adenocarcinoma. A similar approach has also been studied for the United States. Notwithstanding this proof-of-concept (i.e. vaccination protects children from acquisition of infection with H. pylori), as of late 2019 there have been no advanced vaccine candidates and only one vaccine in a Phase I clinical trial. Furthermore, development of a vaccine against H. pylori has not been a current priority of major pharmaceutical companies.

Many investigations have attempted to prevent the development of Helicobacter pylori-related diseases by eradicating the bacterium during an early stages of its infestation using antibiotic-based drug regimens. Studies find that such treatments, when effectively eradicating H. pylori from the stomach, reduce the inflammation and some of the histopathological abnormalities associated with the infestation. However studies disagree on the ability of these treatments to alleviate the more serious histopathological abnormalities in H. pylori infections, e.g. gastric atrophy and metaplasia, both of which are precursors to gastric adenocarcinoma. There is similar disagreement on the ability of antibiotic-based regiments to prevent gastric adenocarcinoma. A meta-analysis (i.e. a statistical analysis that combines the results of multiple randomized controlled trials) published in 2014 found that these regimens did not appear to prevent development of this adenocarcinoma. However, two subsequent prospective cohort studies conducted on high-risk individuals in China and Taiwan found that eradication of the bacterium produced a significant decrease in the number of individuals developing the disease. These results agreed with a retrospective cohort study done in Japan and published in 2016 as well as a meta-analysis, also published in 2016, of 24 studies conducted on individuals with varying levels of risk for developing the disease. These more recent studies suggest that the eradication of H. pylori infection reduces the incidence of H. pylori-related gastric adenocarcinoma in individuals at all levels of baseline risk. Further studies will be required to clarify this issue. In all events, studies agree that antibiotic-based regimens effectively reduce the occurrence of metachronous H. pylori-associated gastric adenocarcinoma. (Metachronus cancers are cancers that reoccur 6 months or later after resection of the original cancer.) It is suggested that antibiotic-based drug regimens be used after resecting H. pylori-associated gastric adenocarcinoma in order to reduce its metachronus reoccurrence.

Treatment

Gastritis

Superficial gastritis, either acute or chronic, is the most common manifestation of H. pylori infection. The signs and symptoms of this gastritis have been found to remit spontaneously in many individuals without resorting to Helicobacter pylori eradication protocols. The H. Pylori bacterial infection persists after remission in these cases. Various antibiotic plus proton pump inhibitor drug regimens are used to eradicate the bacterium and thereby successfully treat the disorder with triple-drug therapy consisting of clarithromycin, amoxicillin, and a proton-pump inhibitor given for 14–21 days often being considered first line treatment.

Peptic ulcers

Once H. pylori is detected in a person with a peptic ulcer, the normal procedure is to eradicate it and allow the ulcer to heal. The standard first-line therapy is a one-week "triple therapy" consisting of proton-pump inhibitors such as omeprazole and the antibiotics clarithromycin and amoxicillin. (The actions of proton pump inhibitors against H. pylori may reflect their direct bacteriostatic effect due to inhibition of the bacterium's P-type ATPase and/or urease.) Variations of the triple therapy have been developed over the years, such as using a different proton pump inhibitor, as with pantoprazole or rabeprazole, or replacing amoxicillin with metronidazole for people who are allergic to penicillin. In areas with higher rates of clarithromycin resistance, other options are recommended. Such a therapy has revolutionized the treatment of peptic ulcers and has made a cure to the disease possible. Previously, the only option was symptom control using antacids, H2-antagonists or proton pump inhibitors alone.

Antibiotic-resistant disease

An increasing number of infected individuals are found to harbor antibiotic-resistant bacteria. This results in initial treatment failure and requires additional rounds of antibiotic therapy or alternative strategies, such as a quadruple therapy, which adds a bismuth colloid, such as bismuth subsalicylate. For the treatment of clarithromycin-resistant strains of H. pylori, the use of levofloxacin as part of the therapy has been suggested.

Ingesting lactic acid bacteria exerts a suppressive effect on H. pylori infection in both animals and humans, and supplementing with Lactobacillus- and Bifidobacterium-containing yogurt improved the rates of eradication of H. pylori in humans. Symbiotic butyrate-producing bacteria which are normally present in the intestine are sometimes used as probiotics to help suppress H. pylori infections as an adjunct to antibiotic therapy. Butyrate itself is an antimicrobial which destroys the cell envelope of H. pylori by inducing regulatory T cell expression (specifically, FOXP3) and synthesis of an antimicrobial peptide called LL-37, which arises through its action as a histone deacetylase inhibitor.

The substance sulforaphane, which occurs in broccoli and cauliflower, has been proposed as a treatment. Periodontal therapy or scaling and root planing has also been suggested as an additional treatment.

