Search This Blog

Wednesday, October 7, 2020

Cogeneration

From Wikipedia, the free encyclopedia
 
Diagram comparing losses from conventional generation vs. cogeneration

Cogeneration or combined heat and power (CHP) is the use of a heat engine or power station to generate electricity and useful heat at the same time. Trigeneration or combined cooling, heat and power (CCHP) refers to the simultaneous generation of electricity and useful heating and cooling from the combustion of a fuel or a solar heat collector. The terms cogeneration and trigeneration can also be applied to the power systems simultaneously generating electricity, heat, and industrial chemicals (e.g., syngas).

Cogeneration is a more efficient use of fuel because otherwise-wasted heat from electricity generation is put to some productive use. Combined heat and power (CHP) plants recover otherwise wasted thermal energy for heating. This is also called combined heat and power district heating. Small CHP plants are an example of decentralized energy. By-product heat at moderate temperatures (100–180 °C, 212–356 °F) can also be used in absorption refrigerators for cooling.

The supply of high-temperature heat first drives a gas or steam turbine-powered generator. The resulting low-temperature waste heat is then used for water or space heating. At smaller scales (typically below 1 MW), a gas engine or diesel engine may be used. Trigeneration differs from cogeneration in that the waste heat is used for both heating and cooling, typically in an absorption refrigerator. Combined cooling, heat, and power systems can attain higher overall efficiencies than cogeneration or traditional power plants. In the United States, the application of trigeneration in buildings is called building cooling, heating, and power. Heating and cooling output may operate concurrently or alternately depending on need and system construction.

Cogeneration was practiced in some of the earliest installations of electrical generation. Before central stations distributed power, industries generating their own power used exhaust steam for process heating. Large office and apartment buildings, hotels, and stores commonly generated their own power and used waste steam for building heat. Due to the high cost of early purchased power, these CHP operations continued for many years after utility electricity became available.

Overview

Masnedø CHP power station in Denmark. This station burns straw as fuel. The adjacent greenhouses are heated by district heating from the plant.

Many process industries, such as chemical plants, oil refineries and pulp and paper mills, require large amounts of process heat for such operations as chemical reactors, distillation columns, steam driers and other uses. This heat, which is usually used in the form of steam, can be generated at the typically low pressures used in heating, or can be generated at much higher pressure and passed through a turbine first to generate electricity. In the turbine the steam pressure and temperature is lowered as the internal energy of the steam is converted to work. The lower-pressure steam leaving the turbine can then be used for process heat.

Steam turbines at thermal power stations are normally designed to be fed high-pressure steam, which exits the turbine at a condenser operating a few degrees above ambient temperature and at a few millimeters of mercury absolute pressure. (This is called a condensing turbine.) For all practical purposes this steam has negligible useful energy before it is condensed. Steam turbines for cogeneration are designed for extraction of some steam at lower pressures after it has passed through a number of turbine stages, with the un-extracted steam going on through the turbine to a condenser. In this case, the extracted steam causes a mechanical power loss in the downstream stages of the turbine. Or they are designed, with or without extraction, for final exhaust at back pressure (non-condensing). The extracted or exhaust steam is used for process heating. Steam at ordinary process heating conditions still has a considerable amount of enthalpy that could be used for power generation, so cogeneration has an opportunity cost.

A typical power generation turbine in a paper mill may have extraction pressures of 160 psig (1.103 MPa) and 60 psig (0.41 MPa). A typical back pressure may be 60 psig (0.41 MPa). In practice these pressures are custom designed for each facility. Conversely, simply generating process steam for industrial purposes instead of high enough pressure to generate power at the top end also has an opportunity cost. The capital and operating cost of high-pressure boilers, turbines, and generators is substantial. This equipment is normally operated continuously, which usually limits self-generated power to large-scale operations.

A cogeneration plant in Metz, France. The 45MW boiler uses waste wood biomass as an energy source, providing electricity and heat for 30,000 dwellings.

A combined cycle (in which several thermodynamic cycles produce electricity), may also be used to extract heat using a heating system as condenser of the power plant's bottoming cycle. For example, the RU-25 MHD generator in Moscow heated a boiler for a conventional steam powerplant, whose condensate was then used for space heat. A more modern system might use a gas turbine powered by natural gas, whose exhaust powers a steam plant, whose condensate provides heat. Cogeneration plants based on a combined cycle power unit can have thermal efficiencies above 80%.

The viability of CHP (sometimes termed utilisation factor), especially in smaller CHP installations, depends on a good baseload of operation, both in terms of an on-site (or near site) electrical demand and heat demand. In practice, an exact match between the heat and electricity needs rarely exists. A CHP plant can either meet the need for heat (heat driven operation) or be run as a power plant with some use of its waste heat, the latter being less advantageous in terms of its utilisation factor and thus its overall efficiency. The viability can be greatly increased where opportunities for trigeneration exist. In such cases, the heat from the CHP plant is also used as a primary energy source to deliver cooling by means of an absorption chiller.

CHP is most efficient when heat can be used on-site or very close to it. Overall efficiency is reduced when the heat must be transported over longer distances. This requires heavily insulated pipes, which are expensive and inefficient; whereas electricity can be transmitted along a comparatively simple wire, and over much longer distances for the same energy loss.

A car engine becomes a CHP plant in winter when the reject heat is useful for warming the interior of the vehicle. The example illustrates the point that deployment of CHP depends on heat uses in the vicinity of the heat engine.

Thermally enhanced oil recovery (TEOR) plants often produce a substantial amount of excess electricity. After generating electricity, these plants pump leftover steam into heavy oil wells so that the oil will flow more easily, increasing production. TEOR cogeneration plants in Kern County, California produce so much electricity that it cannot all be used locally and is transmitted to Los Angeles.

CHP is one of the most cost-efficient methods of reducing carbon emissions from heating systems in cold climates  and is recognized to be the most energy efficient method of transforming energy from fossil fuels or biomass into electric power. Cogeneration plants are commonly found in district heating systems of cities, central heating systems of larger buildings (e.g. hospitals, hotels, prisons) and are commonly used in the industry in thermal production processes for process water, cooling, steam production or CO2 fertilization.

Types of plants

Hanasaari Power Plant, a coal-fired cogeneration power plant in Helsinki, Finland

Topping cycle plants primarily produce electricity from a steam turbine. Partly expanded steam is then condensed in a heating condensor at a temperature level that is suitable e.g. district heating or water desalination.

Bottoming cycle plants produce high temperature heat for industrial processes, then a waste heat recovery boiler feeds an electrical plant. Bottoming cycle plants are only used in industrial processes that require very high temperatures such as furnaces for glass and metal manufacturing, so they are less common.

Large cogeneration systems provide heating water and power for an industrial site or an entire town. Common CHP plant types are:

  • Gas turbine CHP plants using the waste heat in the flue gas of gas turbines. The fuel used is typically natural gas.
  • Gas engine CHP plants use a reciprocating gas engine, which is generally more competitive than a gas turbine up to about 5 MW. The gaseous fuel used is normally natural gas. These plants are generally manufactured as fully packaged units that can be installed within a plantroom or external plant compound with simple connections to the site's gas supply, electrical distribution network and heating systems. Typical outputs and efficiences see  Typical large example see 
  • Biofuel engine CHP plants use an adapted reciprocating gas engine or diesel engine, depending upon which biofuel is being used, and are otherwise very similar in design to a Gas engine CHP plant. The advantage of using a biofuel is one of reduced hydrocarbon fuel consumption and thus reduced carbon emissions. These plants are generally manufactured as fully packaged units that can be installed within a plantroom or external plant compound with simple connections to the site's electrical distribution and heating systems. Another variant is the wood gasifier CHP plant whereby a wood pellet or wood chip biofuel is gasified in a zero oxygen high temperature environment; the resulting gas is then used to power the gas engine.
  • Combined cycle power plants adapted for CHP
  • Molten-carbonate fuel cells and solid oxide fuel cells have a hot exhaust, very suitable for heating.
  • Steam turbine CHP plants that use the heating system as the steam condenser for the steam turbine
  • Nuclear power plants, similar to other steam turbine power plants, can be fitted with extractions in the turbines to bleed partially expanded steam to a heating system. With a heating system temperature of 95 °C it is possible to extract about 10 MW heat for every MW electricity lost. With a temperature of 130 °C the gain is slightly smaller, about 7 MW for every MWe lost. A review of cogeneration options is in.

