Search This Blog

Friday, September 24, 2021

Speed of light

From Wikipedia, the free encyclopedia
 
Speed of light
The distance from the Sun to the Earth is shown as 150 million kilometres, an approximate average. Sizes to scale.
Sunlight takes about 8 minutes 17 seconds to travel the average distance from the surface of the Sun to the Earth.
Exact values
metres per second299792458
Approximate values (to three significant digits)
kilometres per hour1080000000
miles per second186000
miles per hour671000000
astronomical units per day173
parsecs per year0.307
Approximate light signal travel times
DistanceTime
one foot1.0 ns
one metre3.3 ns
from geostationary orbit to Earth119 ms
the length of Earth's equator134 ms
from Moon to Earth1.3 s
from Sun to Earth (1 AU)8.3 min
one light year1.0 year
one parsec3.26 years
from nearest star to Sun (1.3 pc)4.2 years
from the nearest galaxy (the Canis Major Dwarf Galaxy) to Earth25000 years
across the Milky Way100000 years
from the Andromeda Galaxy to Earth2.5 million years

The speed of light in vacuum, commonly denoted c, is a universal physical constant important in many areas of physics. Its exact value is defined as 299792458 metres per second (approximately 300000 km/s, or 186000 mi/s). It is exact because, by international agreement, a metre is defined as the length of the path travelled by light in vacuum during a time interval of 1299792458 second. According to special relativity, c is the upper limit for the speed at which conventional matter, energy or any signal carrying information can travel through space.

Though this speed is most commonly associated with light, it is also the speed at which all massless particles and field perturbations travel in vacuum, including electromagnetic radiation (of which light is a small range in the frequency spectrum) and gravitational waves. Such particles and waves travel at c regardless of the motion of the source or the inertial reference frame of the observer. Particles with nonzero rest mass can approach c, but can never actually reach it, regardless of the frame of reference in which their speed is measured. In the special and general theories of relativity, c interrelates space and time, and also appears in the famous equation of mass–energy equivalence, E = mc2. In some cases objects or waves may appear to travel faster than light (e.g. phase velocities of waves, the appearance of certain high-speed astronomical objects, and particular quantum effects). The expansion of the universe is understood to exceed the speed of light beyond a certain boundary.

The speed at which light propagates through transparent materials, such as glass or air, is less than c; similarly, the speed of electromagnetic waves in wire cables is slower than c. The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material (n = c / v). For example, for visible light, the refractive index of glass is typically around 1.5, meaning that light in glass travels at c / 1.5 ≈ 200000 km/s (124000 mi/s); the refractive index of air for visible light is about 1.0003, so the speed of light in air is about 90 km/s (56 mi/s) slower than c.

For many practical purposes, light and other electromagnetic waves will appear to propagate instantaneously, but for long distances and very sensitive measurements, their finite speed has noticeable effects. In communicating with distant space probes, it can take minutes to hours for a message to get from Earth to the spacecraft, or vice versa. The light seen from stars left them many years ago, allowing the study of the history of the universe by looking at distant objects. The finite speed of light also ultimately limits the data transfer between the CPU and memory chips in computers. The speed of light can be used with time of flight measurements to measure large distances to high precision.

Ole Rømer first demonstrated in 1676 that light travels at a finite speed (non-instantaneously) by studying the apparent motion of Jupiter's moon Io. In 1865, James Clerk Maxwell proposed that light was an electromagnetic wave, and therefore travelled at the speed c appearing in his theory of electromagnetism. In 1905, Albert Einstein postulated that the speed of light c with respect to any inertial frame is a constant and is independent of the motion of the light source. He explored the consequences of that postulate by deriving the theory of relativity and in doing so showed that the parameter c had relevance outside of the context of light and electromagnetism.

After centuries of increasingly precise measurements, in 1975 the speed of light was known to be 299792458 m/s (983571056 ft/s; 186282.397 mi/s) with a measurement uncertainty of 4 parts per billion. In 1983, the metre was redefined in the International System of Units (SI) as the distance travelled by light in vacuum in 1 / 299792458 of a second.

Numerical value, notation, and units

The speed of light in vacuum is usually denoted by a lowercase c, for "constant" or the Latin celeritas (meaning "swiftness, celerity"). In 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch had used c for a different constant that was later shown to equal 2 times the speed of light in vacuum. Historically, the symbol V was used as an alternative symbol for the speed of light, introduced by James Clerk Maxwell in 1865. In 1894, Paul Drude redefined c with its modern meaning. Einstein used V in his original German-language papers on special relativity in 1905, but in 1907 he switched to c, which by then had become the standard symbol for the speed of light.

Sometimes c is used for the speed of waves in any material medium, and c0 for the speed of light in vacuum. This subscripted notation, which is endorsed in official SI literature, has the same form as other related constants: namely, μ0 for the vacuum permeability or magnetic constant, ε0 for the vacuum permittivity or electric constant, and Z0 for the impedance of free space. This article uses c exclusively for the speed of light in vacuum.

Since 1983, the metre has been defined in the International System of Units (SI) as the distance light travels in vacuum in 1299792458 of a second. This definition fixes the speed of light in vacuum at exactly 299792458 m/s. As a dimensional physical constant, the numerical value of c is different for different unit systems. In branches of physics in which c appears often, such as in relativity, it is common to use systems of natural units of measurement or the geometrized unit system where c = 1. Using these units, c does not appear explicitly because multiplication or division by 1 does not affect the result.

Fundamental role in physics

The speed at which light waves propagate in vacuum is independent both of the motion of the wave source and of the inertial frame of reference of the observer. This invariance of the speed of light was postulated by Einstein in 1905, after being motivated by Maxwell's theory of electromagnetism and the lack of evidence for the luminiferous aether; it has since been consistently confirmed by many experiments. It is only possible to verify experimentally that the two-way speed of light (for example, from a source to a mirror and back again) is frame-independent, because it is impossible to measure the one-way speed of light (for example, from a source to a distant detector) without some convention as to how clocks at the source and at the detector should be synchronized. However, by adopting Einstein synchronization for the clocks, the one-way speed of light becomes equal to the two-way speed of light by definition. The special theory of relativity explores the consequences of this invariance of c with the assumption that the laws of physics are the same in all inertial frames of reference. One consequence is that c is the speed at which all massless particles and waves, including light, must travel in vacuum.