Cancers

Extranodal marginal zone B-cell lymphomas

Extranodal marginal zone B-cell lymphomas are generally indolent malignancies. Recommended treatment of H. pylori-positive extranodal marginal zone B-cell lymphoma of the stomach, when localized (i.e. Ann Arbor stage I and II), employs one of the antibiotic-proton pump inhibitor regiments listed in the H. pylori eradication protocols. If the initial regimen fails to eradicate the pathogen, patients are treated with an alternate protocol. Eradication of the pathogen is successful in 70–95% of cases. Some 50-80% of patients who experience eradication of the pathogen develop within 3–28 months a remission and long-term clinical control of their lymphoma. Radiation therapy to the stomach and surrounding (i.e. peri-gastric) lymph nodes has also been used to successfully treat these localized cases. Patients with non-localized (i.e. systemic Ann Arbor stage III and IV) disease who are free of symptoms have been treated with watchful waiting or, if symptomatic, with the immunotherapy drug, rituximab, (given for 4 weeks) combined with the chemotherapy drug, chlorambucil, for 6–12 months; 58% of these patients attain a 58% progression-free survival rate at 5 years. Frail stage III/IV patients have been successfully treated with rituximab or the chemotherapy drug, cyclophosphamide, alone. Only rare cases of H. pylori-positive extranodal marginal zone B-cell lymphoma of the colon have been successfully treated with an antibiotic-proton pump inhibitor regimen; the currently recommended treatments for this disease are surgical resection, endoscopic resection, radiation, chemotherapy, or, more recently, rituximab. In the few reported cases of H. pylori-positive extranodal marginal zone B-cell lymphoma of the esophagus, localized disease has been successfully treated with antibiotic-proton pump inhibitor regimens; however, advanced disease appears less responsive or unresponsive to these regimens but partially responsive to rituximab. Antibiotic-proton pump inhibitor eradication therapy and localized radiation therapy have been used successfully to treat H.pylori-positive extranodal marginal zone B-cell lymphomas of the rectum; however radiation therapy has given slightly better results and therefore been suggested to be the disease' preferred treatment. The treatment of localized H. pylori-positive extranodal marginal zone B-cell lymphoma of the ocular adenexa with antibiotic/proton pump inhibitor regimens has achieved 2 year and 5 year failure-free survival rates of 67% and 55%, respectively, and a 5-year progression-free rate of 61%. However, the generally recognized treatment of choice for patients with systemic involvement uses various chemotherapy drugs often combined with rituximab.

Diffuse large B-cell lymphoma

Diffuse large B-cell lymphoma is a far more aggressive cancer than extranodal marginal zone B-cell lymphoma. Cases of this malignancy that are H. pylori-positive may be derived from the latter lymphoma and are less aggressive as well as more susceptible to treatment than H. pylori negative cases. Several recent studies strongly suggest that localized, early-stage diffuse Helicobacter pylori positive diffuse large B-cell lymphoma, when limited to the stomach, can be successfully treated with antibiotic-proton pump inhibitor regimens. However, these studies also agree that, given the aggressiveness of diffuse large B-cell lymphoma, patients treated with one of these H. pylori eradication regimes need to be carefully followed. If found unresponsive to or clinically worsening on these regimens, these patients should be switched to more conventional therapy such as chemotherapy (e.g. CHOP or a CHOP-like regimen), immunotherapy (e.g. rituximab), surgery, and/or local radiotherapy. H. pylori positive diffuse large B-cell lymphoma has been successfully treated with one or a combination of these methods.

Stomach adenocarcinoma

Helicobacter pylori is linked to the majority of gastric adenocarcinoma cases, particularly those that are located outside of the stomach's cardia (i.e. esophagus-stomach junction). The treatment for this cancer is highly aggressive with even localized disease being treated sequentially with chemotherapy and radiotherapy before surgical resection. Since this cancer, once developed, is independent of H. pylori infection, antibiotic-proton pump inhibitor regimens are not used in its treatment.

Prognosis

Helicobacter pylori colonizes the stomach and induces chronic gastritis, a long-lasting inflammation of the stomach. The bacterium persists in the stomach for decades in most people. Most individuals infected by H. pylori never experience clinical symptoms, despite having chronic gastritis. About 10–20% of those colonized by H. pylori ultimately develop gastric and duodenal ulcers. H. pylori infection is also associated with a 1–2% lifetime risk of stomach cancer and a less than 1% risk of gastric MALT lymphoma.

In the absence of treatment, H. pylori infection—once established in its gastric niche—is widely believed to persist for life. In the elderly, however, infection likely can disappear as the stomach's mucosa becomes increasingly atrophic and inhospitable to colonization. The proportion of acute infections that persist is not known, but several studies that followed the natural history in populations have reported apparent spontaneous elimination.

Mounting evidence suggests H. pylori has an important role in protection from some diseases. The incidence of acid reflux disease, Barrett's esophagus, and esophageal cancer have been rising dramatically at the same time as H. pylori's presence decreases. In 1996, Martin J. Blaser advanced the hypothesis that H. pylori has a beneficial effect by regulating the acidity of the stomach contents. The hypothesis is not universally accepted as several randomized controlled trials failed to demonstrate worsening of acid reflux disease symptoms following eradication of H. pylori. Nevertheless, Blaser has reasserted his view that H. pylori is a member of the normal flora of the stomach. He postulates that the changes in gastric physiology caused by the loss of H. pylori account for the recent increase in incidence of several diseases, including type 2 diabetes, obesity, and asthma. His group has recently shown that H. pylori colonization is associated with a lower incidence of childhood asthma.

Epidemiology

At least half the world's population is infected by the bacterium, making it the most widespread infection in the world. Actual infection rates vary from nation to nation; the developing world has much higher infection rates than the West (Western Europe, North America, Australasia), where rates are estimated to be around 25%.

