Search This Blog

Sunday, March 22, 2020

Ergot

From Wikipedia, the free encyclopedia

Ergot
Claviceps purpurea - Köhler–s Medizinal-Pflanzen-185.jpg
Claviceps purpurea
Scientific classification e
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Hypocreales
Family: Clavicipitaceae
Genus: Claviceps
Tul., 1853
Species
About 50, including:
Claviceps africana
Claviceps fusiformis
Claviceps paspali
Claviceps purpurea
Claviceps sorghi
Claviceps zizaniae
Claviceps lutea

Ergot (pron. /ˈɜːrɡət/ UR-gət) or ergot fungi refers to a group of fungi of the genus Claviceps.

The most prominent member of this group is Claviceps purpurea ("rye ergot fungus"). This fungus grows on rye and related plants, and produces alkaloids that can cause ergotism in humans and other mammals who consume grains contaminated with its fruiting structure (called ergot sclerotium).

Claviceps includes about 50 known species, mostly in the tropical regions. Economically significant species include C. purpurea (parasitic on grasses and cereals), C. fusiformis (on pearl millet, buffel grass), C. paspali (on dallis grass), C. africana (on sorghum), and C. lutea (on paspalum). C. purpurea most commonly affects outcrossing species such as rye (its most common host), as well as triticale, wheat, and barley. It affects oats only rarely.

C. purpurea has at least three races or varieties, which differ in their host specificity:
  • G1 — land grasses of open meadows and fields;
  • G2 — grasses from moist, forest, and mountain habitats;
  • G3 (C. purpurea var. spartinae) — salt marsh grasses (Spartina, Distichlis).

Life cycle

An ergot kernel, called a sclerotium, develops when a spore of fungal species of the genus Claviceps infects a floret of flowering grass or cereal. The infection process mimics a pollen grain growing into an ovary during fertilization. Infection requires that the fungal spore have access to the stigma; consequently, plants infected by Claviceps are mainly outcrossing species with open flowers, such as rye (Secale cereale) and ryegrasses (genus Lolium). The proliferating fungal mycelium then destroys the plant ovary and connects with the vascular bundle originally intended for seed nutrition. The first stage of ergot infection manifests itself as a white soft tissue (known as sphacelia) producing sugary honeydew, which often drops out of the infected grass florets. This honeydew contains millions of asexual spores (conidia), which insects disperse to other florets. Later, the sphacelia convert into a hard dry sclerotium inside the husk of the floret. At this stage, alkaloids and lipids accumulate in the sclerotium. 

Claviceps species from tropic and subtropic regions produce macro- and microconidia in their honeydew. Macroconidia differ in shape and size between the species, whereas microconidia are rather uniform, oval to globose (5x3μm). Macroconidia are able to produce secondary conidia. A germ tube emerges from a macroconidium through the surface of a honeydew drop and a secondary conidium of an oval to pearlike shape is formed, to which the contents of the original macroconidium migrates. Secondary conidia form a white, frost-like surface on honeydew drops and spread via the wind. No such process occurs in Claviceps purpurea, Claviceps grohii, Claviceps nigricans, and Claviceps zizaniae, all from northern temperate regions.

When a mature sclerotium drops to the ground, the fungus remains dormant until proper conditions (such as the onset of spring or a rain period) trigger its fruiting phase. It germinates, forming one or several fruiting bodies with heads and stipes, variously coloured (resembling a tiny mushroom). In the head, threadlike sexual spores form, which are ejected simultaneously when suitable grass hosts are flowering. Ergot infection causes a reduction in the yield and quality of grain and hay, and if livestock eat infected grain or hay it may cause a disease called ergotism.

Black and protruding sclerotia of C. purpurea are well known. However, many tropical ergots have brown or greyish sclerotia, mimicking the shape of the host seed. For this reason, the infection is often overlooked.

Insects, including flies and moths, carry conidia of Claviceps species, but it is unknown whether insects play a role in spreading the fungus from infected to healthy plants.

Evolution

The evolution of plant parasitism in the Clavicipitaceae dates back at least 100 million years, to the early-mid Cretaceous. An amber fossil discovered in 2014 preserves a grass spikelet and an ergot-like parasitic fungus. The fossil shows that the original hosts of the Clavicipitaceae could have been grasses. The discovery also establishes a minimum time for the conceivable presence of psychotropic compounds in fungi. Several evolutionary processes have acted to diversify the array of ergot alkaloids produced by fungi; these differences in enzyme activities are evident at the levels of substrate specificity (LpsA), product specification (EasA, CloA) or both (EasG and possibly CloA). The “old yellow enzyme,” EasA, presents an outstanding example. This enzyme catalyzes reduction of the C8=C9 double-bond in chanoclavine I, but EasA isoforms differ in whether they subsequently catalyze reoxidation of C8–C9 after rotation. This difference distinguishes most Clavicipitaceae from Trichocomaceae, but in Clavicipitaceae it is also the key difference dividing the branch of classical ergot alkaloids from dihydroergot alkaloids, the latter often being preferred for pharmaceuticals due to their relatively few side effects.

Effects on humans and other mammals

Ergot-derived drug to stop postpartum bleeding

The ergot sclerotium contains high concentrations (up to 2% of dry mass) of the alkaloid ergotamine, a complex molecule consisting of a tripeptide-derived cyclol-lactam ring connected via amide linkage to a lysergic acid (ergoline) moiety, and other alkaloids of the ergoline group that are biosynthesized by the fungus. Ergot alkaloids have a wide range of biological activities including effects on circulation and neurotransmission.

Ergot alkaloids are classified as:
  1. derivatives of 6,8-dimethylergoline and
  2. lysergic acid derivatives.
Ergotism is the name for sometimes severe pathological syndromes affecting humans or other animals that have ingested plant material containing ergot alkaloid, such as ergot-contaminated grains. The Hospital Brothers of St. Anthony, an order of monks established in 1095, specialized in treating ergotism victims with balms containing tranquilizing and circulation-stimulating plant extracts. The common name for ergotism is "St. Anthony's Fire", in reference to this order of monks and the severe burning sensations in the limbs which was one of the symptoms. There are two types of ergotism, the first is characterized by muscle spasms, fever and hallucinations and the victims may appear dazed, be unable to speak, become manic, or have other forms of paralysis or tremors, and suffer from hallucinations and other distorted perceptions. This is caused by serotonergic stimulation of the central nervous system by some of the alkaloids. The second type of ergotism is marked by violent burning, absent peripheral pulses and shooting pain of the poorly vascularized distal organs, such as the fingers and toes, and are caused by effects of ergot alkaloids on the vascular system due to vasoconstriction, sometimes leading to gangrene and loss of limbs due to severely restricted blood circulation. 