γ starts at 1 when v equals zero and stays nearly constant for small v's, then it sharply curves upwards and has a vertical asymptote, diverging to positive infinity as v approaches c.
The Lorentz factor γ as a function of velocity. It starts at 1 and approaches infinity as v approaches c.

Special relativity has many counterintuitive and experimentally verified implications. These include the equivalence of mass and energy (E = mc2), length contraction (moving objects shorten), and time dilation (moving clocks run more slowly). The factor γ by which lengths contract and times dilate is known as the Lorentz factor and is given by γ = (1 − v2/c2)−1/2, where v is the speed of the object. The difference of γ from 1 is negligible for speeds much slower than c, such as most everyday speeds—in which case special relativity is closely approximated by Galilean relativity—but it increases at relativistic speeds and diverges to infinity as v approaches c. For example, a time dilation factor of γ = 2 occurs at a relative velocity of 86.6% of the speed of light (v = 0.866 c). Similarly, a time dilation factor of γ = 10 occurs at v = 99.5% c.

The results of special relativity can be summarized by treating space and time as a unified structure known as spacetime (with c relating the units of space and time), and requiring that physical theories satisfy a special symmetry called Lorentz invariance, whose mathematical formulation contains the parameter c. Lorentz invariance is an almost universal assumption for modern physical theories, such as quantum electrodynamics, quantum chromodynamics, the Standard Model of particle physics, and general relativity. As such, the parameter c is ubiquitous in modern physics, appearing in many contexts that are unrelated to light. For example, general relativity predicts that c is also the speed of gravity and of gravitational waves. In non-inertial frames of reference (gravitationally curved spacetime or accelerated reference frames), the local speed of light is constant and equal to c, but the speed of light along a trajectory of finite length can differ from c, depending on how distances and times are defined.

It is generally assumed that fundamental constants such as c have the same value throughout spacetime, meaning that they do not depend on location and do not vary with time. However, it has been suggested in various theories that the speed of light may have changed over time. No conclusive evidence for such changes has been found, but they remain the subject of ongoing research.

It also is generally assumed that the speed of light is isotropic, meaning that it has the same value regardless of the direction in which it is measured. Observations of the emissions from nuclear energy levels as a function of the orientation of the emitting nuclei in a magnetic field (see Hughes–Drever experiment), and of rotating optical resonators (see Resonator experiments) have put stringent limits on the possible two-way anisotropy.

Upper limit on speeds

According to special relativity, the energy of an object with rest mass m and speed v is given by γmc2, where γ is the Lorentz factor defined above. When v is zero, γ is equal to one, giving rise to the famous E = mc2 formula for mass–energy equivalence. The γ factor approaches infinity as v approaches c, and it would take an infinite amount of energy to accelerate an object with mass to the speed of light. The speed of light is the upper limit for the speeds of objects with positive rest mass, and individual photons cannot travel faster than the speed of light. This is experimentally established in many tests of relativistic energy and momentum.

Three pairs of coordinate axes are depicted with the same origin A; in the green frame, the x axis is horizontal and the ct axis is vertical; in the red frame, the x′ axis is slightly skewed upwards, and the ct′ axis slightly skewed rightwards, relative to the green axes; in the blue frame, the x′′ axis is somewhat skewed downwards, and the ct′′ axis somewhat skewed leftwards, relative to the green axes. A point B on the green x axis, to the left of A, has zero ct, positive ct′, and negative ct′′.
Event A precedes B in the red frame, is simultaneous with B in the green frame, and follows B in the blue frame.

More generally, it is impossible for signals or energy to travel faster than c. One argument for this follows from the counter-intuitive implication of special relativity known as the relativity of simultaneity. If the spatial distance between two events A and B is greater than the time interval between them multiplied by c then there are frames of reference in which A precedes B, others in which B precedes A, and others in which they are simultaneous. As a result, if something were travelling faster than c relative to an inertial frame of reference, it would be travelling backwards in time relative to another frame, and causality would be violated. In such a frame of reference, an "effect" could be observed before its "cause". Such a violation of causality has never been recorded, and would lead to paradoxes such as the tachyonic antitelephone.

Faster-than-light observations and experiments

There are situations in which it may seem that matter, energy, or information-carrying signal travels at speeds greater than c, but they do not. For example, as is discussed in the propagation of light in a medium section below, many wave velocities can exceed c. For example, the phase velocity of X-rays through most glasses can routinely exceed c, but phase velocity does not determine the velocity at which waves convey information.

If a laser beam is swept quickly across a distant object, the spot of light can move faster than c, although the initial movement of the spot is delayed because of the time it takes light to get to the distant object at the speed c. However, the only physical entities that are moving are the laser and its emitted light, which travels at the speed c from the laser to the various positions of the spot. Similarly, a shadow projected onto a distant object can be made to move faster than c, after a delay in time. In neither case does any matter, energy, or information travel faster than light.

The rate of change in the distance between two objects in a frame of reference with respect to which both are moving (their closing speed) may have a value in excess of c. However, this does not represent the speed of any single object as measured in a single inertial frame.

Certain quantum effects appear to be transmitted instantaneously and therefore faster than c, as in the EPR paradox. An example involves the quantum states of two particles that can be entangled. Until either of the particles is observed, they exist in a superposition of two quantum states. If the particles are separated and one particle's quantum state is observed, the other particle's quantum state is determined instantaneously. However, it is impossible to control which quantum state the first particle will take on when it is observed, so information cannot be transmitted in this manner.