The age when someone acquires this bacterium seems to influence the pathologic outcome of the infection. People infected at an early age are likely to develop more intense inflammation that may be followed by atrophic gastritis with a higher subsequent risk of gastric ulcer, gastric cancer, or both. Acquisition at an older age brings different gastric changes more likely to lead to duodenal ulcer. Infections are usually acquired in early childhood in all countries. However, the infection rate of children in developing nations is higher than in industrialized nations, probably due to poor sanitary conditions, perhaps combined with lower antibiotics usage for unrelated pathologies. In developed nations, it is currently uncommon to find infected children, but the percentage of infected people increases with age, with about 50% infected for those over the age of 60 compared with around 10% between 18 and 30 years. The higher prevalence among the elderly reflects higher infection rates in the past when the individuals were children rather than more recent infection at a later age of the individual. In the United States, prevalence appears higher in African-American and Hispanic populations, most likely due to socioeconomic factors. The lower rate of infection in the West is largely attributed to higher hygiene standards and widespread use of antibiotics. Despite high rates of infection in certain areas of the world, the overall frequency of H. pylori infection is declining. However, antibiotic resistance is appearing in H. pylori; many metronidazole- and clarithromycin-resistant strains are found in most parts of the world.

History

Helicobacter pylori migrated out of Africa along with its human host circa 60,000 years ago. Recent research states that genetic diversity in H. pylori, like that of its host, decreases with geographic distance from East Africa. Using the genetic diversity data, researchers have created simulations that indicate the bacteria seem to have spread from East Africa around 58,000 years ago. Their results indicate modern humans were already infected by H. pylori before their migrations out of Africa, and it has remained associated with human hosts since that time.

H. pylori was first discovered in the stomachs of patients with gastritis and ulcers in 1982 by Drs. Barry Marshall and Robin Warren of Perth, Western Australia. At the time, the conventional thinking was that no bacterium could live in the acid environment of the human stomach. In recognition of their discovery, Marshall and Warren were awarded the 2005 Nobel Prize in Physiology or Medicine.
Before the research of Marshall and Warren, German scientists found spiral-shaped bacteria in the lining of the human stomach in 1875, but they were unable to culture them, and the results were eventually forgotten. The Italian researcher Giulio Bizzozero described similarly shaped bacteria living in the acidic environment of the stomach of dogs in 1893. Professor Walery Jaworski of the Jagiellonian University in Kraków investigated sediments of gastric washings obtained by lavage from humans in 1899. Among some rod-like bacteria, he also found bacteria with a characteristic spiral shape, which he called Vibrio rugula. He was the first to suggest a possible role of this organism in the pathogenesis of gastric diseases. His work was included in the Handbook of Gastric Diseases, but it had little impact, as it was written in Polish. Several small studies conducted in the early 20th century demonstrated the presence of curved rods in the stomachs of many people with peptic ulcers and stomach cancers. Interest in the bacteria waned, however, when an American study published in 1954 failed to observe the bacteria in 1180 stomach biopsies.

Interest in understanding the role of bacteria in stomach diseases was rekindled in the 1970s, with the visualization of bacteria in the stomachs of people with gastric ulcers. The bacteria had also been observed in 1979, by Robin Warren, who researched it further with Barry Marshall from 1981. After unsuccessful attempts at culturing the bacteria from the stomach, they finally succeeded in visualizing colonies in 1982, when they unintentionally left their Petri dishes incubating for five days over the Easter weekend. In their original paper, Warren and Marshall contended that most stomach ulcers and gastritis were caused by bacterial infection and not by stress or spicy food, as had been assumed before.

Some skepticism was expressed initially, but within a few years multiple research groups had verified the association of H. pylori with gastritis and, to a lesser extent, ulcers. To demonstrate H. pylori caused gastritis and was not merely a bystander, Marshall drank a beaker of H. pylori culture. He became ill with nausea and vomiting several days later. An endoscopy 10 days after inoculation revealed signs of gastritis and the presence of H. pylori. These results suggested H. pylori was the causative agent. Marshall and Warren went on to demonstrate antibiotics are effective in the treatment of many cases of gastritis. In 1987, the Sydney gastroenterologist Thomas Borody invented the first triple therapy for the treatment of duodenal ulcers. In 1994, the National Institutes of Health stated most recurrent duodenal and gastric ulcers were caused by H. pylori, and recommended antibiotics be included in the treatment regimen.

The bacterium was initially named Campylobacter pyloridis, then renamed C. pylori in 1987 (pylori being the genitive of pylorus, the circular opening leading from the stomach into the duodenum, from the Ancient Greek word πυλωρός, which means gatekeeper.). When 16S ribosomal RNA gene sequencing and other research showed in 1989 that the bacterium did not belong in the genus Campylobacter, it was placed in its own genus, Helicobacter from the ancient Greek hělix/έλιξ "spiral" or "coil".

In October 1987, a group of experts met in Copenhagen to found the European Helicobacter Study Group (EHSG), an international multidisciplinary research group and the only institution focused on H. pylori. The Group is involved with the Annual International Workshop on Helicobacter and Related Bacteria, the Maastricht Consensus Reports (European Consensus on the management of H. pylori), and other educational and research projects, including two international long-term projects:
  • European Registry on H. pylori Management (Hp-EuReg) – a database systematically registering the routine clinical practice of European gastroenterologists.
  • Optimal H. pylori management in primary care (OptiCare) – a long-term educational project aiming to disseminate the evidence based recommendations of the Maastricht IV Consensus to primary care physicians in Europe, funded by an educational grant from United European Gastroenterology.