The neurotropic activities of the ergot alkaloids may also cause hallucinations and attendant irrational behaviour, convulsions, and even death. Other symptoms include strong uterine contractions, nausea, seizures, high fever, vomiting, loss of muscle strength and unconsciousness. Since the Middle Ages, controlled doses of ergot were used to induce abortions and to stop maternal bleeding after childbirth.[17] Klotz offers a detailed overview of the toxicities in mammalian livestock, stating that the activities are attributable to antagonism or agonism of neurotransmitters, including dopamine, serotonin and norepinephrine. As well, he shares that the adrenergic blockage by ergopeptines (e.g., ergovaline or ergotamine) leads to potent and long-term vasoconstriction, and can result in reduced blood flow resulting in intense burning pain (St. Anthony’s fire), edema, cyanosis, dry gangrene and even loss of hooves in cattle or limbs in humans. Reduced prolactin due to ergot alkaloid activity on dopamine receptors in the pituitary is also common in livestock. Reduced serum prolactin is associated with various reproductive problems in cattle, and especially in horses, including agalactia and poor conception, and late-term losses of foals and sometimes mares due to dystocia and thickened placentas. Although both gangrenous and convulsive symptoms are seen in naturally occurring ergotism resulting from the ingestion of fungus infected rye, only gangrenous ergotism has been reported following the excessive ingestion of ergotamine tartrate. Ergot extract has been used in pharmaceutical preparations, including ergot alkaloids in products such as Cafergot (containing caffeine and ergotamine or ergoline) to treat migraine headaches, and ergometrine, used to induce uterine contractions and to control bleeding after childbirth. Clinical ergotism as seen today results almost exclusively from the excessive intake of ergotamine tartrate in the treatment of migraine headache.

In addition to ergot alkaloids, Claviceps paspali also produces tremorgens (paspalitrem) causing "paspalum staggers" in cattle. The fungi of the genera Penicillium and Aspergillus also produce ergot alkaloids, notably some isolates of the human pathogen Aspergillus fumigatus, and have been isolated from plants in the family Convolvulaceae, of which morning glory is best known. The causative agents of most ergot poisonings are the ergot alkaloid class of fungal metabolites, though some ergot fungi produce distantly related indole-diterpene alkaloids that are tremorgenic.

Ergot does not contain lysergic acid diethylamide (LSD) but instead contains lysergic acid as well as its precursor, ergotamine. Lysergic acid is a precursor for the synthesis of LSD. Their realized and hypothesized medicinal uses have encouraged intensive research since the 1950s culminating on the one hand in development of drugs both legal (e.g., bromocriptine) and illegal (e.g., lysergic acid diethylamide= LSD), and on the other hand in extensive knowledge of the enzymes, genetics, and diversity of ergot alkaloid biosynthetic pathways.

The January 4, 2007 issue of the New England Journal of Medicine includes a paper that documents a British study of more than 11,000 Parkinson's disease patients. The study found that two ergot-derived drugs, pergolide and cabergoline, commonly used to treat Parkinson's Disease may increase the risk of leaky heart valves by up to 700%.

History

Ergot on wheat stalks

Ergotism is the earliest recorded example of mycotoxicosis, or poisoning caused by toxic molds. Early references to ergot poisoning (ergotism) date back as far as 600 BC, an Assyrian tablet referred to it as a 'noxious pustule in the ear of grain'. In 350 BC, the Parsees described 'noxious grasses that cause pregnant women to drop the womb and die in childbed'. In ancient Syria, ergot was called 'Daughter of Blood'. Radulf Glaber described an ailment he called 'hidden fire' or ignus ocultus, in which a burning of the limb is followed by its separation from the body, often consuming the victim in one night. In 1588, Johannes Thallius wrote that it is called 'Mother of Rye', or rockenmutter, and is used to halt bleeding.

Human poisoning due to the consumption of rye bread made from ergot-infected grain was common in Europe in the Middle Ages. The first mention of a plague of gangrenous ergotism in Europe comes from Germany in 857, following this France and Scandinavia experienced similar outbreaks; England is noticeably absent from the historical regions affected by ergotism as their main source of food was wheat, which is resistant to ergot fungi. In 944, a massive outbreak of ergotism caused 40,000 deaths in the regions of Aquitaine, Limousin, Perigord, and Angoumois in France. In Hesse in 1596, Wendelin Thelius was one of the first to attribute ergotism poisoning to grain. In 1778, S. Tessier, observing a huge epidemic in Sologne, France in which more than 8,000 people died, recommended drainage of fields, compulsory cleaning of grain, and the substitution of potatoes for affected grain.

Saint Anthony's fire and the Antonites

In 1722, the Russian Tzar Peter the Great was thwarted in his campaign against the Ottoman Empire as his army, traveling down the Terek steppe, were struck by ergotism and were forced to retreat in order to find edible grains. A diary entry from the time describes that as soon as people ate the poisoned bread they became dizzy, with such strong nerve contractions that those who did not die from the first day found their hands and feet falling off, akin to frostbite. The epidemic was known as Saint Anthony's fire, or ignis sacer, and some historical events, such as the Great Fear in France during the French Revolution have been linked to ergot poisoning. Saint Anthony was a 3rd Century Egyptian ascetic who lived by the Red Sea and was known for long fasting in which he confronted terrible visions and temptations sent from the Devil. He was credited by two noblemen for assisting them in recovery from the disease; they subsequently founded the Order of St. Anthony in honor of him. Anthony was a popular subject for art in the Middle Ages and his symbol is a large blue "T" sewn onto the shoulder of the order's monks, symbolizing the crutch used by the ill and injured.