Another quantum effect that predicts the occurrence of faster-than-light speeds is called the Hartman effect: under certain conditions the time needed for a virtual particle to tunnel through a barrier is constant, regardless of the thickness of the barrier. This could result in a virtual particle crossing a large gap faster-than-light. However, no information can be sent using this effect.

So-called superluminal motion is seen in certain astronomical objects, such as the relativistic jets of radio galaxies and quasars. However, these jets are not moving at speeds in excess of the speed of light: the apparent superluminal motion is a projection effect caused by objects moving near the speed of light and approaching Earth at a small angle to the line of sight: since the light which was emitted when the jet was farther away took longer to reach the Earth, the time between two successive observations corresponds to a longer time between the instants at which the light rays were emitted.

In models of the expanding universe, the farther galaxies are from each other, the faster they drift apart. This receding is not due to motion through space, but rather to the expansion of space itself. For example, galaxies far away from Earth appear to be moving away from the Earth with a speed proportional to their distances. Beyond a boundary called the Hubble sphere, the rate at which their distance from Earth increases becomes greater than the speed of light.

Propagation of light

In classical physics, light is described as a type of electromagnetic wave. The classical behaviour of the electromagnetic field is described by Maxwell's equations, which predict that the speed c with which electromagnetic waves (such as light) propagate in vacuum is related to the distributed capacitance and inductance of vacuum, otherwise respectively known as the electric constant ε0 and the magnetic constant μ0, by the equation

In modern quantum physics, the electromagnetic field is described by the theory of quantum electrodynamics (QED). In this theory, light is described by the fundamental excitations (or quanta) of the electromagnetic field, called photons. In QED, photons are massless particles and thus, according to special relativity, they travel at the speed of light in vacuum.

Extensions of QED in which the photon has a mass have been considered. In such a theory, its speed would depend on its frequency, and the invariant speed c of special relativity would then be the upper limit of the speed of light in vacuum. No variation of the speed of light with frequency has been observed in rigorous testing, putting stringent limits on the mass of the photon. The limit obtained depends on the model used: if the massive photon is described by Proca theory, the experimental upper bound for its mass is about 10−57 grams; if photon mass is generated by a Higgs mechanism, the experimental upper limit is less sharp, m10−14 eV/c2 [56] (roughly 2 × 10−47 g).

Another reason for the speed of light to vary with its frequency would be the failure of special relativity to apply to arbitrarily small scales, as predicted by some proposed theories of quantum gravity. In 2009, the observation of gamma-ray burst GRB 090510 found no evidence for a dependence of photon speed on energy, supporting tight constraints in specific models of spacetime quantization on how this speed is affected by photon energy for energies approaching the Planck scale.

In a medium

In a medium, light usually does not propagate at a speed equal to c; further, different types of light wave will travel at different speeds. The speed at which the individual crests and troughs of a plane wave (a wave filling the whole space, with only one frequency) propagate is called the phase velocity vp. A physical signal with a finite extent (a pulse of light) travels at a different speed. The largest part of the pulse travels at the group velocity vg, and its earliest part travels at the front velocity vf.

A modulated wave moves from left to right. There are three points marked with a dot: A blue dot at a node of the carrier wave, a green dot at the maximum of the envelope, and a red dot at the front of the envelope.
The blue dot moves at the speed of the ripples, the phase velocity; the green dot moves with the speed of the envelope, the group velocity; and the red dot moves with the speed of the foremost part of the pulse, the front velocity.

The phase velocity is important in determining how a light wave travels through a material or from one material to another. It is often represented in terms of a refractive index. The refractive index of a material is defined as the ratio of c to the phase velocity vp in the material: larger indices of refraction indicate lower speeds. The refractive index of a material may depend on the light's frequency, intensity, polarization, or direction of propagation; in many cases, though, it can be treated as a material-dependent constant. The refractive index of air is approximately 1.0003. Denser media, such as water, glass, and diamond, have refractive indexes of around 1.3, 1.5 and 2.4, respectively, for visible light. In exotic materials like Bose–Einstein condensates near absolute zero, the effective speed of light may be only a few metres per second. However, this represents absorption and re-radiation delay between atoms, as do all slower-than-c speeds in material substances. As an extreme example of light "slowing" in matter, two independent teams of physicists claimed to bring light to a "complete standstill" by passing it through a Bose–Einstein condensate of the element rubidium. However, the popular description of light being "stopped" in these experiments refers only to light being stored in the excited states of atoms, then re-emitted at an arbitrarily later time, as stimulated by a second laser pulse. During the time it had "stopped", it had ceased to be light. This type of behaviour is generally microscopically true of all transparent media which "slow" the speed of light.

In transparent materials, the refractive index generally is greater than 1, meaning that the phase velocity is less than c. In other materials, it is possible for the refractive index to become smaller than 1 for some frequencies; in some exotic materials it is even possible for the index of refraction to become negative. The requirement that causality is not violated implies that the real and imaginary parts of the dielectric constant of any material, corresponding respectively to the index of refraction and to the attenuation coefficient, are linked by the Kramers–Kronig relations. In practical terms, this means that in a material with refractive index less than 1, the absorption of the wave is so quick that no signal can be sent faster than c.

A pulse with different group and phase velocities (which occurs if the phase velocity is not the same for all the frequencies of the pulse) smears out over time, a process known as dispersion. Certain materials have an exceptionally low (or even zero) group velocity for light waves, a phenomenon called slow light, which has been confirmed in various experiments. The opposite, group velocities exceeding c, has also been shown in experiment. It should even be possible for the group velocity to become infinite or negative, with pulses travelling instantaneously or backwards in time.

None of these options, however, allow information to be transmitted faster than c. It is impossible to transmit information with a light pulse any faster than the speed of the earliest part of the pulse (the front velocity). It can be shown that this is (under certain assumptions) always equal to c.

It is possible for a particle to travel through a medium faster than the phase velocity of light in that medium (but still slower than c). When a charged particle does that in a dielectric material, the electromagnetic equivalent of a shock wave, known as Cherenkov radiation, is emitted.