Research

Results from in vitro studies suggest that fatty acids, mainly polyunsaturated fatty acids, have a bactericidal effect against H. pylori, but their in vivo effects have not been proven.

Carcinogen

From Wikipedia, the free encyclopedia
 
A carcinogen is any substance, radionuclide, or radiation that promotes carcinogenesis, the formation of cancer. This may be due to the ability to damage the genome or to the disruption of cellular metabolic processes. Several radioactive substances are considered carcinogens, but their carcinogenic activity is attributed to the radiation, for example gamma rays and alpha particles, which they emit. Common examples of non-radioactive carcinogens are inhaled asbestos, certain dioxins, and tobacco smoke. Although the public generally associates carcinogenicity with synthetic chemicals, it is equally likely to arise in both natural and synthetic substances. Carcinogens are not necessarily immediately toxic; thus, their effect can be insidious.

Cancer is any disease in which normal cells are damaged and do not undergo programmed cell death as fast as they divide via mitosis. Carcinogens may increase the risk of cancer by altering cellular metabolism or damaging DNA directly in cells, which interferes with biological processes, and induces the uncontrolled, malignant division, ultimately leading to the formation of tumors. Usually, severe DNA damage leads to programmed cell death, but if the programmed cell death pathway is damaged, then the cell cannot prevent itself from becoming a cancer cell.

There are many natural carcinogens. Aflatoxin B1, which is produced by the fungus Aspergillus flavus growing on stored grains, nuts and peanut butter, is an example of a potent, naturally occurring microbial carcinogen. Certain viruses such as hepatitis B and human papilloma virus have been found to cause cancer in humans. The first one shown to cause cancer in animals is Rous sarcoma virus, discovered in 1910 by Peyton Rous. Other infectious organisms which cause cancer in humans include some bacteria (e.g. Helicobacter pylori) and helminths (e.g. Opisthorchis viverrini  and Clonorchis sinensis).

Dioxins and dioxin-like compounds, benzene, kepone, EDB, and asbestos have all been classified as carcinogenic. As far back as the 1930s, Industrial smoke and tobacco smoke were identified as sources of dozens of carcinogens, including benzo[a]pyrene, tobacco-specific nitrosamines such as nitrosonornicotine, and reactive aldehydes such as formaldehyde, which is also a hazard in embalming and making plastics. Vinyl chloride, from which PVC is manufactured, is a carcinogen and thus a hazard in PVC production.

Co-carcinogens are chemicals that do not necessarily cause cancer on their own, but promote the activity of other carcinogens in causing cancer.

After the carcinogen enters the body, the body makes an attempt to eliminate it through a process called biotransformation. The purpose of these reactions is to make the carcinogen more water-soluble so that it can be removed from the body. However, in some cases, these reactions can also convert a less toxic carcinogen into a more toxic carcinogen.

DNA is nucleophilic; therefore, soluble carbon electrophiles are carcinogenic, because DNA attacks them. For example, some alkenes are toxicated by human enzymes to produce an electrophilic epoxide. DNA attacks the epoxide, and is bound permanently to it. This is the mechanism behind the carcinogenicity of benzo[a]pyrene in tobacco smoke, other aromatics, aflatoxin and mustard gas.
IUPAC definition.
 
Carcinogenicity: Ability or tendency to produce cancer. Note: In general, polymers are not known as carcinogens or mutagens, however, residual monomers or additives can cause genetic mutations.

Radiation

CERCLA identifies all radionuclides as carcinogens, although the nature of the emitted radiation (alpha, beta, gamma, or neutron and the radioactive strength), its consequent capacity to cause ionization in tissues, and the magnitude of radiation exposure, determine the potential hazard. Carcinogenicity of radiation depends on the type of radiation, type of exposure, and penetration. For example, alpha radiation has low penetration and is not a hazard outside the body, but emitters are carcinogenic when inhaled or ingested. For example, Thorotrast, a (incidentally radioactive) suspension previously used as a contrast medium in x-ray diagnostics, is a potent human carcinogen known because of its retention within various organs and persistent emission of alpha particles. Low-level ionizing radiation may induce irreparable DNA damage (leading to replicational and transcriptional errors needed for neoplasia or may trigger viral interactions) leading to pre-mature aging and cancer.

Not all types of electromagnetic radiation are carcinogenic. Low-energy waves on the electromagnetic spectrum including radio waves, microwaves, infrared radiation and visible light are thought not to be, because they have insufficient energy to break chemical bonds. Evidence for carcinogenic effects of non-ionizing radiation is generally inconclusive, though there are some documented cases of radar technicians with prolonged high exposure experiencing significantly higher cancer incidence.

Higher-energy radiation, including ultraviolet radiation (present in sunlight), x-rays, and gamma radiation, generally is carcinogenic, if received in sufficient doses. For most people, ultraviolet radiations from sunlight is the most common cause of skin cancer. In Australia, where people with pale skin are often exposed to strong sunlight, melanoma is the most common cancer diagnosed in people aged 15–44 years.

Substances or foods irradiated with electrons or electromagnetic radiation (such as microwave, X-ray or gamma) are not carcinogenic. In contrast, non-electromagnetic neutron radiation produced inside nuclear reactors can produce secondary radiation through nuclear transmutation.