Smaller cogeneration units may use a reciprocating engine or Stirling engine. The heat is removed from the exhaust and radiator. The systems are popular in small sizes because small gas and diesel engines are less expensive than small gas- or oil-fired steam-electric plants.

Some cogeneration plants are fired by biomass, or industrial and municipal solid waste (see incineration). Some CHP plants utilize waste gas as the fuel for electricity and heat generation. Waste gases can be gas from animal waste, landfill gas, gas from coal mines, sewage gas, and combustible industrial waste gas.

Some cogeneration plants combine gas and solar photovoltaic generation to further improve technical and environmental performance. Such hybrid systems can be scaled down to the building level[15] and even individual homes.

MicroCHP

Micro combined heat and power or 'Micro cogeneration" is a so-called distributed energy resource (DER). The installation is usually less than 5 kWe in a house or small business. Instead of burning fuel to merely heat space or water, some of the energy is converted to electricity in addition to heat. This electricity can be used within the home or business or, if permitted by the grid management, sold back into the electric power grid.

Delta-ee consultants stated in 2013 that with 64% of global sales the fuel cell micro-combined heat and power passed the conventional systems in sales in 2012. 20.000 units were sold in Japan in 2012 overall within the Ene Farm project. With a Lifetime of around 60,000 hours. For PEM fuel cell units, which shut down at night, this equates to an estimated lifetime of between ten and fifteen years. For a price of $22,600 before installation. For 2013 a state subsidy for 50,000 units is in place.

MicroCHP installations use five different technologies: microturbines, internal combustion engines, stirling engines, closed-cycle steam engines, and fuel cells. One author indicated in 2008 that MicroCHP based on Stirling engines is the most cost-effective of the so-called microgeneration technologies in abating carbon emissions. A 2013 UK report from Ecuity Consulting stated that MCHP is the most cost-effective method of using gas to generate energy at the domestic level. However, advances in reciprocation engine technology are adding efficiency to CHP plants, particularly in the biogas field. As both MiniCHP and CHP have been shown to reduce emissions  they could play a large role in the field of CO2 reduction from buildings, where more than 14% of emissions can be saved using CHP in buildings. The University of Cambridge reported a cost-effective steam engine MicroCHP prototype in 2017 which has the potential to be commercially competitive in the following decades.

 Quite recently, in some private homes, fuel cell micro-CHP plants can now be found, which can operate on hydrogen, or other fuels as natural gas or LPG. When running on natural gas, it relies on steam reforming of natural gas to convert the natural gas to hydrogen prior to use in the fuel cell. This hence still emits CO
2
(see reaction) but (temporarily) running on this can be a good solution until the point where the hydrogen is starting to be become distributed through the (natural gas) piping system.

Trigeneration

Trigeneration cycle

A plant producing electricity, heat and cold is called a trigeneration or polygeneration plant. Cogeneration systems linked to absorption chillers or adsorption chillers use waste heat for refrigeration.

Combined heat and power district heating

In the United States, Consolidated Edison distributes 66 billion kilograms of 350 °F (180 °C) steam each year through its seven cogeneration plants to 100,000 buildings in Manhattan—the biggest steam district in the United States. The peak delivery is 10 million pounds per hour (or approximately 2.5 GW).

Industrial CHP

Cogeneration is still common in pulp and paper mills, refineries and chemical plants. In this "industrial cogeneration/CHP", the heat is typically recovered at higher temperatures (above 100 deg C) and used for process steam or drying duties. This is more valuable and flexible than low-grade waste heat, but there is a slight loss of power generation. The increased focus on sustainability has made industrial CHP more attractive, as it substantially reduces carbon footprint compared to generating steam or burning fuel on-site and importing electric power from the grid.

Utility pressures versus self generated industrial

Industrial cogeneration plants normally operate at much lower boiler pressures than utilities. Among the reasons are: 1) Cogeneration plants face possible contamination of returned condensate. Because boiler feed water from cogeneration plants has much lower return rates than 100% condensing power plants, industries usually have to treat proportionately more boiler make up water. Boiler feed water must be completely oxygen free and de-mineralized, and the higher the pressure the more critical the level of purity of the feed water. 2) Utilities are typically larger scale power than industry, which helps offset the higher capital costs of high pressure. 3) Utilities are less likely to have sharp load swings than industrial operations, which deal with shutting down or starting up units that may represent a significant percent of either steam or power demand.

Heat recovery steam generators

A heat recovery steam generator (HRSG) is a steam boiler that uses hot exhaust gases from the gas turbines or reciprocating engines in a CHP plant to heat up water and generate steam. The steam, in turn, drives a steam turbine or is used in industrial processes that require heat.

HRSGs used in the CHP industry are distinguished from conventional steam generators by the following main features:

  • The HRSG is designed based upon the specific features of the gas turbine or reciprocating engine that it will be coupled to.
  • Since the exhaust gas temperature is relatively low, heat transmission is accomplished mainly through convection.
  • The exhaust gas velocity is limited by the need to keep head losses down. Thus, the transmission coefficient is low, which calls for a large heating surface area.
  • Since the temperature difference between the hot gases and the fluid to be heated (steam or water) is low, and with the heat transmission coefficient being low as well, the evaporator and economizer are designed with plate fin heat exchangers.

Cogeneration using biomass

Biomass is emerging as one of the most important sources of renewable energy. Biomass refers to any plant or animal matter in which it is possible to be reused as a source of heat or electricity, such as sugarcane, vegetable oils, wood, organic waste and residues from the food or agricultural industries. Brazil is now considered a world reference in terms of energy generation from biomass.

A growing sector in the use of biomass for power generation is the sugar and alcohol sector, which mainly uses sugarcane bagasse as fuel for thermal and electric power generation 

Power cogeneration in the sugar and alcohol sector

In the sugarcane industry, cogeneration is fuelled by the bagasse residue of sugar refining, which is burned to produce steam. Some steam can be sent through a turbine that turns a generator, producing electric power.

Energy cogeneration in sugarcane industries located in Brazil is a practice that has been growing in last years. With the adoption of energy cogeneration in the sugar and alcohol sector, the sugarcane industries are able to supply the electric energy demand needed to operate, and generate a surplus that can be commercialized.

Advantages of the cogeneration using sugarcane bagasse

In comparison with the electric power generation by means of fossil fuel-based thermoelectric plants, such as natural gas, the energy generation using sugarcane bagasse has environmental advantages due to the reduction of CO2 emissions.