Practical effects of finiteness

The speed of light is of relevance to communications: the one-way and round-trip delay time are greater than zero. This applies from small to astronomical scales. On the other hand, some techniques depend on the finite speed of light, for example in distance measurements.

Small scales

In supercomputers, the speed of light imposes a limit on how quickly data can be sent between processors. If a processor operates at 1 gigahertz, a signal can travel only a maximum of about 30 centimetres (1 ft) in a single cycle. Processors must therefore be placed close to each other to minimize communication latencies; this can cause difficulty with cooling. If clock frequencies continue to increase, the speed of light will eventually become a limiting factor for the internal design of single chips.

Large distances on Earth

Given that the equatorial circumference of the Earth is about 40075 km and that c is about 300000 km/s, the theoretical shortest time for a piece of information to travel half the globe along the surface is about 67 milliseconds. When light is travelling around the globe in an optical fibre, the actual transit time is longer, in part because the speed of light is slower by about 35% in an optical fibre, depending on its refractive index n. Furthermore, straight lines rarely occur in global communications situations, and delays are created when the signal passes through an electronic switch or signal regenerator.

Spaceflights and astronomy

The diameter of the moon is about one quarter of that of Earth, and their distance is about thirty times the diameter of Earth. A beam of light starts from the Earth and reaches the Moon in about a second and a quarter.
A beam of light is depicted travelling between the Earth and the Moon in the time it takes a light pulse to move between them: 1.255 seconds at their mean orbital (surface-to-surface) distance. The relative sizes and separation of the Earth–Moon system are shown to scale.

Similarly, communications between the Earth and spacecraft are not instantaneous. There is a brief delay from the source to the receiver, which becomes more noticeable as distances increase. This delay was significant for communications between ground control and Apollo 8 when it became the first manned spacecraft to orbit the Moon: for every question, the ground control station had to wait at least three seconds for the answer to arrive. The communications delay between Earth and Mars can vary between five and twenty minutes depending upon the relative positions of the two planets. As a consequence of this, if a robot on the surface of Mars were to encounter a problem, its human controllers would not be aware of it until at least five minutes later, and possibly up to twenty minutes later; it would then take a further five to twenty minutes for instructions to travel from Earth to Mars.

Receiving light and other signals from distant astronomical sources can even take much longer. For example, it has taken 13 billion (13×109) years for light to travel to Earth from the faraway galaxies viewed in the Hubble Ultra Deep Field images. Those photographs, taken today, capture images of the galaxies as they appeared 13 billion years ago, when the universe was less than a billion years old. The fact that more distant objects appear to be younger, due to the finite speed of light, allows astronomers to infer the evolution of stars, of galaxies, and of the universe itself.

Astronomical distances are sometimes expressed in light-years, especially in popular science publications and media. A light-year is the distance light travels in one year, around 9461 billion kilometres, 5879 billion miles, or 0.3066 parsecs. In round figures, a light year is nearly 10 trillion kilometres or nearly 6 trillion miles. Proxima Centauri, the closest star to Earth after the Sun, is around 4.2 light-years away.

Distance measurement

Radar systems measure the distance to a target by the time it takes a radio-wave pulse to return to the radar antenna after being reflected by the target: the distance to the target is half the round-trip transit time multiplied by the speed of light. A Global Positioning System (GPS) receiver measures its distance to GPS satellites based on how long it takes for a radio signal to arrive from each satellite, and from these distances calculates the receiver's position. Because light travels about 300000 kilometres (186000 mi) in one second, these measurements of small fractions of a second must be very precise. The Lunar Laser Ranging Experiment, radar astronomy and the Deep Space Network determine distances to the Moon, planets and spacecraft, respectively, by measuring round-trip transit times.

High-frequency trading

The speed of light has become important in high-frequency trading, where traders seek to gain minute advantages by delivering their trades to exchanges fractions of a second ahead of other traders. For example, traders have been switching to microwave communications between trading hubs, because of the advantage which microwaves travelling at near to the speed of light in air have over fibre optic signals, which travel 30–40% slower.

Measurement

There are different ways to determine the value of c. One way is to measure the actual speed at which light waves propagate, which can be done in various astronomical and earth-based setups. However, it is also possible to determine c from other physical laws where it appears, for example, by determining the values of the electromagnetic constants ε0 and μ0 and using their relation to c. Historically, the most accurate results have been obtained by separately determining the frequency and wavelength of a light beam, with their product equalling c.

In 1983 the metre was defined as "the length of the path travelled by light in vacuum during a time interval of 1299792458 of a second", fixing the value of the speed of light at 299792458 m/s by definition, as described below. Consequently, accurate measurements of the speed of light yield an accurate realization of the metre rather than an accurate value of c.

Astronomical measurements

Measurement of the speed of light using the eclipse of Io by Jupiter

Outer space is a convenient setting for measuring the speed of light because of its large scale and nearly perfect vacuum. Typically, one measures the time needed for light to traverse some reference distance in the solar system, such as the radius of the Earth's orbit. Historically, such measurements could be made fairly accurately, compared to how accurately the length of the reference distance is known in Earth-based units. It is customary to express the results in astronomical units (AU) per day.

Ole Christensen Rømer used an astronomical measurement to make the first quantitative estimate of the speed of light in the year 1676. When measured from Earth, the periods of moons orbiting a distant planet are shorter when the Earth is approaching the planet than when the Earth is receding from it. The distance travelled by light from the planet (or its moon) to Earth is shorter when the Earth is at the point in its orbit that is closest to its planet than when the Earth is at the farthest point in its orbit, the difference in distance being the diameter of the Earth's orbit around the Sun. The observed change in the moon's orbital period is caused by the difference in the time it takes light to traverse the shorter or longer distance. Rømer observed this effect for Jupiter's innermost moon Io and deduced that light takes 22 minutes to cross the diameter of the Earth's orbit.