In prepared food

Chemicals used in processed and cured meat such as some brands of bacon, sausages and ham may produce carcinogens. For example, nitrites used as food preservatives in cured meat such as bacon have also been noted as being carcinogenic with demographic links, but not causation, to colon cancer. Cooking food at high temperatures, for example grilling or barbecuing meats, may also lead to the formation of minute quantities of many potent carcinogens that are comparable to those found in cigarette smoke (i.e., benzo[a]pyrene). Charring of food looks like coking and tobacco pyrolysis, and produces carcinogens. There are several carcinogenic pyrolysis products, such as polynuclear aromatic hydrocarbons, which are converted by human enzymes into epoxides, which attach permanently to DNA. Pre-cooking meats in a microwave oven for 2–3 minutes before grilling shortens the time on the hot pan, and removes heterocyclic amine (HCA) precursors, which can help minimize the formation of these carcinogens.

Reports from the Food Standards Agency have found that the known animal carcinogen acrylamide is generated in fried or overheated carbohydrate foods (such as french fries and potato chips). Studies are underway at the FDA and Europe regulatory agencies to assess its potential risk to humans.

In cigarettes

There is a strong association of smoking with lung cancer; the lifetime risk of developing lung cancer increases significantly in smokers. A large number of known carcinogens are found in cigarette smoke. Potent carcinogens found in cigarette smoke include polycyclic aromatic hydrocarbons (PAH, such as benzo[a]pyrene), Benzene, and Nitrosamine.

Mechanisms of carcinogenicity

Carcinogens can be classified as genotoxic or nongenotoxic. Genotoxins cause irreversible genetic damage or mutations by binding to DNA. Genotoxins include chemical agents like N-nitroso-N-methylurea (NMU) or non-chemical agents such as ultraviolet light and ionizing radiation. Certain viruses can also act as carcinogens by interacting with DNA.

Nongenotoxins do not directly affect DNA but act in other ways to promote growth. These include hormones and some organic compounds.

Classification

Approximate equivalences
between classification schemes
IARC GHS NTP ACGIH EU
Group 1 Cat. 1A Known A1 Cat. 1
Group 2A Cat. 1B Reasonably
suspected
A2 Cat. 2
Group 2B
Cat. 2   A3 Cat. 3
Group 3
  A4  
Group 4 A5

International Agency for Research on Cancer

The International Agency for Research on Cancer (IARC) is an intergovernmental agency established in 1965, which forms part of the World Health Organization of the United Nations. It is based in Lyon, France. Since 1971 it has published a series of Monographs on the Evaluation of Carcinogenic Risks to Humans that have been highly influential in the classification of possible carcinogens.
  • Group 1: the agent (mixture) is definitely carcinogenic to humans. The exposure circumstance entails exposures that are carcinogenic to humans.
  • Group 2A: the agent (mixture) is probably carcinogenic to humans. The exposure circumstance entails exposures that are probably carcinogenic to humans.
  • Group 2B: the agent (mixture) is possibly carcinogenic to humans. The exposure circumstance entails exposures that are possibly carcinogenic to humans.
  • Group 3: the agent (mixture or exposure circumstance) is not classifiable as to its carcinogenicity to humans.
  • Group 4: the agent (mixture) is probably not carcinogenic to humans.

Globally Harmonized System

The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is a United Nations initiative to attempt to harmonize the different systems of assessing chemical risk which currently exist (as of March 2009) around the world. It classifies carcinogens into two categories, of which the first may be divided again into subcategories if so desired by the competent regulatory authority:
  • Category 1: known or presumed to have carcinogenic potential for humans
    • Category 1A: the assessment is based primarily on human evidence
    • Category 1B: the assessment is based primarily on animal evidence
  • Category 2: suspected human carcinogens

U.S. National Toxicology Program

The National Toxicology Program of the U.S. Department of Health and Human Services is mandated to produce a biennial Report on Carcinogens. As of June 2011, the latest edition was the 12th report (2011). It classifies carcinogens into two groups:
  • Known to be a human carcinogen
  • Reasonably anticipated being a human carcinogen

American Conference of Governmental Industrial Hygienists

The American Conference of Governmental Industrial Hygienists (ACGIH) is a private organization best known for its publication of threshold limit values (TLVs) for occupational exposure and monographs on workplace chemical hazards. It assesses carcinogenicity as part of a wider assessment of the occupational hazards of chemicals.
  • Group A1: Confirmed human carcinogen
  • Group A2: Suspected human carcinogen
  • Group A3: Confirmed animal carcinogen with unknown relevance to humans
  • Group A4: Not classifiable as a human carcinogen
  • Group A5: Not suspected as a human carcinogen

European Union

The European Union classification of carcinogens is contained in the Dangerous Substances Directive and the Dangerous Preparations Directive. It consists of three categories:
  • Category 1: Substances known to be carcinogenic to humans.
  • Category 2: Substances which should be regarded as if they are carcinogenic to humans.
  • Category 3: Substances which cause concern for humans, owing to possible carcinogenic effects but in respect of which the available information is not adequate for making a satisfactory assessment.
This assessment scheme is being phased out in favor of the GHS scheme (see above), to which it is very close in category definitions.

Safe Work Australia

Under a previous name, the NOHSC, in 1999 Safe Work Australia published the Approved Criteria for Classifying Hazardous Substances [NOHSC:1008(1999)]. Section 4.76 of this document outlines the criteria for classifying carcinogens as approved by the Australian government. This classification consists of three categories:
  • Category 1: Substances known to be carcinogenic to humans.
  • Category 2: Substances that should be regarded as if they were carcinogenic to humans.
  • Category 3: Substances that have possible carcinogenic effects in humans but about which there is insufficient information to make an assessment.