The Order of St. Anthony, who were also known as Antonites, grew quickly and hospitals spread through France, Germany, and Scandinavia and gained wealth and power as grateful patrons bestowed money and charitable goods to the hospitals. By the end of the Middle Ages, there were 396 settlements and 372 hospitals owned by the order and pilgrimages to such hospitals became popular as well as the donation of limbs lost to ergotism, which were displayed near shrines to the saint. These hagiotherapeutic centers were the first specialized European medical welfare systems and the friars of the order were knowledgeable about treatment of ergotism and the horrifying effects of the poison. The sufferers would receive ergot-free meals, wines containing vasodilating and analgesic herbs, and applications of Antonites-balsalm, which was the first transdermal therapeutic system (TTS) in medical history. Their medical recipes have been lost to time, though some recorded treatments still remain. After 1130 AD, the monks were no longer permitted to perform operations, and so barber surgeons were employed to remove gangrenous limbs and treat open sores. Three barbers founded a hospital in Memmingen in 1214 and accepted those who were afflicted with the gangrenous form of ergotism. Patients were fed and housed with the more able-bodied individuals acting as orderlies and assistants. Patients with the convulsive form of ergotism, or ergotismus convulsivus, were welcomed for only nine days before they were asked to leave as convulsive ergotism was seen as less detrimental. Though the sufferers often experienced irreversible effects, they most often returned to their families and resumed their livelihoods.

An important aspect to the Order of St. Anthony's treatment practices was the exclusion of rye bread and other ergot-containing edibles, which halted the progression of ergotism. There was no known cure for ergotism itself, however there was treatment of the symptoms, which often included blood constriction, nervous disorder, and/or hallucinations; if the sufferer survived the initial poisoning, his limbs would often fall off and he or she would continue to improve in health if they halted consumption of ergot. The trunk of the body remained relatively untouched by the disease until its final stages and the victims, not understanding the cause of their ailment, would continue to imbibe ergot-laden food for weeks until the condition reached their digestive system. It is believed that the peasantry and children were most susceptible to ergotism, though the wealthy were afflicted as well, as at times entire villages relied on tainted crops for sustenance and during times of famine, ergotism reached into every house. Ergot fungus is impervious to heat and water, thus it was most often baked into bread through rye flour; though other grasses can be infected, it was uncommon in Medieval Europe to consume grasses other than rye. The physiological effects of ergot depended upon the concentration and combinations of the ingested ergot metabolites, as well as the age and nutritional status of the afflicted individual. The Antonites began to decline after physicians discovered the genesis of ergotism and recommended methods for removing the sclerotium from the rye crops. In 1776, the cloisters of the Antonites were incorporated into the Maltese Knights Hospitaller, losing much of their medical histories in the process and losing the ergotism cures and recipes due to lack of use and lack of preservation.

Usage in gynaecology and obstetrics

Midwives and very few doctors in Europe have used extracts from ergot for centuries:
  1. In a Nürnberg manuscript of 1474 powdered ergot was prescribed together with Laurel-fruits and rhizomes of Salomon’s seals to cure »permutter« or »heffmutter«, that means pain in the lower abdomen caused by the »uprising of the womb«
  2. In a printed book of 1582 the German physician Adam Lonicer wrote, that three sclerotia of ergot, used several times a day, were used by midwives as a good remedy in case of the »uprising and pain of the womb« (»auffſteigen vnd wehethumb der mutter«)
  3. Joachim Camerarius the Younger wrote in 1586, that sclerotia of ergot held under the tongue, would stop bleeding
To prove, that ergot is a harmless sort of grain, in 1774 the French pharmacist Antoine-Augustin Parmentier edited a letter, he had received from Madame Dupile, a midwife of Chaumont-en-Vexin. She had told him, that if uterine contractions were too weak in the expulsion stage of childbirth she and her mother gave peeled ergot in an amount of the filling of a thimble solved in water, wine or broth. The administration of ergot was followed by a mild childbirth within 15 minutes. The French physician Jean-Baptiste Desgranges (1751–1831) published in 1818, that in 1777 he had met midwives in Lyon, who successfully treated feeble uterine contractions by administering the powder of ergot. Desgranges joined this remedy into his therapeutic arsenal. From 1777 to 1804 he was successful in alleviating childbirth for more than twenty women by the administration of the powder of ergot. He never saw any side-effect of this treatment.

In 1807 Dr. John Stearns of Saratoga County wrote to a friend, that he had used over several years a »pulvis parturiens« with complete success in patients with »lingering parturitation«. This »pulvis parturiens« consisted of ergot, that he called a »spurious groth of rye«. He boiled »half a drachm« (ca. 2g) of that powder in half a pint of water and gave one third every twenty minutes, till the pains commenced. In 1813 Dr. Oliver Prescott (1762–1827) of Newburyport published a dissertation "on the natural history and medical effects of the secale cornutum,” in which he described and analysed the experience he had gathered over five years while using ergot in cases of poor uterine action in the second stage of labour in childbirth.

The 1836 Dispensatory of the United States recommended »to a woman in labour fifteen or twenty grains [ca. 1 to 1,3g] of ergot in powder to be repeated every twenty minutes, till its peculiar effects are experienced, or till the amount of a drachm [ca. 3,9g] has been taken«.

In 1837 the French Codex Pharmacopee Francaise required ergot to be kept in all pharmacies.

Low to very low evidence from clinical trials suggests that prophylactic use of ergot alkaloids, administered by intravenous (IV) or intramuscular (IM) in the third stage of labor, may reduce blood loss and may reduce the risk of moderate to severe hemorrhage following delivery, however this medication may also be associated with higher blood pressure and higher pain. It is not clear of oral ergo alkaloids are beneficial or harmful as they have not been well studied. A 2018 Cochrane Systematic Review concluded that other medications such as oxytocin, syntometrine and prostaglandins, may be preferred over ergot alkaloids.