A star emits a light ray that hits the objective of a telescope. While the light travels down the telescope to its eyepiece, the telescope moves to the right. For the light to stay inside the telescope, the telescope must be tilted to the right, causing the distant source to appear at a different location to the right.
Aberration of light: light from a distant source appears to be from a different location for a moving telescope due to the finite speed of light.

Another method is to use the aberration of light, discovered and explained by James Bradley in the 18th century. This effect results from the vector addition of the velocity of light arriving from a distant source (such as a star) and the velocity of its observer (see diagram on the right). A moving observer thus sees the light coming from a slightly different direction and consequently sees the source at a position shifted from its original position. Since the direction of the Earth's velocity changes continuously as the Earth orbits the Sun, this effect causes the apparent position of stars to move around. From the angular difference in the position of stars (maximally 20.5 arcseconds) it is possible to express the speed of light in terms of the Earth's velocity around the Sun, which with the known length of a year can be converted to the time needed to travel from the Sun to the Earth. In 1729, Bradley used this method to derive that light travelled 10210 times faster than the Earth in its orbit (the modern figure is 10066 times faster) or, equivalently, that it would take light 8 minutes 12 seconds to travel from the Sun to the Earth.

Astronomical unit

An astronomical unit (AU) is approximately the average distance between the Earth and Sun. It was redefined in 2012 as exactly 149597870700 m. Previously the AU was not based on the International System of Units but in terms of the gravitational force exerted by the Sun in the framework of classical mechanics. The current definition uses the recommended value in metres for the previous definition of the astronomical unit, which was determined by measurement. This redefinition is analogous to that of the metre and likewise has the effect of fixing the speed of light to an exact value in astronomical units per second (via the exact speed of light in metres per second).

Previously, the inverse of c expressed in seconds per astronomical unit was measured by comparing the time for radio signals to reach different spacecraft in the Solar System, with their position calculated from the gravitational effects of the Sun and various planets. By combining many such measurements, a best fit value for the light time per unit distance could be obtained. For example, in 2009, the best estimate, as approved by the International Astronomical Union (IAU), was:

light time for unit distance: tau = 499.004783836(10) s
c = 0.00200398880410(4) AU/s = 173.144632674(3) AU/day.

The relative uncertainty in these measurements is 0.02 parts per billion (2×10−11), equivalent to the uncertainty in Earth-based measurements of length by interferometry. Since the metre is defined to be the length travelled by light in a certain time interval, the measurement of the light time in terms of the previous definition of the astronomical unit can also be interpreted as measuring the length of an AU (old definition) in metres.

Time of flight techniques

One of the last and most accurate time of flight measurements, Michelson, Pease and Pearson's 1930–35 experiment used a rotating mirror and a one-mile (1.6 km) long vacuum chamber which the light beam traversed 10 times. It achieved accuracy of ±11 km/s.
 
A light ray passes horizontally through a half-mirror and a rotating cog wheel, is reflected back by a mirror, passes through the cog wheel, and is reflected by the half-mirror into a monocular.
Diagram of the Fizeau apparatus

A method of measuring the speed of light is to measure the time needed for light to travel to a mirror at a known distance and back. This is the working principle behind the Fizeau–Foucault apparatus developed by Hippolyte Fizeau and Léon Foucault.

The setup as used by Fizeau consists of a beam of light directed at a mirror 8 kilometres (5 mi) away. On the way from the source to the mirror, the beam passes through a rotating cogwheel. At a certain rate of rotation, the beam passes through one gap on the way out and another on the way back, but at slightly higher or lower rates, the beam strikes a tooth and does not pass through the wheel. Knowing the distance between the wheel and the mirror, the number of teeth on the wheel, and the rate of rotation, the speed of light can be calculated.

The method of Foucault replaces the cogwheel with a rotating mirror. Because the mirror keeps rotating while the light travels to the distant mirror and back, the light is reflected from the rotating mirror at a different angle on its way out than it is on its way back. From this difference in angle, the known speed of rotation and the distance to the distant mirror the speed of light may be calculated.

Nowadays, using oscilloscopes with time resolutions of less than one nanosecond, the speed of light can be directly measured by timing the delay of a light pulse from a laser or an LED reflected from a mirror. This method is less precise (with errors of the order of 1%) than other modern techniques, but it is sometimes used as a laboratory experiment in college physics classes.

Electromagnetic constants

An option for deriving c that does not directly depend on a measurement of the propagation of electromagnetic waves is to use the relation between c and the vacuum permittivity ε0 and vacuum permeability μ0 established by Maxwell's theory: c2 = 1/(ε0μ0). The vacuum permittivity may be determined by measuring the capacitance and dimensions of a capacitor, whereas the value of the vacuum permeability is fixed at exactly ×10−7 H⋅m−1 through the definition of the ampere. Rosa and Dorsey used this method in 1907 to find a value of 299710±22 km/s.

Cavity resonance

A box with three waves in it; there are one and a half wavelength of the top wave, one of the middle one, and a half of the bottom one.
Electromagnetic standing waves in a cavity

Another way to measure the speed of light is to independently measure the frequency f and wavelength λ of an electromagnetic wave in vacuum. The value of c can then be found by using the relation c = . One option is to measure the resonance frequency of a cavity resonator. If the dimensions of the resonance cavity are also known, these can be used to determine the wavelength of the wave. In 1946, Louis Essen and A.C. Gordon-Smith established the frequency for a variety of normal modes of microwaves of a microwave cavity of precisely known dimensions. The dimensions were established to an accuracy of about ±0.8 μm using gauges calibrated by interferometry. As the wavelength of the modes was known from the geometry of the cavity and from electromagnetic theory, knowledge of the associated frequencies enabled a calculation of the speed of light.

The Essen–Gordon-Smith result, 299792±9 km/s, was substantially more precise than those found by optical techniques. By 1950, repeated measurements by Essen established a result of 299792.5±3.0 km/s.