Common carcinogens

Occupational carcinogens

Occupational carcinogens are agents that pose a risk of cancer in several specific work-locations:

Carcinogen Associated cancer sites or types Occupational uses or sources
Arsenic and its compounds
  • Smelting byproduct
  • Component of:
    • Alloys
    • Electrical and semiconductor devices
    • Medications (e.g. melarsoprol)
    • Herbicides
    • Fungicides
    • Animal dips
    • Drinking water from contaminated aquifers.
Asbestos Not in widespread use, but found in:
  • Constructions
    • Roofing papers
    • Floor tiles
  • Fire-resistant textiles
  • Friction linings (brake pads) (only outside Europe)
    • Replacement friction linings for automobiles still may contain asbestos
Benzene
Beryllium and its compounds
  • Lung
  • Lightweight alloys
    • Aerospace applications
    • Nuclear reactors
Cadmium and its compounds
Hexavalent chromium(VI) compounds
  • Lung
  • Paints
  • Pigments
  • Preservatives
Nitrosamines
  • Lung
  • Esophogus
  • Liver
Ethylene oxide
  • Leukemia
Nickel
  • Nickel plating
  • Ferrous alloys
  • Ceramics
  • Batteries
  • Stainless-steel welding byproduct
Radon and its decay products
  • Lung
  • Uranium decay
    • Quarries and mines
    • Cellars and poorly ventilated places
Vinyl chloride
Shift work that involves circadian disruption

Involuntary smoking (Passive smoking)
  • Lung
Radium-226, Radium-224, Plutonium-238, Plutonium-239
and other alpha particle
emitters with high atomic weight

Others

Major carcinogens implicated in the four most common cancers worldwide

In this section, the carcinogens implicated as the main causative agents of the four most common cancers worldwide are briefly described. These four cancers are lung, breast, colon, and stomach cancers. Together they account for about 41% of worldwide cancer incidence and 42% of cancer deaths.

Lung cancer

Lung cancer (pulmonary carcinoma) is the most common cancer in the world, both in terms of cases (1.6 million cases; 12.7% of total cancer cases) and deaths (1.4 million deaths; 18.2% of total cancer deaths). Lung cancer is largely caused by tobacco smoke. Risk estimates for lung cancer in the United States indicate that tobacco smoke is responsible for 90% of lung cancers. Other factors are implicated in lung cancer, and these factors can interact synergistically with smoking so that total attributable risk adds up to more than 100%. These factors include occupational exposure to carcinogens (about 9-15%), radon (10%) and outdoor air pollution (1-2%). Tobacco smoke is a complex mixture of more than 5,300 identified chemicals. The most important carcinogens in tobacco smoke have been determined by a “Margin of Exposure” approach. Using this approach, the most important tumorigenic compounds in tobacco smoke were, in order of importance, acrolein, formaldehyde, acrylonitrile, 1,3-butadiene, cadmium, acetaldehyde, ethylene oxide, and isoprene. Most of these compounds cause DNA damage by forming DNA adducts or by inducing other alterations in DNA. DNA damages are subject to error-prone DNA repair or can cause replication errors. Such errors in repair or replication can result in mutations in tumor suppressor genes or oncogenes leading to cancer.

Breast cancer

Breast cancer is the second most common cancer [(1.4 million cases, 10.9%), but ranks 5th as cause of death (458,000, 6.1%)]. Increased risk of breast cancer is associated with persistently elevated blood levels of estrogen. Estrogen appears to contribute to breast carcinogenesis by three processes; (1) the metabolism of estrogen to genotoxic, mutagenic carcinogens, (2) the stimulation of tissue growth, and (3) the repression of phase II detoxification enzymes that metabolize ROS leading to increased oxidative DNA damage. The major estrogen in humans, estradiol, can be metabolized to quinone derivatives that form adducts with DNA. These derivatives can cause dupurination, the removal of bases from the phosphodiester backbone of DNA, followed by inaccurate repair or replication of the apurinic site leading to mutation and eventually cancer. This genotoxic mechanism may interact in synergy with estrogen receptor-mediated, persistent cell proliferation to ultimately cause breast cancer. Genetic background, dietary practices and environmental factors also likely contribute to the incidence of DNA damage and breast cancer risk.

Colon cancer

Colorectal cancer is the third most common cancer [1.2 million cases (9.4%), 608,000 deaths (8.0%)]. Tobacco smoke may be responsible for up to 20% of colorectal cancers in the United States. In addition, substantial evidence implicates bile acids as an important factor in colon cancer. Twelve studies (summarized in Bernstein et al.) indicate that the bile acids deoxycholic acid (DCA) and/or lithocholic acid (LCA) induce production of DNA-damaging reactive oxygen species and/or reactive nitrogen species in human or animal colon cells. Furthermore, 14 studies showed that DCA and LCA induce DNA damage in colon cells. Also 27 studies reported that bile acids cause programmed cell death (apoptosis). Increased apoptosis can result in selective survival of cells that are resistant to induction of apoptosis. Colon cells with reduced ability to undergo apoptosis in response to DNA damage would tend to accumulate mutations, and such cells may give rise to colon cancer. Epidemiologic studies have found that fecal bile acid concentrations are increased in populations with a high incidence of colon cancer. Dietary increases in total fat or saturated fat result in elevated DCA and LCA in feces and elevated exposure of the colon epithelium to these bile acids. When the bile acid DCA was added to the standard diet of wild-type mice invasive colon cancer was induced in 56% of the mice after 8 to 10 months. Overall, the available evidence indicates that DCA and LCA are centrally important DNA-damaging carcinogens in colon cancer.