In addition to the environmental advantages, cogeneration using sugarcane bagasse presents advantages in terms of efficiency comparing to thermoelectric generation, through the final destination of the energy produced. While in thermoelectric generation, part of the heat produced is lost, in cogeneration this heat has the possibility of being used in the production processes, increasing the overall efficiency of the process.[38]

Disadvantages of the cogeneration using sugarcane bagasse

In sugarcane cultivation, is usually used potassium source's containing high concentration of chlorine, such as potassium chloride (KCl). Considering that KCl is applied in huge quantities, sugarcane ends up absorbing high concentrations of chlorine.[39]

Due to this absorption, when the sugarcane bagasse is burned in the power cogeneration, dioxins [39] and methyl chloride [40] ends up being emitted. In the case of dioxins, these substances are considered very toxic and cancerous.[41][42][43]

In the case of methyl chloride, when this substance is emitted and reaches the stratosphere, it ends up being very harmful for the ozone layer, since chlorine when combined with the ozone molecule generates a catalytic reaction leading to the breakdown of ozone links.[40]

After each reaction, chlorine starts a destructive cycle with another ozone molecule. In this way, a single chlorine atom can destroy thousands of ozone molecules. As these molecules are being broken, they are unable to absorb the ultraviolet rays. As a result, the UV radiation is more intense on Earth and there is a worsening of global warming.[40]

Comparison with a heat pump

A heat pump may be compared with a CHP unit as follows. If, to supply thermal energy, the exhaust steam from the turbo-generator must be taken at a higher temperature than the system would produce most electricity at, the lost electrical generation is as if a heat pump were used to provide the same heat by taking electrical power from the generator running at lower output temperature and higher efficiency.[44] Typically for every unit of electrical power lost, then about 6 units of heat are made available at about 90 °C. Thus CHP has an effective Coefficient of Performance (COP) compared to a heat pump of 6.[45] However, for a remotely operated heat pump, losses in the electrical distribution network would need to be considered, of the order of 6%. Because the losses are proportional to the square of the current, during peak periods losses are much higher than this and it is likely that widespread (i.e. citywide application of heat pumps) would cause overloading of the distribution and transmission grids unless they were substantially reinforced.

It is also possible to run a heat driven operation combined with a heat pump, where the excess electricity (as heat demand is the defining factor on utilization) is used to drive a heat pump. As heat demand increases, more electricity is generated to drive the heat pump, with the waste heat also heating the heating fluid.

Distributed generation

Most industrial countries generate the majority of their electrical power needs in large centralized facilities with capacity for large electrical power output. These plants benefit from economy of scale, but may need to transmit electricity across long distances causing transmission losses. Cogeneration or trigeneration production is subject to limitations in the local demand and thus may sometimes need to reduce (e.g., heat or cooling production to match the demand). An example of cogeneration with trigeneration applications in a major city is the New York City steam system.

Thermal efficiency

Every heat engine is subject to the theoretical efficiency limits of the Carnot cycle or subset Rankine cycle in the case of steam turbine power plants or Brayton cycle in gas turbine with steam turbine plants. Most of the efficiency loss with steam power generation is associated with the latent heat of vaporization of steam that is not recovered when a turbine exhausts its low temperature and pressure steam to a condenser. (Typical steam to condenser would be at a few millimeters absolute pressure and on the order of 5 °C/11 °F hotter than the cooling water temperature, depending on the condenser capacity.) In cogeneration this steam exits the turbine at a higher temperature where it may be used for process heat, building heat or cooling with an absorption chiller. The majority of this heat is from the latent heat of vaporization when the steam condenses.

Thermal efficiency in a cogeneration system is defined as:

Where:

= Thermal efficiency
= Total work output by all systems
= Total heat input into the system

Heat output may also be used for cooling (for example, in summer), thanks to an absorption chiller. If cooling is achieved in the same time, thermal efficiency in a trigeneration system is defined as:

Where:

= Thermal efficiency
= Total work output by all systems
= Total heat input into the system

Typical cogeneration models have losses as in any system. The energy distribution below is represented as a percent of total input energy:

Electricity = 45%
Heat + Cooling = 40%
Heat losses = 13%
Electrical line losses = 2%

Conventional central coal- or nuclear-powered power stations convert about 33-45% of their input heat to electricity. Brayton cycle power plants operate at up to 60% efficiency. In the case of conventional power plants, approximately 10-15% of this heat is lost up the stack of the boiler. Most of the remaining heat emerges from the turbines as low-grade waste heat with no significant local uses, so it is usually rejected to the environment, typically to cooling water passing through a condenser. Because turbine exhaust is normally just above ambient temperature, some potential power generation is sacrificed in rejecting higher-temperature steam from the turbine for cogeneration purposes.

For cogeneration to be practical power generation and end use of heat must be in relatively close proximity (<2 km typically). Even though the efficiency of a small distributed electrical generator may be lower than a large central power plant, the use of its waste heat for local heating and cooling can result in an overall use of the primary fuel supply as great as 80%. This provides substantial financial and environmental benefits.

Costs

Typically, for a gas-fired plant the fully installed cost per kW electrical is around £400/kW (US$577), which is comparable with large central power stations.

History

Cogeneration in Europe

A cogeneration thermal power plant in Ferrera Erbognone (PV), Italy

The EU has actively incorporated cogeneration into its energy policy via the CHP Directive. In September 2008 at a hearing of the European Parliament's Urban Lodgment Intergroup, Energy Commissioner Andris Piebalgs is quoted as saying, “security of supply really starts with energy efficiency.” Energy efficiency and cogeneration are recognized in the opening paragraphs of the European Union's Cogeneration Directive 2004/08/EC. This directive intends to support cogeneration and establish a method for calculating cogeneration abilities per country. The development of cogeneration has been very uneven over the years and has been dominated throughout the last decades by national circumstances.

The European Union generates 11% of its electricity using cogeneration. However, there is large difference between Member States with variations of the energy savings between 2% and 60%. Europe has the three countries with the world's most intensive cogeneration economies: Denmark, the Netherlands and Finland. Of the 28.46 TWh of electrical power generated by conventional thermal power plants in Finland in 2012, 81.80% was cogeneration.

Other European countries are also making great efforts to increase efficiency. Germany reported that at present, over 50% of the country's total electricity demand could be provided through cogeneration. So far, Germany has set the target to double its electricity cogeneration from 12.5% of the country's electricity to 25% of the country's electricity by 2020 and has passed supporting legislation accordingly. The UK is also actively supporting combined heat and power. In light of UK's goal to achieve a 60% reduction in carbon dioxide emissions by 2050, the government has set the target to source at least 15% of its government electricity use from CHP by 2010. Other UK measures to encourage CHP growth are financial incentives, grant support, a greater regulatory framework, and government leadership and partnership.

According to the IEA 2008 modeling of cogeneration expansion for the G8 countries, the expansion of cogeneration in France, Germany, Italy and the UK alone would effectively double the existing primary fuel savings by 2030. This would increase Europe's savings from today's 155.69 Twh to 465 Twh in 2030. It would also result in a 16% to 29% increase in each country's total cogenerated electricity by 2030.

Governments are being assisted in their CHP endeavors by organizations like COGEN Europe who serve as an information hub for the most recent updates within Europe's energy policy. COGEN is Europe's umbrella organization representing the interests of the cogeneration industry.

The European public–private partnership Fuel Cells and Hydrogen Joint Undertaking Seventh Framework Programme project ene.field deploys in 2017 up 1,000 residential fuel cell Combined Heat and Power (micro-CHP) installations in 12 states. Per 2012 the first 2 installations have taken place.

Cogeneration in the United Kingdom

In the United Kingdom, the Combined Heat and Power Quality Assurance scheme regulates the combined production of heat and power. It was introduced in 1996. It defines, through calculation of inputs and outputs, "Good Quality CHP" in terms of the achievement of primary energy savings against conventional separate generation of heat and electricity. Compliance with Combined Heat and Power Quality Assurance is required for cogeneration installations to be eligible for government subsidies and tax incentives.