A household demonstration of this technique is possible, using a microwave oven and food such as marshmallows or margarine: if the turntable is removed so that the food does not move, it will cook the fastest at the antinodes (the points at which the wave amplitude is the greatest), where it will begin to melt. The distance between two such spots is half the wavelength of the microwaves; by measuring this distance and multiplying the wavelength by the microwave frequency (usually displayed on the back of the oven, typically 2450 MHz), the value of c can be calculated, "often with less than 5% error".

Interferometry

Schematic of the working of a Michelson interferometer.
An interferometric determination of length. Left: constructive interference; Right: destructive interference.

Interferometry is another method to find the wavelength of electromagnetic radiation for determining the speed of light. A coherent beam of light (e.g. from a laser), with a known frequency (f), is split to follow two paths and then recombined. By adjusting the path length while observing the interference pattern and carefully measuring the change in path length, the wavelength of the light (λ) can be determined. The speed of light is then calculated using the equation c = λf.

Before the advent of laser technology, coherent radio sources were used for interferometry measurements of the speed of light. However interferometric determination of wavelength becomes less precise with wavelength and the experiments were thus limited in precision by the long wavelength (~4 mm (0.16 in)) of the radiowaves. The precision can be improved by using light with a shorter wavelength, but then it becomes difficult to directly measure the frequency of the light. One way around this problem is to start with a low frequency signal of which the frequency can be precisely measured, and from this signal progressively synthesize higher frequency signals whose frequency can then be linked to the original signal. A laser can then be locked to the frequency, and its wavelength can be determined using interferometry. This technique was due to a group at the National Bureau of Standards (NBS) (which later became NIST). They used it in 1972 to measure the speed of light in vacuum with a fractional uncertainty of 3.5×10−9.

History

History of measurements of c (in km/s)
<1638 Galileo, covered lanterns inconclusive
<1667 Accademia del Cimento, covered lanterns inconclusive
1675 Rømer and Huygens, moons of Jupiter 220000 ‒27% error
1729 James Bradley, aberration of light 301000 +0.40% error
1849 Hippolyte Fizeau, toothed wheel 315000 +5.1% error
1862 Léon Foucault, rotating mirror 298000±500 ‒0.60% error
1907 Rosa and Dorsey, EM constants 299710±30 ‒280 ppm error
1926 Albert A. Michelson, rotating mirror 299796±4 +12 ppm error
1950 Essen and Gordon-Smith, cavity resonator 299792.5±3.0 +0.14 ppm error
1958 K.D. Froome, radio interferometry 299792.50±0.10 +0.14 ppm error
1972 Evenson et al., laser interferometry 299792.4562±0.0011 ‒0.006 ppm error
1983 17th CGPM, definition of the metre 299792.458 (exact) exact, as defined

Until the early modern period, it was not known whether light travelled instantaneously or at a very fast finite speed. The first extant recorded examination of this subject was in ancient Greece. The ancient Greeks, Muslim scholars, and classical European scientists long debated this until Rømer provided the first calculation of the speed of light. Einstein's Theory of Special Relativity concluded that the speed of light is constant regardless of one's frame of reference. Since then, scientists have provided increasingly accurate measurements.

Early history

Empedocles (c. 490–430 BC) was the first to propose a theory of light and claimed that light has a finite speed. He maintained that light was something in motion, and therefore must take some time to travel. Aristotle argued, to the contrary, that "light is due to the presence of something, but it is not a movement". Euclid and Ptolemy advanced Empedocles' emission theory of vision, where light is emitted from the eye, thus enabling sight. Based on that theory, Heron of Alexandria argued that the speed of light must be infinite because distant objects such as stars appear immediately upon opening the eyes. Early Islamic philosophers initially agreed with the Aristotelian view that light had no speed of travel. In 1021, Alhazen (Ibn al-Haytham) published the Book of Optics, in which he presented a series of arguments dismissing the emission theory of vision in favour of the now accepted intromission theory, in which light moves from an object into the eye. This led Alhazen to propose that light must have a finite speed, and that the speed of light is variable, decreasing in denser bodies. He argued that light is substantial matter, the propagation of which requires time, even if this is hidden from our senses. Also in the 11th century, Abū Rayhān al-Bīrūnī agreed that light has a finite speed, and observed that the speed of light is much faster than the speed of sound.

In the 13th century, Roger Bacon argued that the speed of light in air was not infinite, using philosophical arguments backed by the writing of Alhazen and Aristotle. In the 1270s, Witelo considered the possibility of light travelling at infinite speed in vacuum, but slowing down in denser bodies.

In the early 17th century, Johannes Kepler believed that the speed of light was infinite since empty space presents no obstacle to it. René Descartes argued that if the speed of light were to be finite, the Sun, Earth, and Moon would be noticeably out of alignment during a lunar eclipse. Since such misalignment had not been observed, Descartes concluded the speed of light was infinite. Descartes speculated that if the speed of light were found to be finite, his whole system of philosophy might be demolished. In Descartes' derivation of Snell's law, he assumed that even though the speed of light was instantaneous, the denser the medium, the faster was light's speed. Pierre de Fermat derived Snell's law using the opposing assumption, the denser the medium the slower light travelled. Fermat also argued in support of a finite speed of light.

First measurement attempts

In 1629, Isaac Beeckman proposed an experiment in which a person observes the flash of a cannon reflecting off a mirror about one mile (1.6 km) away. In 1638, Galileo Galilei proposed an experiment, with an apparent claim to having performed it some years earlier, to measure the speed of light by observing the delay between uncovering a lantern and its perception some distance away. He was unable to distinguish whether light travel was instantaneous or not, but concluded that if it were not, it must nevertheless be extraordinarily rapid. In 1667, the Accademia del Cimento of Florence reported that it had performed Galileo's experiment, with the lanterns separated by about one mile, but no delay was observed. The actual delay in this experiment would have been about 11 microseconds.