Stomach cancer

Stomach cancer is the fourth most common cancer [990,000 cases (7.8%), 738,000 deaths (9.7%)]. Helicobacter pylori infection is the main causative factor in stomach cancer. Chronic gastritis (inflammation) caused by H. pylori is often long-standing if not treated. Infection of gastric epithelial cells with H. pylori results in increased production of reactive oxygen species (ROS). ROS cause oxidative DNA damage including the major base alteration 8-hydroxydeoxyguanosine (8-OHdG). 8-OHdG resulting from ROS is increased in chronic gastritis. The altered DNA base can cause errors during DNA replication that have mutagenic and carcinogenic potential. Thus H. pylori-induced ROS appear to be the major carcinogens in stomach cancer because they cause oxidative DNA damage leading to carcinogenic mutations. Diet is thought to be a contributing factor in stomach cancer - in Japan where very salty pickled foods are popular, the incidence of stomach cancer is high. Preserved meat such as bacon, sausages, and ham increases the risk while a diet high in fresh fruit and vegetables may reduce the risk. The risk also increases with age.

Pulmonary alveolus

From Wikipedia, the free encyclopedia
 
Pulmonary alveolus
Alveolus diagram.svg
The alveoli
Details
SystemRespiratory system
LocationLung
Identifiers
Latinalveolus pulmonis
MeSHD011650
THH3.05.02.0.00026

A pulmonary alveolus (plural: alveoli, from Latin alveolus, "little cavity") is a hollow cup-shaped cavity found in the lung parenchyma where gas exchange takes place. Lung alveoli are found in the acini at the beginning of the respiratory zone. They are located sparsely on the respiratory bronchioles, line the walls of the alveolar ducts, and are more numerous in the blind-ended alveolar sacs. The acini are the basic units of respiration, with gas exchange taking place in all the alveoli present.[1] The alveolar membrane is the gas exchange surface, surrounded by a network of capillaries. Across the membrane oxygen is diffused into the capillaries and carbon dioxide released from the capillaries into the alveoli to be breathed out.

Alveoli are particular to mammalian lungs. Different structures are involved in gas exchange in other vertebrates.

Structure

Diagrammatic view of lung showing magnified inner structures including alveolar sacs at 10) and lobules at 9).

The alveoli are located in the alveolar sacs of the lungs in the pulmonary lobules of the respiratory zone, representing the smallest functional units in the respiratory tract. They are also present in the respiratory bronchioles as scattered outpockets, extending from their lumens. The respiratory bronchioles lead into alveolar ducts which are deeply lined with alveoli. Each respiratory bronchiole gives rise to between two and eleven alveolar ducts. Each duct opens into five or six alveolar sacs into which clusters of alveoli open. New alveoli continue to form until the age of eight years.

Alveolar sacs and capillaries.

A typical pair of human lungs contain about 300 million alveoli, producing 70 m2 (750 sq ft) of surface area. Each alveolus is wrapped in a fine mesh of capillaries covering about 70% of its area. The diameter of an alveolus is between 200 and 500 µm.

Microanatomy

Blood circulation around alveoli

The alveoli consist of an epithelial layer of simple squamous epithelium, and an extracellular matrix surrounded by capillaries. The epithelial lining is part of the alveolar membrane, also known as the respiratory membrane, that allows the exchange of gases. The membrane has several layers – a layer of lining fluid that contains surfactant, the epithelial layer and its basement membrane; a thin interstitial space between the epithelial lining and the capillary membrane; a capillary basement membrane that often fuses with the alveolar basement membrane, and the capillary endothelial membrane. The whole membrane however is only between 0.2 µm at its thinnest part and 0.6 µm at its thickest.

In the alveolar walls there are interconnecting air passages between the alveoli known as the pores of Kohn. The alveoli contain some collagen fibers and elastic fibers. The elastic fibres allow the alveoli to stretch when they fill with air during inhalation. They then spring back during exhalation in order to expel the carbon dioxide-rich air.

A histologic slide of a human alveolar sac

There are three major types of alveolar cell. Two types are pneumocytes known as type I and type II cells found in the alveolar wall, and a large phagocytic cell known as an alveolar macrophage that moves about in the lumens of the alveoli, and in the connective tissue between them. Type I cells are squamous, thin and flat and form the structure of the alveoli. Type II cells release pulmonary surfactant to lower surface tension. Type II cells can also differentiate to replace damaged type I cells.

Function

Type I cells

The cross section of an alveolus with capillaries is shown. Part of the cross section is magnified to show diffusion of oxygen gas and carbon dioxide through type I cells and capillary cells.
 
Gas exchange in the alveolus.

Type I cells are thin and flat epithelial lining cells, that form the structure of the alveoli. They are squamous (giving more surface area to each cell) and their long cytoplasmic extensions line more than 95% of the alveolar surface.

Type I cells are involved in the process of gas exchange between the alveoli and blood. These cells are extremely thin sometimes only 25 nm – the electron microscope was needed to prove that all alveoli are lined with epithelium. This thin lining enables a fast diffusion of gas exchange between the air in the alveoli and the blood in the surrounding capillaries. 