Though ergot was known to cause abortions in cattle and humans, it was not a recognized use for it as abortion was illegal in most countries, thus evidence for its use in abortion is unknown. Most often, ergot was used to speed the process of parturition or delivery, and was not used for the purpose of halting postpartum bleeding, which is a concern of childbirth. However, until anesthesia became available, there was no antidote or way of controlling the effects of ergot. So if the fetus did not move as expected, the drug could cause the uterus to mold itself around the child, rupturing the uterus and killing the child. David Hosack, an American physician, noted the large number of stillbirths resulting from ergot use and stated that rather than pulvis ad partum, it should be called pulvis ad mortem. He began advocating for its use to halt postpartum bleeding. Eventually, doctors determined that the use of ergot in childbirth without an antidote was too dangerous. They ultimately restricted its use to expelling the placenta or stopping hemorrhage. Not only did it constrict the uterus, ergot had the ability to increase or decrease blood pressure, induce hypothermia and emesis, and influence pituitary hormone secretions. In 1926, Swiss psychiatrist Hans Maier suggested to use ergotamine for the treatment of vascular headaches of the migraine type.

In the 1930s, abortifacient drugs were marketed to women by various companies under various names such as Molex pills and Cote pills. Since birth control devices and abortifacients were illegal to market and sell at the time, they were offered to women who were "delayed". The recommended dosage was seven grains of ergotin a day. According to the United States Federal Trade Commission (FTC) these pills contained ergotin, aloes, Black Hellebore, and other substances. The efficacy and safety of these pills are unknown. The FTC deemed them unsafe and ineffective and demanded that they cease and desist selling the product. Currently, over a thousand compounds have been derived from ergot ingredients.

Speculated cause of hysterics and hallucinations

It has been posited that Kykeon, the beverage consumed by participants in the ancient Greek Eleusinian Mysteries cult, might have been based on hallucinogens from ergotamine, a precursor to the potent hallucinogen lysergic acid diethylamide (LSD), and ergonovine.

British author John Grigsby contends that the presence of ergot in the stomachs of some of the so-called 'bog-bodies' (Iron Age human remains from peat bogs Northeast Europe, such as the Tollund Man) is indicative of use of Claviceps purpurea in ritual drinks in a prehistoric fertility cult akin to the Greek Eleusinian Mysteries. In his 2005 book Beowulf and Grendel, he argues that the Anglo-Saxon poem Beowulf is based on a memory of the quelling of this fertility cult by followers of Odin. He writes that Beowulf, which he translates as barley-wolf, suggests a connection to ergot which in German was known as the 'tooth of the wolf'.

Linnda R. Caporael posited in 1976 that the hysterical symptoms of young women that had spurred the Salem witch trials had been the result of consuming ergot-tainted rye. However, Nicholas P. Spanos and Jack Gottlieb, after a review of the historical and medical evidence, later disputed her conclusions. Other authors have likewise cast doubt on ergotism as the cause of the Salem witch trials.

Claviceps purpurea

Mankind has known about Claviceps purpurea for a long time, and its appearance has been linked to extremely cold winters that were followed by rainy summers.

The sclerotial stage of C. purpurea conspicuous on the heads of ryes and other such grains is known as ergot. Favorable temperatures for growth are in the range of 18–30 °C. Temperatures above 37 °C cause rapid germination of conidia. Sunlight has a chromogenic effect on the mycelium, with intense coloration. Cereal mashes and sprouted rye are suitable substrates for growth of the fungus in the laboratory.

Claviceps africana

Claviceps africana infects sorghum. In sorghum and pearl millet, ergot became a problem when growers adopted hybrid technology, which increased host susceptibility. It only infects unfertilized ovaries, so self-pollination and fertilization can decrease the presence of the disease, but male-sterile lines are extremely vulnerable to infection. Symptoms of infection by C. africana include the secretion of honeydew (a fluid with high concentrates of sugar and conidia), which attracts insects like flies, beetles, and wasps that feed on it. This helps spread the fungus to uninfected plants. 

C. africana caused ergot disease that caused a famine in 1903-1906 in Northern Cameroon, West Africa, and also occurs in eastern and southern Africa, especially Zimbabwe and South Africa. Male sterile sorghums (also referred to as A-lines) are especially susceptible to infection, as first recognized in the 1960s, and massive losses in seed yield have been noted. Infection is associated with cold night temperatures that are below 12 °C occurring two to three weeks before flowering.

Sorghum ergot caused by Claviceps africana Frederickson, Mantle and De Milliano is widespread in all sorghum growing areas, whereas the species was formerly restricted to Africa and Asia where it was first recorded more than 90 years ago, it has been spreading rapidly and by the mid-1990s it reached Brazil, South Africa, and Australia. By 1997, the disease had spread to most South American countries and the Caribbean including Mexico, and by 1997 had reached Texas in the United States.

Alkaloid

From Wikipedia, the free encyclopedia
The first individual alkaloid, morphine, was isolated in 1804 from the opium poppy (Papaver somniferum).
 
Alkaloids are a class of naturally occurring organic compounds that mostly contain basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Some synthetic compounds of similar structure may also be termed alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and, more rarely, other elements such as chlorine, bromine, and phosphorus.

Alkaloids are produced by a large variety of organisms including bacteria, fungi, plants, and animals. They can be purified from crude extracts of these organisms by acid-base extraction, or solvent extractions followed by silica-gel column chromatography. Alkaloids have a wide range of pharmacological activities including antimalarial (e.g. quinine), antiasthma (e.g. ephedrine), anticancer (e.g. homoharringtonine), cholinomimetic (e.g. galantamine), vasodilatory (e.g. vincamine), antiarrhythmic (e.g. quinidine), analgesic (e.g. morphine), antibacterial (e.g. chelerythrine), and antihyperglycemic activities (e.g. piperine). Many have found use in traditional or modern medicine, or as starting points for drug discovery. Other alkaloids possess psychotropic (e.g. psilocin) and stimulant activities (e.g. cocaine, caffeine, nicotine, theobromine), and have been used in entheogenic rituals or as recreational drugs. Alkaloids can be toxic too (e.g. atropine, tubocurarine). Although alkaloids act on a diversity of metabolic systems in humans and other animals, they almost uniformly evoke a bitter taste.