Cogeneration in the United States

Perhaps the first modern use of energy recycling was done by Thomas Edison. His 1882 Pearl Street Station, the world's first commercial power plant, was a combined heat and power plant, producing both electricity and thermal energy while using waste heat to warm neighboring buildings. Recycling allowed Edison's plant to achieve approximately 50 percent efficiency.

By the early 1900s, regulations emerged to promote rural electrification through the construction of centralized plants managed by regional utilities. These regulations not only promoted electrification throughout the countryside, but they also discouraged decentralized power generation, such as cogeneration.

By 1978, Congress recognized that efficiency at central power plants had stagnated and sought to encourage improved efficiency with the Public Utility Regulatory Policies Act (PURPA), which encouraged utilities to buy power from other energy producers.

Cogeneration plants proliferated, soon producing about 8% of all energy in the United States. However, the bill left implementation and enforcement up to individual states, resulting in little or nothing being done in many parts of the country.

The United States Department of Energy has an aggressive goal of having CHP constitute 20% of generation capacity by the year 2030. Eight Clean Energy Application Centers have been established across the nation. Their mission is to develop the required technology application knowledge and educational infrastructure necessary to lead "clean energy" (combined heat and power, waste heat recovery, and district energy) technologies as viable energy options and reduce any perceived risks associated with their implementation. The focus of the Application Centers is to provide an outreach and technology deployment program for end users, policymakers, utilities, and industry stakeholders.

High electric rates in New England and the Middle Atlantic make these areas of the United States the most beneficial for cogeneration.

Tuesday, October 6, 2020

Efficient energy use

From Wikipedia, the free encyclopedia
 
Simplified electrical grid with energy storage.

Efficient energy use, sometimes simply called energy efficiency, is the goal to reduce the amount of energy required to provide products and services. For example, insulating a building allows it to use less heating and cooling energy to achieve and maintain a thermal comfort. Installing light-emitting diode bulbs, fluorescent lighting, or natural skylight windows reduces the amount of energy required to attain the same level of illumination compared to using traditional incandescent light bulbs. Improvements in energy efficiency are generally achieved by adopting a more efficient technology or production process or by application of commonly accepted methods to reduce energy losses.

There are many motivations to improve energy efficiency. Decreasing energy use reduces energy costs and may result in a financial cost saving to consumers if the energy savings offset any additional costs of implementing an energy-efficient technology. Reducing energy use is also seen as a solution to the problem of minimizing greenhouse gas emissions. According to the International Energy Agency, improved energy efficiency in buildings, industrial processes and transportation could reduce the world's energy needs in 2050 by one third, and help control global emissions of greenhouse gases. Another important solution is to remove government-led energy subsidies that promote high energy consumption and inefficient energy use in more than half of the countries in the world.

Energy efficiency and renewable energy are said to be the twin pillars of sustainable energy policy and are high priorities in the sustainable energy hierarchy. In many countries energy efficiency is also seen to have a national security benefit because it can be used to reduce the level of energy imports from foreign countries and may slow down the rate of energy at which domestic energy resources are depleted.

Overview

Lovin's Rocky Mountain Institute points out that in industrial settings, "there are abundant opportunities to save 70% to 90% of the energy and cost for lighting, fan, and pump systems; 50% for electric motors; and 60% in areas such as heating, cooling, office equipment, and appliances." In general, up to 75% of the electricity used in the US today could be saved with efficiency measures that cost less than the electricity itself, the same holds true for home settings. The US Department of Energy has stated that there is potential for energy saving in the magnitude of 90 Billion kWh by increasing home energy efficiency.

Other studies have emphasized this. A report published in 2006 by the McKinsey Global Institute, asserted that "there are sufficient economically viable opportunities for energy-productivity improvements that could keep global energy-demand growth at less than 1 percent per annum"—less than half of the 2.2 percent average growth anticipated through 2020 in a business-as-usual scenario. Energy productivity, which measures the output and quality of goods and services per unit of energy input, can come from either reducing the amount of energy required to produce something, or from increasing the quantity or quality of goods and services from the same amount of energy.

The Vienna Climate Change Talks 2007 Report, under the auspices of the United Nations Framework Convention on Climate Change, clearly shows "that energy efficiency can achieve real emission reductions at low cost."

International standards ISO 17743 and ISO 17742 provide a documented methodology for calculating and reporting on energy savings and energy efficiency for countries and cities.

The energy intensity of a country or region, the ratio of energy use to Gross Domestic Product or some other measure of economic output", differs from its energy efficiency. Energy intensity is affected by climate, economic structure (e.g. services vs manufacturing), trade, as well as the energy efficiency of buildings, vehicles, and industry. 

Benefits

From the point of view of an energy consumer, the main motivation of energy efficiency is often simply saving money by lowering the cost of purchasing energy. Additionally, from an energy policy point of view, there has been a long trend in a wider recognition of energy efficiency as the "first fuel", meaning the ability to replace or avoid the consumption of actual fuels. In fact, International Energy Agency has calculated that the application of energy efficiency measures in the years 1974-2010 has succeeded in avoiding more energy consumption in its member states than is the consumption of any particular fuel, including oil, coal and natural gas.

Moreover, it has long been recognized that energy efficiency brings other benefits additional to the reduction of energy consumption. Some estimates of the value of these other benefits, often called multiple benefits, co-benefits, ancillary benefits or non-energy benefits, have put their summed value even higher than that of the direct energy benefits. These multiple benefits of energy efficiency include things such as reduced climate change impact, reduced air pollution and improved health, improved indoor conditions, improved energy security and reduction of the price risk for energy consumers. Methods for calculating the monetary value of these multiple benefits have been developed, including e.g. the choice experiment method for improvements that have a subjective component (such as aesthetics or comfort) and Tuominen-Seppänen method for price risk reduction. When included in the analysis, the economic benefit of energy efficiency investments can be shown to be significantly higher than simply the value of the saved energy.

Appliances

Modern appliances, such as, freezers, ovens, stoves, dishwashers, and clothes washers and dryers, use significantly less energy than older appliances. Installing a clothesline will significantly reduce one's energy consumption as their dryer will be used less. Current energy-efficient refrigerators, for example, use 40 percent less energy than conventional models did in 2001. Following this, if all households in Europe changed their more than ten-year-old appliances into new ones, 20 billion kWh of electricity would be saved annually, hence reducing CO2 emissions by almost 18 billion kg. In the US, the corresponding figures would be 17 billion kWh of electricity and 27,000,000,000 lb (1.2×1010 kg) CO2. According to a 2009 study from McKinsey & Company the replacement of old appliances is one of the most efficient global measures to reduce emissions of greenhouse gases. Modern power management systems also reduce energy usage by idle appliances by turning them off or putting them into a low-energy mode after a certain time. Many countries identify energy-efficient appliances using energy input labeling.

The impact of energy efficiency on peak demand depends on when the appliance is used. For example, an air conditioner uses more energy during the afternoon when it is hot. Therefore, an energy-efficient air conditioner will have a larger impact on peak demand than off-peak demand. An energy-efficient dishwasher, on the other hand, uses more energy during the late evening when people do their dishes. This appliance may have little to no impact on peak demand.

Building design

Receiving a Gold rating for energy and environmental design in September 2011, the Empire State Building is the tallest and largest LEED certified building in the United States and Western Hemisphere., though it will likely be overtaken by New York's own One World Trade Center.