The nucleus of a type I cell occupies a large area of free cytoplasm and its organelles are clustered around it reducing the thickness of the cell. This also keeps the thickness of the blood-air barrier reduced to a minimum.

The cytoplasm in the thin portion contains pinocytotic vesicles which may play a role in the removal of small particulate contaminants from the outer surface. In addition to desmosomes, all type I alveolar cells have occluding junctions that prevent the leakage of tissue fluid into the alveolar air space.

The relatively low solubility (and hence rate of diffusion) of oxygen, necessitates the large internal surface area (about 80 square m [96 square yards]) and very thin walls of the alveoli. Weaving between the capillaries and helping to support them is an extracellular matrix, a meshlike fabric of elastic and collagenous fibres. The collagen fibres, being more rigid, give the wall firmness, while the elastic fibres permit expansion and contraction of the walls during breathing.

Type I pneumocytes are unable to replicate and are susceptible to toxic insults. In the event of damage, type II cells can proliferate and differentiate into type I cells to compensate.

Type II cells

An annotated diagram of the alveolus

Type II cells are the most numerous cells in the alveoli, yet do not cover as much surface area as the squamous type I cells. Type II cells in the alveolar wall contain secretory granular organelles known as lamellar bodies that fuse with the cell membranes and secrete pulmonary surfactant. This surfactant is a film of fatty substances, a group of phospholipids that reduce alveolar surface tension. The phospholipids are stored in the lamellar bodies. Without this coating, the alveoli would collapse. The surfactant is continuously released by exocytosis. Reinflation of the alveoli following exhalation is made easier by the surfactant, which reduces surface tension in the thin fluid coating of the alveoli. The fluid coating is produced by the body in order to facilitate the transfer of gases between blood and alveolar air, and the type II cells are typically found at the blood-air barrier

Type II cells start to develop at about 26 weeks of gestation, secreting small amounts of surfactant. However, adequate amounts of surfactant are not secreted until about 35 weeks of gestation – this is the main reason for increased rates of infant respiratory distress syndrome, which drastically reduces at ages above 35 weeks gestation.

Type II cells are also capable of cellular division, giving rise to more type I and II alveolar cells when the lung tissue is damaged.

MUC1, a human gene associated with type II pneumocytes, has been identified as a marker in lung cancer.

Macrophages

The alveolar macrophages reside on the internal lumenal surfaces of the alveoli, the alveolar ducts, and the bronchioles. They are mobile scavengers that serve to engulf foreign particles in the lungs, such as dust, bacteria, carbon particles, and blood cells from injuries. They are also called dust cells.

Clinical significance

Diseases

Surfactant

Insufficient surfactant in the alveoli is one of the causes that can contribute to atelectasis (collapse of part or all of the lung). Without pulmonary surfactant, atelectasis is a certainty. Insufficient surfactant in the lungs of preterm infants causes infant respiratory distress syndrome (IRDS). Impaired surfactant regulation can cause an accumulation of surfactant proteins to build up in the alveoli in a condition called pulmonary alveolar proteinosis. This results in impaired gas exchange.

Inflammation

Pneumonia is an inflammatory condition of the lung parenchyma, which can be caused by both viruses and bacteria. Cytokines and fluids are released into the alveolar cavity, interstitium, or both, in response to infection, causing the effective surface area of gas exchange to be reduced. In severe cases where cellular respiration cannot be maintained, supplemental oxygen may be required.
  • Diffuse alveolar damage can be a cause of acute respiratory distress syndrome(ARDS) a severe inflammatory disease of the lung.
  • In asthma, the bronchioles, or the "bottle-necks" into the sac are restricted, causing the amount of air flow into the lungs to be greatly reduced. It can be triggered by irritants in the air, photochemical smog for example, as well as substances that a person is allergic to.
  • Chronic bronchitis occurs when an abundance of mucus is produced by the lungs. The production of this substance occurs naturally when the lung tissue is exposed to irritants. In chronic bronchitis, the air passages into the alveoli, the respiratory bronchioles, become clogged with mucus. This causes increased coughing in order to remove the mucus, and is often a result of extended periods of exposure to cigarette smoke.
  • Hypersensitivity pneumonitis

Structural

Almost any type of lung tumor or lung cancer can compress the alveoli and reduce gas exchange capacity. In some cases the tumor will fill the alveoli.
  • Cavitary pneumonia is a process in which the alveoli are destroyed and produce a cavity. As the alveoli are destroyed, the surface area for gas exchange to occur becomes reduced. Further changes in blood flow can lead to decline in lung function.
  • Emphysema is another disease of the lungs, whereby the elastin in the walls of the alveoli is broken down by an imbalance between the production of neutrophil elastase (elevated by cigarette smoke) and alpha-1 antitrypsin (the activity varies due to genetics or reaction of a critical methionine residue with toxins including cigarette smoke). The resulting loss of elasticity in the lungs leads to prolonged times for exhalation, which occurs through passive recoil of the expanded lung. This leads to a smaller volume of gas exchanged per breath.
  • Pulmonary alveolar microlithiasis is a rare lung disorder of small stone formation in the alveoli.

Fluid

A pulmonary contusion is a bruise of the lung tissue caused by trauma. Damaged capillaries can cause blood and other fluids to accumulate in the tissue of the lung, impairing gas exchange.

Pulmonary edema is the buildup of fluid in the parenchyma and alveoli usually caused by left ventricular heart failure, or by damage to the lung or its vasculature.

Subatomic particle

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Subatomic_particle ...