The boundary between alkaloids and other nitrogen-containing natural compounds is not clear-cut. Compounds like amino acid peptides, proteins, nucleotides, nucleic acid, amines, and antibiotics are usually not called alkaloids. Natural compounds containing nitrogen in the exocyclic position (mescaline, serotonin, dopamine, etc.) are usually classified as amines rather than as alkaloids. Some authors, however, consider alkaloids a special case of amines.

Naming

The article that introduced the concept of "alkaloid".

The name "alkaloids" (German: Alkaloide) was introduced in 1819 by the German chemist Carl Friedrich Wilhelm Meißner, and is derived from late Latin root alkali (which, in turn, comes from the Arabic al-qalwī meaning 'ashes of plants') and the suffix -οειδής -('like'). However, the term came into wide use only after the publication of a review article, by Oscar Jacobsen in the chemical dictionary of Albert Ladenburg in the 1880s.

There is no unique method for naming alkaloids. Many individual names are formed by adding the suffix "ine" to the species or genus name. For example, atropine is isolated from the plant Atropa belladonna; strychnine is obtained from the seed of the Strychnine tree (Strychnos nux-vomica L.). Where several alkaloids are extracted from one plant their names are often distinguished by variations in the suffix: "idine", "anine", "aline", "inine" etc. There are also at least 86 alkaloids whose names contain the root "vin" because they are extracted from vinca plants such as Vinca rosea (Catharanthus roseus); these are called vinca alkaloids.

History

Friedrich Sertürner, the German chemist who first isolated morphine from opium.

Alkaloid-containing plants have been used by humans since ancient times for therapeutic and recreational purposes. For example, medicinal plants have been known in Mesopotamia from about 2000 BC. The Odyssey of Homer referred to a gift given to Helen by the Egyptian queen, a drug bringing oblivion. It is believed that the gift was an opium-containing drug. A Chinese book on houseplants written in 1st–3rd centuries BC mentioned a medical use of ephedra and opium poppies. Also, coca leaves have been used by South American Indians since ancient times.

Extracts from plants containing toxic alkaloids, such as aconitine and tubocurarine, were used since antiquity for poisoning arrows.

Studies of alkaloids began in the 19th century. In 1804, the German chemist Friedrich Sertürner isolated from opium a "soporific principle" (Latin: principium somniferum), which he called "morphium", referring to Morpheus, the Greek god of dreams; in German and some other Central-European languages, this is still the name of the drug. The term "morphine", used in English and French, was given by the French physicist Joseph Louis Gay-Lussac.

A significant contribution to the chemistry of alkaloids in the early years of its development was made by the French researchers Pierre Joseph Pelletier and Joseph Bienaimé Caventou, who discovered quinine (1820) and strychnine (1818). Several other alkaloids were discovered around that time, including xanthine (1817), atropine (1819), caffeine (1820), coniine (1827), nicotine (1828), colchicine (1833), sparteine (1851), and cocaine (1860). The development of the chemistry of alkaloids was accelerated by the emergence of spectroscopic and chromatographic methods in the 20th century, so that by 2008 more than 12,000 alkaloids had been identified.

The first complete synthesis of an alkaloid was achieved in 1886 by the German chemist Albert Ladenburg. He produced coniine by reacting 2-methylpyridine with acetaldehyde and reducing the resulting 2-propenyl pyridine with sodium.

Bufotenin, an alkaloid from some toads, contains an indole core, and is produced in living organisms from the amino acid tryptophan.

Classifications

The nicotine molecule contains both pyridine (left) and pyrrolidine rings (right).

Compared with most other classes of natural compounds, alkaloids are characterized by a great structural diversity. There is no uniform classification. Initially, when knowledge of chemical structures was lacking, botanical classification of the source plants was relied on. This classification is now considered obsolete.

More recent classifications are based on similarity of the carbon skeleton (e.g., indole-, isoquinoline-, and pyridine-like) or biochemical precursor (ornithine, lysine, tyrosine, tryptophan, etc.). However, they require compromises in borderline cases; for example, nicotine contains a pyridine fragment from nicotinamide and a pyrrolidine part from ornithine and therefore can be assigned to both classes.
Alkaloids are often divided into the following major groups:
  1. "True alkaloids" contain nitrogen in the heterocycle and originate from amino acids. Their characteristic examples are atropine, nicotine, and morphine. This group also includes some alkaloids that besides the nitrogen heterocycle contain terpene (e.g., evonine) or peptide fragments (e.g. ergotamine). The piperidine alkaloids coniine and coniceine may be regarded as true alkaloids (rather than pseudoalkaloids: see below) although they do not originate from amino acids.
  2. "Protoalkaloids", which contain nitrogen (but not the nitrogen heterocycle) and also originate from amino acids. Examples include mescaline, adrenaline and ephedrine.
  3. Polyamine alkaloids – derivatives of putrescine, spermidine, and spermine.
  4. Peptide and cyclopeptide alkaloids.
  5. Pseudoalkaloids – alkaloid-like compounds that do not originate from amino acids. This group includes terpene-like and steroid-like alkaloids, as well as purine-like alkaloids such as caffeine, theobromine, theacrine and theophylline. Some authors classify as pseudoalkaloids such compounds such as ephedrine and cathinone. Those originate from the amino acid phenylalanine, but acquire their nitrogen atom not from the amino acid but through transamination.
Some alkaloids do not have the carbon skeleton characteristic of their group. So, galanthamine and homoaporphines do not contain isoquinoline fragment, but are, in general, attributed to isoquinoline alkaloids. 

Properties

Head of a calf born to a cow that ate leaves of the corn lily plant. The cyclopia in the calf is induced by the alkaloid cyclopamine present in the plant.
 
Most alkaloids contain oxygen in their molecular structure; those compounds are usually colorless crystals at ambient conditions. Oxygen-free alkaloids, such as nicotine or coniine, are typically volatile, colorless, oily liquids. Some alkaloids are colored, like berberine (yellow) and sanguinarine (orange).