Buildings are an important field for energy efficiency improvements around the world because of their role as a major energy consumer. However, the question of energy use in buildings is not straightforward as the indoor conditions that can be achieved with energy use vary a lot. The measures that keep buildings comfortable, lighting, heating, cooling and ventilation, all consume energy. Typically the level of energy efficiency in a building is measured by dividing energy consumed with the floor area of the building which is referred to as specific energy consumption or energy use intensity:

However, the issue is more complex as building materials have embodied energy in them. On the other hand, energy can be recovered from the materials when the building is dismantled by reusing materials or burning them for energy. Moreover, when the building is used, the indoor conditions can vary resulting in higher and lower quality indoor environments. Finally, overall efficiency is affected by the use of the building: is the building occupied most of the time and are spaces efficiently used — or is the building largely empty? It has even been suggested that for a more complete accounting of energy efficiency, specific energy consumption should be amended to include these factors:

Thus a balanced approach to energy efficiency in buildings should be more comprehensive than simply trying to minimize energy consumed. Issues such as quality of indoor environment and efficiency of space use should be factored in. Thus the measures used to improve energy efficiency can take many different forms. Often they include passive measures that inherently reduce the need to use energy, such as better insulation. Many serve various functions improving the indoor conditions as well as reducing energy use, such as increased use of natural light.

A building's location and surroundings play a key role in regulating its temperature and illumination. For example, trees, landscaping, and hills can provide shade and block wind. In cooler climates, designing northern hemisphere buildings with south facing windows and southern hemisphere buildings with north facing windows increases the amount of sun (ultimately heat energy) entering the building, minimizing energy use, by maximizing passive solar heating. Tight building design, including energy-efficient windows, well-sealed doors, and additional thermal insulation of walls, basement slabs, and foundations can reduce heat loss by 25 to 50 percent.

Dark roofs may become up to 39 °C (70 °F) hotter than the most reflective white surfaces. They transmit some of this additional heat inside the building. US Studies have shown that lightly colored roofs use 40 percent less energy for cooling than buildings with darker roofs. White roof systems save more energy in sunnier climates. Advanced electronic heating and cooling systems can moderate energy consumption and improve the comfort of people in the building.

Proper placement of windows and skylights as well as the use of architectural features that reflect light into a building can reduce the need for artificial lighting. Increased use of natural and task lighting has been shown by one study to increase productivity in schools and offices. Compact fluorescent lamps use two-thirds less energy and may last 6 to 10 times longer than incandescent light bulbs. Newer fluorescent lights produce a natural light, and in most applications they are cost effective, despite their higher initial cost, with payback periods as low as a few months. LED lamps use only about 10% of the energy an incandescent lamp requires.

Effective energy-efficient building design can include the use of low cost passive infra reds to switch-off lighting when areas are unoccupied such as toilets, corridors or even office areas out-of-hours. In addition, lux levels can be monitored using daylight sensors linked to the building's lighting scheme to switch on/off or dim the lighting to pre-defined levels to take into account the natural light and thus reduce consumption. Building management systems link all of this together in one centralised computer to control the whole building's lighting and power requirements.

In an analysis that integrates a residential bottom-up simulation with an economic multi-sector model, it has been shown that variable heat gains caused by insulation and air-conditioning efficiency can have load-shifting effects that are not uniform on the electricity load. The study also highlighted the impact of higher household efficiency on the power generation capacity choices that are made by the power sector.

The choice of which space heating or cooling technology to use in buildings can have a significant impact on energy use and efficiency. For example, replacing an older 50% efficient natural gas furnace with a new 95% efficient one will dramatically reduce energy use, carbon emissions, and winter natural gas bills. Ground source heat pumps can be even more energy-efficient and cost-effective. These systems use pumps and compressors to move refrigerant fluid around a thermodynamic cycle in order to "pump" heat against its natural flow from hot to cold, for the purpose of transferring heat into a building from the large thermal reservoir contained within the nearby ground. The end result is that heat pumps typically use four times less electrical energy to deliver an equivalent amount of heat than a direct electrical heater does. Another advantage of a ground source heat pump is that it can be reversed in summertime and operate to cool the air by transferring heat from the building to the ground. The disadvantage of ground source heat pumps is their high initial capital cost, but this is typically recouped within five to ten years as a result of lower energy use.

Smart meters are slowly being adopted by the commercial sector to highlight to staff and for internal monitoring purposes the building's energy usage in a dynamic presentable format. The use of power quality analysers can be introduced into an existing building to assess usage, harmonic distortion, peaks, swells and interruptions amongst others to ultimately make the building more energy-efficient. Often such meters communicate by using wireless sensor networks.

Green Building XML is an emerging scheme, a subset of the Building Information Modeling efforts, focused on green building design and operation. It is used as input in several energy simulation engines. But with the development of modern computer technology, a large number of building performance simulation tools are available on the market. When choosing which simulation tool to use in a project, the user must consider the tool's accuracy and reliability, considering the building information they have at hand, which will serve as input for the tool. Yezioro, Dong and Leite developed an artificial intelligence approach towards assessing building performance simulation results and found that more detailed simulation tools have the best simulation performance in terms of heating and cooling electricity consumption within 3% of mean absolute error.

Leadership in Energy and Environmental Design (LEED) is a rating system organized by the US Green Building Council (USGBC) to promote environmental responsibility in building design. They currently offer four levels of certification for existing buildings (LEED-EBOM) and new construction (LEED-NC) based on a building's compliance with the following criteria: Sustainable sites, water efficiency, energy and atmosphere, materials and resources, indoor environmental quality, and innovation in design. In 2013, USGBC developed the LEED Dynamic Plaque, a tool to track building performance against LEED metrics and a potential path to recertification. The following year, the council collaborated with Honeywell to pull data on energy and water use, as well as indoor air quality from a BAS to automatically update the plaque, providing a near-real-time view of performance. The USGBC office in Washington, D.C. is one of the first buildings to feature the live-updating LEED Dynamic Plaque.

A deep energy retrofit is a whole-building analysis and construction process that uses to achieve much larger energy savings than conventional energy retrofits. Deep energy retrofits can be applied to both residential and non-residential (“commercial”) buildings. A deep energy retrofit typically results in energy savings of 30 percent or more, perhaps spread over several years, and may significantly improve the building value. The Empire State Building has undergone a deep energy retrofit process that was completed in 2013. The project team, consisting of representatives from Johnson Controls, Rocky Mountain Institute, Clinton Climate Initiative, and Jones Lang LaSalle will have achieved an annual energy use reduction of 38% and $4.4 million. For example, the 6,500 windows were remanufactured onsite into superwindows which block heat but pass light. Air conditioning operating costs on hot days were reduced and this saved $17 million of the project's capital cost immediately, partly funding other retrofitting. Receiving a gold Leadership in Energy and Environmental Design (LEED) rating in September 2011, the Empire State Building is the tallest LEED certified building in the United States. The Indianapolis City-County Building recently underwent a deep energy retrofit process, which has achieved an annual energy reduction of 46% and $750,000 annual energy saving.

Energy retrofits, including deep, and other types undertaken in residential, commercial or industrial locations are generally supported through various forms of financing or incentives. Incentives include pre-packaged rebates where the buyer/user may not even be aware that the item being used has been rebated or "bought down". "Upstream" or "Midstream" buy downs are common for efficient lighting products. Other rebates are more explicit and transparent to the end user through the use of formal applications. In addition to rebates, which may be offered through government or utility programs, governments sometimes offer tax incentives for energy efficiency projects. Some entities offer rebate and payment guidance and facilitation services that enable energy end use customers tap into rebate and incentive programs.

To evaluate the economic soundness of energy efficiency investments in buildings, cost-effectiveness analysis or CEA can be used. A CEA calculation will produce the value of energy saved, sometimes called negawatts, in $/kWh. The energy in such a calculation is virtual in the sense that it was never consumed but rather saved due to some energy efficiency investment being made. Thus CEA allows comparing the price of negawatts with price of energy such as electricity from the grid or the cheapest renewable alternative. The benefit of the CEA approach in energy systems is that it avoids the need to guess future energy prices for the purposes of the calculation, thus removing the major source of uncertainty in the appraisal of energy efficiency investments.