A diagram of a planet's orbit around the Sun and of a moon's orbit around another planet. The shadow of the latter planet is shaded.
Rømer's observations of the occultations of Io from Earth

The first quantitative estimate of the speed of light was made in 1676 by Rømer. From the observation that the periods of Jupiter's innermost moon Io appeared to be shorter when the Earth was approaching Jupiter than when receding from it, he concluded that light travels at a finite speed, and estimated that it takes light 22 minutes to cross the diameter of Earth's orbit. Christiaan Huygens combined this estimate with an estimate for the diameter of the Earth's orbit to obtain an estimate of speed of light of 220000 km/s, 26% lower than the actual value.

In his 1704 book Opticks, Isaac Newton reported Rømer's calculations of the finite speed of light and gave a value of "seven or eight minutes" for the time taken for light to travel from the Sun to the Earth (the modern value is 8 minutes 19 seconds). Newton queried whether Rømer's eclipse shadows were coloured; hearing that they were not, he concluded the different colours travelled at the same speed. In 1729, James Bradley discovered stellar aberration. From this effect he determined that light must travel 10210 times faster than the Earth in its orbit (the modern figure is 10066 times faster) or, equivalently, that it would take light 8 minutes 12 seconds to travel from the Sun to the Earth.

Connections with electromagnetism

In the 19th century Hippolyte Fizeau developed a method to determine the speed of light based on time-of-flight measurements on Earth and reported a value of 315000 km/s. His method was improved upon by Léon Foucault who obtained a value of 298000 km/s in 1862. In the year 1856, Wilhelm Eduard Weber and Rudolf Kohlrausch measured the ratio of the electromagnetic and electrostatic units of charge, 1/ε0μ0, by discharging a Leyden jar, and found that its numerical value was very close to the speed of light as measured directly by Fizeau. The following year Gustav Kirchhoff calculated that an electric signal in a resistanceless wire travels along the wire at this speed. In the early 1860s, Maxwell showed that, according to the theory of electromagnetism he was working on, electromagnetic waves propagate in empty space at a speed equal to the above Weber/Kohlrausch ratio, and drawing attention to the numerical proximity of this value to the speed of light as measured by Fizeau, he proposed that light is in fact an electromagnetic wave.

"Luminiferous aether"

Hendrik Lorentz (right) with Albert Einstein

It was thought at the time that empty space was filled with a background medium called the luminiferous aether in which the electromagnetic field existed. Some physicists thought that this aether acted as a preferred frame of reference for the propagation of light and therefore it should be possible to measure the motion of the Earth with respect to this medium, by measuring the isotropy of the speed of light. Beginning in the 1880s several experiments were performed to try to detect this motion, the most famous of which is the experiment performed by Albert A. Michelson and Edward W. Morley in 1887. The detected motion was always less than the observational error. Modern experiments indicate that the two-way speed of light is isotropic (the same in every direction) to within 6 nanometres per second. Because of this experiment Hendrik Lorentz proposed that the motion of the apparatus through the aether may cause the apparatus to contract along its length in the direction of motion, and he further assumed that the time variable for moving systems must also be changed accordingly ("local time"), which led to the formulation of the Lorentz transformation. Based on Lorentz's aether theory, Henri Poincaré (1900) showed that this local time (to first order in v/c) is indicated by clocks moving in the aether, which are synchronized under the assumption of constant light speed. In 1904, he speculated that the speed of light could be a limiting velocity in dynamics, provided that the assumptions of Lorentz's theory are all confirmed. In 1905, Poincaré brought Lorentz's aether theory into full observational agreement with the principle of relativity.

Special relativity

In 1905 Einstein postulated from the outset that the speed of light in vacuum, measured by a non-accelerating observer, is independent of the motion of the source or observer. Using this and the principle of relativity as a basis he derived the special theory of relativity, in which the speed of light in vacuum c featured as a fundamental constant, also appearing in contexts unrelated to light. This made the concept of the stationary aether (to which Lorentz and Poincaré still adhered) useless and revolutionized the concepts of space and time.

Increased accuracy of c and redefinition of the metre and second

In the second half of the 20th century, much progress was made in increasing the accuracy of measurements of the speed of light, first by cavity resonance techniques and later by laser interferometer techniques. These were aided by new, more precise, definitions of the metre and second. In 1950, Louis Essen determined the speed as 299792.5±3.0 km/s, using cavity resonance. This value was adopted by the 12th General Assembly of the Radio-Scientific Union in 1957. In 1960, the metre was redefined in terms of the wavelength of a particular spectral line of krypton-86, and, in 1967, the second was redefined in terms of the hyperfine transition frequency of the ground state of caesium-133.

In 1972, using the laser interferometer method and the new definitions, a group at the US National Bureau of Standards in Boulder, Colorado determined the speed of light in vacuum to be c = 299792456.2±1.1 m/s. This was 100 times less uncertain than the previously accepted value. The remaining uncertainty was mainly related to the definition of the metre. As similar experiments found comparable results for c, the 15th General Conference on Weights and Measures in 1975 recommended using the value 299792458 m/s for the speed of light.

Defining the speed of light as an explicit constant

In 1983 the 17th meeting of the General Conference on Weights and Measures (CGPM) found that wavelengths from frequency measurements and a given value for the speed of light are more reproducible than the previous standard. They kept the 1967 definition of second, so the caesium hyperfine frequency would now determine both the second and the metre. To do this, they redefined the metre as: "The metre is the length of the path traveled by light in vacuum during a time interval of 1/299792458 of a second." As a result of this definition, the value of the speed of light in vacuum is exactly 299792458 m/s and has become a defined constant in the SI system of units. Improved experimental techniques that, prior to 1983, would have measured the speed of light no longer affect the known value of the speed of light in SI units, but instead allow a more precise realization of the metre by more accurately measuring the wavelength of Krypton-86 and other light sources.