Most alkaloids are weak bases, but some, such as theobromine and theophylline, are amphoteric. Many alkaloids dissolve poorly in water but readily dissolve in organic solvents, such as diethyl ether, chloroform or 1,2-dichloroethane. Caffeine, cocaine, codeine and nicotine are slightly soluble in water (with a solubility of ≥1g/L), whereas others, including morphine and yohimbine are very slightly water-soluble (0.1–1 g/L). Alkaloids and acids form salts of various strengths. These salts are usually freely soluble in water and ethanol and poorly soluble in most organic solvents. Exceptions include scopolamine hydrobromide, which is soluble in organic solvents, and the water-soluble quinine sulfate.

Most alkaloids have a bitter taste or are poisonous when ingested. Alkaloid production in plants appeared to have evolved in response to feeding by herbivorous animals; however, some animals have evolved the ability to detoxify alkaloids. Some alkaloids can produce developmental defects in the offspring of animals that consume but cannot detoxify the alkaloids. One example is the alkaloid cyclopamine, produced in the leaves of corn lily. During the 1950s, up to 25% of lambs born by sheep that had grazed on corn lily had serious facial deformations. These ranged from deformed jaws to cyclopia (see picture). After decades of research, in the 1980s, the compound responsible for these deformities was identified as the alkaloid 11-deoxyjervine, later renamed to cyclopamine.

Distribution in nature

Strychnine tree. Its seeds are rich in strychnine and brucine.

Alkaloids are generated by various living organisms, especially by higher plants – about 10 to 25% of those contain alkaloids. Therefore, in the past the term "alkaloid" was associated with plants.

The alkaloids content in plants is usually within a few percent and is inhomogeneous over the plant tissues. Depending on the type of plants, the maximum concentration is observed in the leaves (black henbane), fruits or seeds (Strychnine tree), root (Rauvolfia serpentina) or bark (cinchona). Furthermore, different tissues of the same plants may contain different alkaloids.

Beside plants, alkaloids are found in certain types of fungi, such as psilocybin in the fungus of the genus Psilocybe, and in animals, such as bufotenin in the skin of some toads  and a number of insects, markedly ants. Many marine organisms also contain alkaloids. Some amines, such as adrenaline and serotonin, which play an important role in higher animals, are similar to alkaloids in their structure and biosynthesis and are sometimes called alkaloids.

Extraction

Crystals of piperine extracted from black pepper.
 
Because of the structural diversity of alkaloids, there is no single method of their extraction from natural raw materials. Most methods exploit the property of most alkaloids to be soluble in organic solvents  but not in water, and the opposite tendency of their salts.

Most plants contain several alkaloids. Their mixture is extracted first and then individual alkaloids are separated. Plants are thoroughly ground before extraction. Most alkaloids are present in the raw plants in the form of salts of organic acids. The extracted alkaloids may remain salts or change into bases. Base extraction is achieved by processing the raw material with alkaline solutions and extracting the alkaloid bases with organic solvents, such as 1,2-dichloroethane, chloroform, diethyl ether or benzene. Then, the impurities are dissolved by weak acids; this converts alkaloid bases into salts that are washed away with water. If necessary, an aqueous solution of alkaloid salts is again made alkaline and treated with an organic solvent. The process is repeated until the desired purity is achieved. 

In the acidic extraction, the raw plant material is processed by a weak acidic solution (e.g., acetic acid in water, ethanol, or methanol). A base is then added to convert alkaloids to basic forms that are extracted with organic solvent (if the extraction was performed with alcohol, it is removed first, and the remainder is dissolved in water). The solution is purified as described above.

Alkaloids are separated from their mixture using their different solubility in certain solvents and different reactivity with certain reagents or by distillation.

A number of alkaloids are identified from insects, among which the fire ant venom alkaloids known as solenopsins have received greater attention from researchers. These insect alkaloids can be efficiently extracted by solvent immersion of live fire ants  or by centrifugation of live ants  followed by silica-gel chromatography purification. Tracking and dosing the extracted solenopsin ant alkaloids has been described as possible based on their absorbance peak around 232 nanometers.

Biosynthesis

Biological precursors of most alkaloids are amino acids, such as ornithine, lysine, phenylalanine, tyrosine, tryptophan, histidine, aspartic acid, and anthranilic acid. Nicotinic acid can be synthesized from tryptophan or aspartic acid. Ways of alkaloid biosynthesis are too numerous and cannot be easily classified. However, there are a few typical reactions involved in the biosynthesis of various classes of alkaloids, including synthesis of Schiff bases and Mannich reaction.

Synthesis of Schiff bases

Schiff bases can be obtained by reacting amines with ketones or aldehydes. These reactions are a common method of producing C=N bonds.

Schiff base formation.svg
In the biosynthesis of alkaloids, such reactions may take place within a molecule, such as in the synthesis of piperidine:

Schiff base formation intramolecular.svg

Mannich reaction

An integral component of the Mannich reaction, in addition to an amine and a carbonyl compound, is a carbanion, which plays the role of the nucleophile in the nucleophilic addition to the ion formed by the reaction of the amine and the carbonyl.

Mannich.png

The Mannich reaction can proceed both intermolecularly and intramolecularly:

Mannich reaction intramolecular.svg

Dimer alkaloids

In addition to the described above monomeric alkaloids, there are also dimeric, and even trimeric and tetrameric alkaloids formed upon condensation of two, three, and four monomeric alkaloids. Dimeric alkaloids are usually formed from monomers of the same type through the following mechanisms:
There are also dimeric alkaloids formed from two distinct monomers, such as the vinca alkaloids vinblastine and vincristine, which are formed from the coupling of catharanthine and vindoline. The newer semi-synthetic chemotherapeutic agent vinorelbine is used in the treatment of non-small-cell lung cancer. It is another derivative dimer of vindoline and catharanthine and is synthesised from anhydrovinblastine, starting either from leurosine or the monomers themselves.

Vinorelbine from leurosine and from catharanthine plus vindoline.jpg

Biological role

The role of alkaloids for living organisms that produce them is still unclear. It was initially assumed that the alkaloids are the final products of nitrogen metabolism in plants, as urea in mammals. It was later shown that alkaloid concentration varies over time, and this hypothesis was refuted. A number of ants are suggested to also produce alkaloids as venom components, however the exact biosynthesis pathways have not been empirically demonstrated.