Energy efficiency by country

Europe

Energy efficiency targets for 2020 and 2030.

The first EU-wide energy efficiency target was set in 1998. Member states agreed to improve energy efficiency by 1 percent a year over twelve years. In addition, legislation about products, industry, transport and buildings has contributed to a general energy efficiency framework. More effort is needed to address heating and cooling: there is more heat wasted during electricity production in Europe than is required to heat all buildings in the continent. All in all, EU energy efficiency legislation is estimated to deliver savings worth the equivalent of up to 326 million tons of oil per year by 2020.

The EU set itself a 20% energy savings target by 2020 compared to 1990 levels, but member states decide individually how energy savings will be achieved. At an EU summit in October 2014, EU countries agreed on a new energy efficiency target of 27% or greater by 2030. One mechanism used to achieve the target of 27% is the 'Suppliers Obligations & White Certificates'. The ongoing debate around the 2016 Clean Energy Package also puts an emphasis on energy efficiency, but the goal will probably remain around 30% greater efficiency compared to 1990 levels. Some have argued that this will not be enough for the EU to meet its Paris Agreement goals of reducing greenhouse gas emissions by 40% compared to 1990 levels.

Australia

The Australian national government is actively leading the country in efforts to increase their energy efficiency, mainly through the government's Department of Industry and Science. In July 2009, the Council of Australian Governments, which represents the individual states and territories of Australia, agreed to a National Strategy on Energy Efficiency (NSEE).

This is a ten-year plan accelerating the implementation of a nationwide adoption of energy-efficient practices and a preparation for the country's transformation into a low carbon future. There are several different areas of energy use addressed within the NSEE. But, the chapter devoted to the approach on energy efficiency that is to be adopted on a national level stresses four points in achieving stated levels of energy efficiency. They are:

  • To help households and businesses transition to a low carbon future
  • To streamline the adoption of efficient energy
  • To make buildings more energy-efficient
  • For governments to work in partnership and lead the way to energy efficiency

The overriding agreement that governs this strategy is the National Partnership Agreement on Energy Efficiency.

This document also explains the role of both the commonwealth and the individual states and territories in the NSEE, as well provides for the creation of benchmarks and measurement devices which will transparently show the nation's progress in relation to the stated goals, and addresses the need for funding of the strategy in order to enable it to move forward.

Canada

In August 2017, the Government of Canada released Build Smart - Canada's Buildings Strategy, as a key driver of the Pan-Canadian Framework on Clean Growth and Climate Change, Canada's national climate strategy.

The Build Smart strategy seeks to dramatically increase the energy-efficiency performance of existing and new Canadian buildings, and establishes five goals to that end:

  • Federal, provincial, and territorial governments will work to develop and adopt increasingly stringent model building codes, starting in 2020, with the goal that provinces and territories adopt a “net-zero energy ready” model building code by 2030.
  • Federal, provincial, and territorial governments will work to develop a model code for existing buildings by 2022, with the goal that provinces and territories adopt the code.
  • Federal, provincial, and territorial governments will work together with the aim of requiring labelling of building energy use by as early as 2019.
  • The federal government will set new standards for heating equipment and other key technologies to the highest level of efficiency that is economically and technically achievable.
  • Provincial and territorial governments will work to sustain and expand efforts to retrofit existing buildings by supporting energy efficiency improvements and by accelerating the adoption of high-efficiency equipment while tailoring their programs to regional circumstances.

The strategy details a range of activities the Government of Canada will pursue, and investments it will make, in support of the goals. As of early 2018, only one of Canada's 10 provinces and three territories, British Columbia, has developed a policy in support of federal government's goal to reach net zero energy ready ambitions: the BC Energy Step Code.

Local British Columbia governments may use the BC Energy Step Code, if they wish, to incentivize or require a level of energy efficiency in new construction that goes above and beyond the requirements of the base building code. The regulation and standard is designed as a technical roadmap to help the province reach its target that all new buildings will attain a net zero energy ready level of performance by 2032.

Germany

Energy efficiency is central to energy policy in Germany. As of late 2015, national policy includes the following efficiency and consumption targets (with actual values for 2014):

Efficiency and consumption target 2014 2020 2050
Primary energy consumption (base year 2008) −8.7% −20% −50%
Final energy productivity (2008–2050) 1.6%/year
(2008–2014)
2.1%/year
(2008–2050)
Gross electricity consumption (base year 2008) −4.6% −10% −25%
Primary energy consumption in buildings (base year 2008) −14.8%
−80%
Heat consumption in buildings (base year 2008) −12.4% −20%
Final energy consumption in transport (base year 2005) 1.7% −10% −40%

Recent progress toward improved efficiency has been steady aside from the financial crisis of 2007–08. Some however believe energy efficiency is still under-recognised in terms of its contribution to Germany's energy transformation (or Energiewende).

Efforts to reduce final energy consumption in transport sector have not been successful, with a growth of 1.7% between 2005–2014. This growth is due to both road passenger and road freight transport. Both sectors increased their overall distance travelled to record the highest figures ever for Germany. Rebound effects played a significant role, both between improved vehicle efficiency and the distance travelled, and between improved vehicle efficiency and an increase in vehicle weights and engine power.

On 3 December 2014, the German federal government released its National Action Plan on Energy Efficiency (NAPE). The areas covered are the energy efficiency of buildings, energy conservation for companies, consumer energy efficiency, and transport energy efficiency. The policy contains both immediate and forward-looking measures. The central short-term measures of NAPE include the introduction of competitive tendering for energy efficiency, the raising of funding for building renovation, the introduction of tax incentives for efficiency measures in the building sector, and the setting up energy efficiency networks together with business and industry. German industry is expected to make a sizeable contribution.

On 12 August 2016, the German government released a green paper on energy efficiency for public consultation (in German). It outlines the potential challenges and actions needed to reduce energy consumption in Germany over the coming decades. At the document's launch, economics and energy minister Sigmar Gabriel said "we do not need to produce, store, transmit and pay for the energy that we save". The green paper prioritizes the efficient use of energy as the "first" response and also outlines opportunities for sector coupling, including using renewable power for heating and transport. Other proposals include a flexible energy tax which rises as petrol prices fall, thereby incentivizing fuel conservation despite low oil prices.

Poland

In May 2016 Poland adopted a new Act on Energy Efficiency, to enter into force on 1 October 2016.

United States

A 2011 Energy Modeling Forum study covering the United States examines how energy efficiency opportunities will shape future fuel and electricity demand over the next several decades. The US economy is already set to lower its energy and carbon intensity, but explicit policies will be necessary to meet climate goals. These policies include: a carbon tax, mandated standards for more efficient appliances, buildings and vehicles, and subsidies or reductions in the upfront costs of new more energy-efficient equipment.

Industry

Industries use a large amount of energy to power a diverse range of manufacturing and resource extraction processes. Many industrial processes require large amounts of heat and mechanical power, most of which is delivered as natural gas, petroleum fuels, and electricity. In addition some industries generate fuel from waste products that can be used to provide additional energy.

Because industrial processes are so diverse it is impossible to describe the multitude of possible opportunities for energy efficiency in industry. Many depend on the specific technologies and processes in use at each industrial facility. There are, however, a number of processes and energy services that are widely used in many industries.

Various industries generate steam and electricity for subsequent use within their facilities. When electricity is generated, the heat that is produced as a by-product can be captured and used for process steam, heating or other industrial purposes. Conventional electricity generation is about 30% efficient, whereas combined heat and power (also called co-generation) converts up to 90 percent of the fuel into usable energy.

Advanced boilers and furnaces can operate at higher temperatures while burning less fuel. These technologies are more efficient and produce fewer pollutants.

Over 45 percent of the fuel used by US manufacturers is burnt to make steam. The typical industrial facility can reduce this energy usage 20 percent (according to the US Department of Energy) by insulating steam and condensate return lines, stopping steam leakage, and maintaining steam traps.

Electric motors usually run at a constant speed, but a variable speed drive allows the motor's energy output to match the required load. This achieves energy savings ranging from 3 to 60 percent, depending on how the motor is used. Motor coils made of superconducting materials can also reduce energy losses. Motors may also benefit from voltage optimisation.

Industry uses a large number of pumps and compressors of all shapes and sizes and in a wide variety of applications. The efficiency of pumps and compressors depends on many factors but often improvements can be made by implementing better process control and better maintenance practices. Compressors are commonly used to provide compressed air which is used for sand blasting, painting, and other power tools. According to the US Department of Energy, optimizing compressed air systems by installing variable speed drives, along with preventive maintenance to detect and fix air leaks, can improve energy efficiency 20 to 50 percent.

Transportation

Energy Efficiency of different Transport Modes

Automobiles

The estimated energy efficiency for an automobile is 280 Passenger-Mile/106 Btu. There are several ways to enhance a vehicle's energy efficiency. Using improved aerodynamics to minimize drag can increase vehicle fuel efficiency. Reducing vehicle weight can also improve fuel economy, which is why composite materials are widely used in car bodies.

More advanced tires, with decreased tire to road friction and rolling resistance, can save gasoline. Fuel economy can be improved by up to 3.3% by keeping tires inflated to the correct pressure. Replacing a clogged air filter can improve a cars fuel consumption by as much as 10 percent on older vehicles. On newer vehicles (1980s and up) with fuel-injected, computer-controlled engines, a clogged air filter has no effect on mpg but replacing it may improve acceleration by 6-11 percent. Aerodynamics also aid in efficiency of a vehicle. The design of a car impacts the amount of gas needed to move it through air. Aerodynamics involves the air around the car, which can affect the efficiency of the energy expended.

Turbochargers can increase fuel efficiency by allowing a smaller displacement engine. The 'Engine of the year 2011' is a Fiat 500 engine equipped with an MHI turbocharger. "Compared with a 1.2-liter 8v engine, the new 85 HP turbo has 23% more power and a 30% better performance index. The performance of the two-cylinder is not only equivalent to a 1.4-liter 16v engine, but fuel consumption is 30% lower."

Energy-efficient vehicles may reach twice the fuel efficiency of the average automobile. Cutting-edge designs, such as the diesel Mercedes-Benz Bionic concept vehicle have achieved a fuel efficiency as high as 84 miles per US gallon (2.8 L/100 km; 101 mpg‑imp), four times the current conventional automotive average.

The mainstream trend in automotive efficiency is the rise of electric vehicles (all-electric or hybrid electric). Electric engines have more than double the efficiency of internal combustion engines. Hybrids, like the Toyota Prius, use regenerative braking to recapture energy that would dissipate in normal cars; the effect is especially pronounced in city driving. Plug-in hybrids also have increased battery capacity, which makes it possible to drive for limited distances without burning any gasoline; in this case, energy efficiency is dictated by whatever process (such as coal-burning, hydroelectric, or renewable source) created the power. Plug-ins can typically drive for around 40 miles (64 km) purely on electricity without recharging; if the battery runs low, a gas engine kicks in allowing for extended range. Finally, all-electric cars are also growing in popularity; the Tesla Model S sedan is the only high-performance all-electric car currently on the market.

Street lighting

Cities around the globe light up millions of streets with 300 million lights. Some cities are seeking to reduce street light power consumption by dimming lights during off-peak hours or switching to LED lamps. LED lamps are known to reduce the energy consumption by 50% to 80%.

Aircraft

There are several ways to reduce energy usage in air transportation, from modifications to the planes themselves, to how air traffic is managed. As in cars, turbochargers are an effective way to reduce energy consumption; however, instead of allowing for the use of a smaller-displacement engine, turbochargers in jet turbines operate by compressing the thinner air at higher altitudes. This allows the engine to operate as if it were at sea-level pressures while taking advantage of the reduced drag on the aircraft at higher altitudes.

Air traffic management systems are another way to increase the efficiency of not just the aircraft but the airline industry as a whole. New technology allows for superior automation of takeoff, landing, and collision avoidance, as well as within airports, from simple things like HVAC and lighting to more complex tasks such as security and scanning.

Alternative fuels

Typical Brazilian filling station with four alternative fuels for sale: biodiesel (B3), gasohol (E25), neat ethanol (E100), and compressed natural gas (CNG). Piracicaba, Brazil.

Alternative fuels, known as non-conventional or advanced fuels, are any materials or substances that can be used as fuels, other than conventional fuels. Some well known alternative fuels include biodiesel, bioalcohol (methanol, ethanol, butanol), chemically stored electricity (batteries and fuel cells), hydrogen, non-fossil methane, non-fossil natural gas, vegetable oil, and other biomass sources. The production efficiency of these fuels greatly differs.

Energy conservation

Elements of passive solar energy design, shown in a direct gain application

Energy conservation is broader than energy efficiency in including active efforts to decrease energy consumption, for example through behaviour change, in addition to using energy more efficiently. Examples of conservation without efficiency improvements are heating a room less in winter, using the car less, air-drying your clothes instead of using the dryer, or enabling energy saving modes on a computer. As with other definitions, the boundary between efficient energy use and energy conservation can be fuzzy, but both are important in environmental and economic terms. This is especially the case when actions are directed at the saving of fossil fuels. Energy conservation is a challenge requiring policy programmes, technological development and behavior change to go hand in hand. Many energy intermediary organisations, for example governmental or non-governmental organisations on local, regional, or national level, are working on often publicly funded programmes or projects to meet this challenge. Psychologists have also engaged with the issue of energy conservation and have provided guidelines for realizing behavior change to reduce energy consumption while taking technological and policy considerations into account.

The National Renewable Energy Laboratory maintains a comprehensive list of apps useful for energy efficiency.

Commercial property managers that plan and manage energy efficiency projects generally use a software platform to perform energy audits and to collaborate with contractors to understand their full range of options. The Department of Energy (DOE) Software Directory describes EnergyActio software, a cloud based platform designed for this purpose.

Sustainable energy

Energy efficiency and renewable energy are considered as main elements in sustainable energy policy. Both strategies must be developed concurrently in order to stabilize and reduce carbon dioxide emissions. Efficient energy use is essential to slowing the energy demand growth so that rising clean energy supplies can make deep cuts in fossil fuel use. If energy use grows too rapidly, renewable energy development will chase a receding target. Likewise, unless clean energy supplies come online rapidly, slowing demand growth will only begin to reduce total carbon emissions; a reduction in the carbon content of energy sources is also needed. A sustainable energy economy thus requires major commitments to both efficiency and renewables.

Rebound effect

If the demand for energy services remains constant, improving energy efficiency will reduce energy consumption and carbon emissions. However, many efficiency improvements do not reduce energy consumption by the amount predicted by simple engineering models. This is because they make energy services cheaper, and so consumption of those services increases. For example, since fuel efficient vehicles make travel cheaper, consumers may choose to drive farther, thereby offsetting some of the potential energy savings. Similarly, an extensive historical analysis of technological efficiency improvements has conclusively shown that energy efficiency improvements were almost always outpaced by economic growth, resulting in a net increase in resource use and associated pollution. These are examples of the direct rebound effect.