Most of the known functions of alkaloids are related to protection. For example, aporphine alkaloid liriodenine produced by the tulip tree protects it from parasitic mushrooms. In addition, the presence of alkaloids in the plant prevents insects and chordate animals from eating it. However, some animals are adapted to alkaloids and even use them in their own metabolism. Such alkaloid-related substances as serotonin, dopamine and histamine are important neurotransmitters in animals. Alkaloids are also known to regulate plant growth. One example of an organism that uses alkaloids for protection is the Utetheisa ornatrix, more commonly known as the ornate moth. Pyrrolizidine alkaloids render these larvae and adult moths unpalatable to many of their natural enemies like coccinelid beetles, green lacewings, insectivorous hemiptera and insectivorous bats. Another example of alkaloids being utilized occurs in the poison hemlock moth (Agonopterix alstroemeriana). This moth feeds on its highly toxic and alkaloid-rich host plant poison hemlock (Conium maculatum) during its larval stage. A. asltroemeriana may benefit twofold from the toxicity of the naturally-occurring alkaloids, both through the unpalatability of the species to predators and through the ability of A. alstroemeriana to recognize Conium maculatum as the correct location for oviposition. A fire ant venom alkaloid known as solenopsin has been demonstrated to protect queens of invasive fire ants during the foundation of new nests, thus playing a central role in the spread of this pest ant species around the world.

Applications

In medicine

Medical use of alkaloid-containing plants has a long history, and, thus, when the first alkaloids were isolated in the 19th century, they immediately found application in clinical practice. Many alkaloids are still used in medicine, usually in the form of salts widely used including the following:

Alkaloid Action
Ajmaline antiarrhythmic
Atropine, scopolamine, hyoscyamine anticholinergic
Caffeine stimulant, adenosine receptor antagonist
Codeine antitussive, analgesic
Colchicine remedy for gout
Emetine antiprotozoal agent, Emesis
Ergot alkaloids Vasoconstriction, hallucinogenic, Uterotonic
Morphine analgesic
Nicotine stimulant, nicotinic acetylcholine receptor agonist
Physostigmine inhibitor of acetylcholinesterase
Quinidine antiarrhythmic
Quinine antipyretic, antimalarial
Reserpine antihypertensive
Tubocurarine muscle relaxant
Vinblastine, vincristine antitumor
Vincamine vasodilating, antihypertensive
Yohimbine stimulant, aphrodisiac

Many synthetic and semisynthetic drugs are structural modifications of the alkaloids, which were designed to enhance or change the primary effect of the drug and reduce unwanted side-effects. For example, naloxone, an opioid receptor antagonist, is a derivative of thebaine that is present in opium.

In agriculture

Prior to the development of a wide range of relatively low-toxic synthetic pesticides, some alkaloids, such as salts of nicotine and anabasine, were used as insecticides. Their use was limited by their high toxicity to humans.

Use as psychoactive drugs

Preparations of plants containing alkaloids and their extracts, and later pure alkaloids, have long been used as psychoactive substances. Cocaine, caffeine, and cathinone are stimulants of the central nervous system. Mescaline and many indole alkaloids (such as psilocybin, dimethyltryptamine and ibogaine) have hallucinogenic effect. Morphine and codeine are strong narcotic pain killers.

There are alkaloids that do not have strong psychoactive effect themselves, but are precursors for semi-synthetic psychoactive drugs. For example, ephedrine and pseudoephedrine are used to produce methcathinone and methamphetamine. Thebaine is used in the synthesis of many painkillers such as oxycodone.

Tubocurarine chloride

From Wikipedia, the free encyclopedia
 
Tubocurarine chloride
Tubocurarine.svg
Tubocurarine-chloride-3D-balls-by-AHRLS-2012.png
Clinical data
AHFS/Drugs.comInternational Drug Names
MedlinePlusa682860
Pregnancy
category
  • AU: C
Routes of
administration
IV
ATC code
Legal status
Legal status
  • In general: ℞ (Prescription only)
Pharmacokinetic data
Bioavailability100% (IV)
Protein binding50%
Elimination half-life1–2 hours
Identifiers
CAS Number
  • 57-95-4 ☒ (chloride hydrochloride)
    6989-98-6 (chloride hydrochloride pentahydrate)
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
ChEBI
ChEMBL
CompTox Dashboard (EPA)
Chemical and physical data
FormulaC37H42Cl2N2O6
Molar mass681.65 g/mol g·mol−1
3D model (JSmol)

Tubocurarine (also known as d-tubocurarine or DTC) is a toxic alkaloid historically known for its use as an arrow poison. In the mid-1900s, it was used in conjunction with an anesthetic to provide skeletal muscle relaxation during surgery or mechanical ventilation. It is now rarely used as an adjunct for clinical anesthesia because safer alternatives, such as cisatracurium and rocuronium, are available.

History

Tubocurarine is a naturally occurring mono-quaternary alkaloid obtained from the bark of the Menispermaceous South American plant Chondrodendron tomentosum, a climbing vine known to the European world since the Spanish conquest of South America. Curare had been used as a source of arrow poison by South American natives to hunt animals, and they were able to eat the animals' contaminated flesh subsequently without any adverse effects because tubocurarine cannot easily cross mucous membranes.Thus, tubocurarine is effective only if given parenterally, as demonstrated by Bernard, who also showed that the site of its action was at the neuromuscular junction. Virchow and Munter confirmed the paralyzing action was limited to voluntary muscles.

Etymology

The word "curare" comes from the South American Native name for the arrow poison, ourare. Presumably, the initial syllable was pronounced with a heavy glottal stop. Tubocurarine is so-called because some of the plant extracts designated 'curare' were stored, and subsequently shipped to Europe, in bamboo tubes. Likewise, curare stored in calabash containers was called calabash curare, although this was usually an extract not of Chondrodendron, but of the Strychnos species S. toxifera, containing a different alkaloid, namely toxiferine. Pot curare was generally a mixture of extracts from various genera in the families Menispermaceae and Strychnaceae. The tripartite classification into 'tube' , 'calabash' and 'pot' curares early became untenable, due to inconsistencies in the use of the different types of vessels and the complexities of the dart poison recipes themselves.