Estimates of the size of the rebound effect range from roughly 5% to 40%. The rebound effect is likely to be less than 30% at the household level and may be closer to 10% for transport. A rebound effect of 30% implies that improvements in energy efficiency should achieve 70% of the reduction in energy consumption projected using engineering models. Saunders et al. showed in 2010 that lighting has accounted for about 0.7% of GDP across many societies and hundreds of years, implying a rebound effect of 100%. However, some of the authors argue in a followup paper that increased lighting generally increases economic welfare and has substantial benefits. A 2014 study has shown the rebound effect to be rather low for household lighting, in particular for high use bulbs.

Energy density

From Wikipedia, the free encyclopedia

Energy density is the amount of energy stored in a given system or region of space per unit volume. It may also be used for energy per unit mass, though the accurate term for this is specific energy. Often only the useful or extractable energy is measured, which is to say that inaccessible energy (such as rest mass energy) is ignored. In cosmological and other general relativistic contexts, however, the energy densities considered are those that correspond to the elements of the stress–energy tensor and therefore do include mass energy as well as energy densities associated with the pressures described in the next paragraph.

Energy per unit volume has the same physical units as pressure, and in many circumstances is a synonym: for example, the energy density of a magnetic field may be expressed as (and behaves as) a physical pressure, and the energy required to compress a compressed gas a little more may be determined by multiplying the difference between the gas pressure and the external pressure by the change in volume. In short, pressure is a measure of the enthalpy per unit volume of a system. A pressure gradient has the potential to perform work on the surroundings by converting enthalpy to work until equilibrium is reached.

Introduction to energy density

There are different types of energy stored in materials, and it takes a particular type of reaction to release each type of energy. In order of the typical magnitude of the energy released, these types of reactions are: nuclear, chemical, electrochemical, and electrical.

Nuclear reactions take place in stars and nuclear power plants, both of which derive energy from the binding energy of nuclei. Chemical reactions are used by animals to derive energy from food, and by automobiles to derive energy from gasoline. Liquid hydrocarbons (fuels such as gasoline, diesel and kerosene) are today the most dense way known to economically store and transport chemical energy at a very large scale (1 kg of diesel fuel burns with the oxygen contained in ~15 kg of air). Electrochemical reactions are used by most mobile devices such as laptop computers and mobile phones to release the energy from batteries.

Types of energy content

There are several different types of energy content. One is the theoretical total amount of thermodynamic work that can be derived from a system, with a given temperature and pressure for the surroundings. This is called exergy. Another is the theoretical amount of work that can be derived from reactants that are initially at room temperature and atmospheric pressure. This is given by the change in standard Gibbs free energy. But as a source of heat or for use in a heat engine, the relevant quantity is the change in standard enthalpy or the heat of combustion.

There are two kinds of heat of combustion:

  • The higher value (HHV), or gross heat of combustion, includes all the heat released as the products cool to room temperature and whatever water vapor is present condenses.
  • The lower value (LHV), or net heat of combustion, does not include the heat which could be released by condensing water vapor, and may not include the heat released on cooling all the way down to room temperature.

A convenient table of HHV and LHV of some fuels can be found in the references.

Energy density in energy storage and in fuel

Selected energy densities plot

In energy storage applications the energy density relates the energy in an energy store to the volume of the storage facility, e.g. the fuel tank. The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy density of a fuel per unit mass is called the specific energy of that fuel. In general an engine using that fuel will generate less kinetic energy due to inefficiencies and thermodynamic considerations—hence the specific fuel consumption of an engine will always be greater than its rate of production of the kinetic energy of motion.

Broad implications

Energy density differs from energy conversion efficiency (net output per input) or embodied energy (the energy output costs to provide, as harvesting, refining, distributing, and dealing with pollution all use energy). Large scale, intensive energy use impacts and is impacted by climate, waste storage, and environmental consequences.

No single energy storage method boasts the best in specific power, specific energy, and energy density. Peukert's law describes how the amount of useful energy that can be obtained (for a lead-acid cell) depends on how quickly it is pulled out. To maximize both specific energy and energy density, one can compute the specific energy density of a substance by multiplying the two values together, where the higher the number, the better the substance is at storing energy efficiently.

Alternative options are discussed for energy storage to increase energy density and decrease charging time.

Gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article):

Nuclear energy sources

The greatest energy source by far is mass itself. This energy, E = mc2, where m = ρV, ρ is the mass per unit volume, V is the volume of the mass itself and c is the speed of light. This energy, however, can be released only by the processes of nuclear fission (0.1%), nuclear fusion (1%), or the annihilation of some or all of the matter in the volume V by matter-antimatter collisions (100%). Nuclear reactions cannot be realized by chemical reactions such as combustion. Although greater matter densities can be achieved, the density of a neutron star would approximate the most dense system capable of matter-antimatter annihilation possible. A black hole, although denser than a neutron star, does not have an equivalent anti-particle form, but would offer the same 100% conversion rate of mass to energy in the form of Hawking radiation. In the case of relatively small black holes (smaller than astronomical objects) the power output would be tremendous.

The highest density sources of energy aside from antimatter are fusion and fission. Fusion includes energy from the sun which will be available for billions of years (in the form of sunlight) but so far (2018), sustained fusion power production continues to be elusive.

Power from fission of uranium and thorium in nuclear power plants will be available for many decades or even centuries because of the plentiful supply of the elements on earth, though the full potential of this source can only be realised through breeder reactors, which are, apart from the BN-600 reactor, not yet used commercially. Coal, gas, and petroleum are the current primary energy sources in the U.S. but have a much lower energy density. Burning local biomass fuels supplies household energy needs (cooking fires, oil lamps, etc.) worldwide.

Thermal power of nuclear fission reactors

The density of thermal energy contained in the core of a light water reactor (PWR or BWR) of typically 1 GWe (1 000 MW electrical corresponding to ~3 000 MW thermal) is in the range of 10 to 100 MW of thermal energy per cubic meter of cooling water depending on the location considered in the system (the core itself (~30 m3), the reactor pressure vessel (~50 m3), or the whole primary circuit (~300 m3)). This represents a considerable density of energy which requires under all circumstances a continuous water flow at high velocity in order to be able to remove the heat from the core, even after an emergency shutdown of the reactor. The incapacity to cool the cores of three boiling water reactors (BWR) at Fukushima in 2011 after the tsunami and the resulting loss of the external electrical power and of the cold source was the cause of the meltdown of the three cores in only a few hours, even though the three reactors were correctly shut down just after the Tōhoku earthquake. This extremely high power density distinguishes nuclear power plants (NPP's) from any thermal power plants (burning coal, fuel or gas) or any chemical plants and explains the large redundancy required to permanently control the neutron reactivity and to remove the residual heat from the core of NPP's.

Energy density of electric and magnetic fields

Electric and magnetic fields store energy. In a vacuum, the (volumetric) energy density is given by

where E is the electric field and B is the magnetic field. The solution will be (in SI units) in Joules per cubic metre. In the context of magnetohydrodynamics, the physics of conductive fluids, the magnetic energy density behaves like an additional pressure that adds to the gas pressure of a plasma.

In normal (linear and nondispersive) substances, the energy density (in SI units) is

where D is the electric displacement field and H is the magnetizing field.

In the case of absence of magnetic fields, by exploiting Fröhlich's relationships it is also possible to extend these equations to anisotropic and nonlinear dielectrics, as well as to calculate the correlated Helmholtz free energy and entropy densities.

When a pulsed laser impacts a surface, the radiant exposure, i.e. the energy deposited per unit of surface, may be called energy density or fluence.

 

Inequality (mathematics)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Inequality...