Use as an anesthetic

Griffith and Johnson are credited with pioneering the formal clinical introduction of tubocurarine as an adjunct to anesthetic practice on 23 January 1942, at the Montreal Homeopathic Hospital. In this sense, tubocurarine is the prototypical adjunctive neuromuscular non-depolarizing agent. However, others before Griffith and Johnson had attempted use of tubocurarine in several situations: some under controlled study conditions while others not quite controlled and remained unpublished. Regardless, all in all some 30,000 patients had been given tubocurarine by 1941, although it was Griffith and Johnson's 1942 publication that provided the impetus to the standard use of neuromuscular blocking agents in clinical anesthestic practice – a revolution that rapidly metamorphosized into the standard practice of "balanced" anesthesia: the triad of barbiturate hypnosis, light inhalational anesthesia and muscle relaxation. The technique as described by Gray and Halton was widely known as the "Liverpool technique", and became the standard anesthetic technique in England in the 1950s and 1960s for patients of all ages and physical status. Present clinical anesthetic practice still employs the central principle of balanced anesthesia though with some differences to accommodate subsequent technological advances and introductions of new and better gaseous anesthetic, hypnotic and neuromuscular blocking agents, and tracheal intubation, as well as monitoring techniques that were nonexistent in the day of Gray and Halton: pulse oximetry, capnography, peripheral nerve stimulation, noninvasive blood pressure monitoring, etc.

Chemical properties

Structurally, tubocurarine is a benzylisoquinoline derivative. For many years, its structure, when first elucidated in 1948, was wrongly thought to be bis-quaternary: in other words, it was thought to be an N,N-dimethylated alkaloid. In 1970, the correct structure was finally established, showing one of the two nitrogens to be tertiary, actually a mono-N-methylated alkaloid.

Biosynthesis

Tubocurarine biosynthesis involves a radical coupling of the two enantiomers of N-methylcoclaurine. (R) and (S)-N-methylcoclaurine come from a Mannich-like reaction between dopamine and 4-hydroxyphenylacetaldehyde, facilitated by norcoclaurine synthase (NCS). Both dopamine and 4-hydroxyphenylacetaldehyde originate from L-tyrosine. Methylation of the amine and hydroxyl substituents are facilitated by S-adenosyl methionine (SAM). One methyl group is present on each nitrogen atom prior to the radical coupling. The additional methyl group is transferred to form tubocurarine, with its single quaternary N,N-dimethylamino group.

Tubocurarine proposed biosynthesis

Biological effects

Acetylcholine in the synaptic gap
 
Without intervention, acetylcholine (ACh) in the peripheral nervous system activates skeletal muscles. Acetylcholine is produced in the body of the neuron by choline acetyltransferase and transported down the axon to the synaptic gap. Tubocurarine chloride acts as an antagonist for the nicotinic acetylcholine receptor (nAChr), meaning it blocks the receptor site from ACh. This may be due to the quaternary amino structural motif found on both molecules.

Clinical pharmacology

Unna et al. reported the effects of tubocurarine on humans:

"Forty-five seconds after the beginning of the injection, heaviness of the eyelids and transitory diplopia were perceived. At the completion of the injection, diplopia became fixed, but could be noticed only when the subject’s eyelids were raised by the operator. As curarization proceeded, it seemed to the subject as if the facial muscles, those of the tongue, pharynx, and lower jaw, the muscles of the neck and back, and the muscles of the extremities became relaxed in about that order. Accompanying the paralysis of the pharynx and the jaw muscles, inability of the subject to swallow was noted … Shortly after the injection was completed the subjects experienced a sensation of increased difficulty in breathing, as if an extra effort was necessary to maintain an adequate respiratory exchange. This sensation was present even though there was no objective evidence of impaired oxygenation or of carbon dioxide retention. It reached its maximum about five minutes after the injection, coinciding with the maximum depression of the vital capacity. In the majority of the experiments the respiratory rate was increased by about 50–100 per cent the first minutes after the injection of any one of the drugs while the tidal volume decreased."

Tubocurarine has a time of onset of around 5 minutes which is relatively slow among neuromuscular-blocking drugs, and has a duration of action of 60 to 120 minutes. It also causes histamine release, now a recognized hallmark of the tetrahydroisioquinolinium class of neuromuscular blocking agents. Histamine release is associated with bronchospasms, hypotension, salivary secretions, making it dangerous for asthmatics, children, and those who are pregnant or lactating. However, the main disadvantage in the use of tubocurarine is its significant ganglion-blocking effect, that manifests as hypotension, in many patients; this constitutes a relative contraindication to its use in patients with myocardial ischaemia.

Because of the shortcomings of tubocurare, much research effort was undertaken soon after its clinical introduction to find a suitable replacement. The efforts unleashed a multitude of compounds borne from structure-activity relations developed from the tubocurare molecule. Some key compounds that have seen clinical use are identified in the muscle relaxants template box below. Of the many tried as replacements, only a few enjoyed as much popularity as tubocurarine: pancuronium, vecuronium, rocuronium, atracurium, and cisatracurium. Succinylcholine is a widely used muscle relaxant drug which acts by activating, instead of blocking, the ACh receptor.

The potassium channel blocker tetraethylammonium (TEA) has been shown to reverse the effects of tubocurarine. It is thought to do so by increasing ACh release, which counteracts the antagonistic effects of tubocurarine on the ACh receptor.

Use as spider bite treatment

Spiders of the genus Latrodectus have α-latrotoxin in their venom. The most well known spider in this genus is the black widow spider. α-latrotoxin causes the release of neurotransmitters into the synaptic gap, including acetylcholine. Bites are usually not fatal, but do cause a significant amount of pain in addition to muscle spasms. The venom is the most damaging to nerve endings, but the introduction of d-tubocurarine chloride blocks the nAChr, alleviating pain and muscle spasms while an antivenom can be administered.

Toxicology

An individual administered tubocurarine chloride will be unable to move any voluntary muscles, including the diaphragm. A large enough dose will therefore result in death from respiratory failure unless artificial ventilation is initiated. The LD50 for mice and rabbits are 0.13 mg/kg and 0.146 mg/kg intravenously, respectively. It releases histamine and causes hypotension.

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...