In 2011, the CGPM stated its intention to redefine all seven SI base units using what it calls "the explicit-constant formulation", where each "unit is defined indirectly by specifying explicitly an exact value for a well-recognized fundamental constant", as was done for the speed of light. It proposed a new, but completely equivalent, wording of the metre's definition: "The metre, symbol m, is the unit of length; its magnitude is set by fixing the numerical value of the speed of light in vacuum to be equal to exactly 299792458 when it is expressed in the SI unit m s−1." This was one of the changes that was incorporated in the 2019 redefinition of the SI base units, also termed the New SI.

James Clerk Maxwell

From Wikipedia, the free encyclopedia
 
James Clerk Maxwell
James Clerk Maxwell.png
James Clerk Maxwell
Born13 June 1831
Edinburgh, Scotland, United Kingdom
Died5 November 1879 (aged 48)
Cambridge, England, United Kingdom
Resting placeParton, Kirkcudbrightshire
55.006693°N 4.039210°W
NationalityScottish
CitizenshipBritish
Alma materUniversity of Edinburgh
University of Cambridge
Known forStatistical mechanics
Maxwell's equations
Displacement current
Maxwell relations
Maxwell–Betti theorem
Maxwell–Boltzmann distribution
Maxwell–Boltzmann statistics
Maxwell–Stefan diffusion
Maxwell's demon
Maxwell construction
Maxwell coupling
Maxwell's discs
Maxwell speed distribution
Maxwell stress functions
Maxwell's theorem
Maxwell's theorem (geometry)
Maxwell material
Maxwell–Huber–Hencky–von Mises theory
Maxwell–Wagner–Sillars polarization
Maxwell bridge
Maxwell coil
Maxwell's fish-eye lens
Maxwell's spot
Maxwell's wheel
Maxwell's thermodynamic surface
Control theory
Coherent system of units
Generalized conic
Singularity
Structural rigidity
Spouse(s)Katherine Clerk Maxwell
AwardsFRSE
FRS
Smith's Prize (1854)
Adams Prize (1857)
Rumford Medal (1860)
Keith Prize (1869–71)
Scientific career
FieldsPhysics and mathematics
InstitutionsMarischal College, University of Aberdeen
King's College, London
University of Cambridge
Academic advisorsWilliam Hopkins
Notable studentsGeorge Chrystal
Horace Lamb
John Henry Poynting
InfluencesSir Isaac Newton, Michael Faraday
InfluencedVirtually all subsequent physics
Signature
James Clerk Maxwell sig.svg

James Clerk Maxwell FRSE FRS (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation describing electricity, magnetism and light as different manifestations of the same phenomenon for the first time. Maxwell's equations for electromagnetism have been called the "second great unification in physics" where the first one had been realised by Isaac Newton.

With the publication of "A Dynamical Theory of the Electromagnetic Field" in 1865, Maxwell demonstrated that electric and magnetic fields travel through space as waves moving at the speed of light. He proposed that light is an undulation in the same medium that is the cause of electric and magnetic phenomena. The unification of light and electrical phenomena led his prediction of the existence of radio waves. Maxwell is also regarded as a founder of the modern field of electrical engineering.

He helped develop the Maxwell–Boltzmann distribution, a statistical means of describing aspects of the kinetic theory of gases. He is also known for presenting the first durable colour photograph in 1861 and for his foundational work on analysing the rigidity of rod-and-joint frameworks (trusses) like those in many bridges.

His discoveries helped usher in the era of modern physics, laying the foundation for such fields as special relativity and quantum mechanics. Many physicists regard Maxwell as the 19th-century scientist having the greatest influence on 20th-century physics. His contributions to the science are considered by many to be of the same magnitude as those of Isaac Newton and Albert Einstein. In the millennium poll—a survey of the 100 most prominent physicists—Maxwell was voted the third greatest physicist of all time, behind only Newton and Einstein. On the centenary of Maxwell's birthday, Einstein described Maxwell's work as the "most profound and the most fruitful that physics has experienced since the time of Newton". Einstein, when he visited the University of Cambridge in 1922, was told by his host that he had done great things because he stood on Newton's shoulders; Einstein replied: "No I don't. I stand on the shoulders of Maxwell."

Life

Early life, 1831–1839

Clerk Maxwell's birthplace at 14 India Street in Edinburgh is now the home of the James Clerk Maxwell Foundation.

James Clerk Maxwell was born on 13 June 1831 at 14 India Street, Edinburgh, to John Clerk Maxwell of Middlebie, an advocate, and Frances Cay daughter of Robert Hodshon Cay and sister of John Cay. (His birthplace now houses a museum operated by the James Clerk Maxwell Foundation.) His father was a man of comfortable means of the Clerk family of Penicuik, holders of the baronetcy of Clerk of Penicuik. His father's brother was the 6th baronet. He had been born "John Clerk", adding Maxwell to his own after he inherited (as an infant in 1793) the Middlebie estate, a Maxwell property in Dumfriesshire. James was a first cousin of both the artist Jemima Blackburn (the daughter of his father's sister) and the civil engineer William Dyce Cay (the son of his mother's brother). Cay and Maxwell were close friends and Cay acted as his best man when Maxwell married.

Maxwell's parents met and married when they were well into their thirties; his mother was nearly 40 when he was born. They had had one earlier child, a daughter named Elizabeth, who died in infancy.

When Maxwell was young his family moved to Glenlair, in Kirkcudbrightshire which his parents had built on the estate which comprised 1,500 acres (610 ha). All indications suggest that Maxwell had maintained an unquenchable curiosity from an early age. By the age of three, everything that moved, shone, or made a noise drew the question: "what's the go o' that?" In a passage added to a letter from his father to his sister-in-law Jane Cay in 1834, his mother described this innate sense of inquisitiveness:

He is a very happy man, and has improved much since the weather got moderate; he has great work with doors, locks, keys, etc., and "show me how it doos" is never out of his mouth. He also investigates the hidden course of streams and bell-wires, the way the water gets from the pond through the wall....

Education, 1839–1847

Recognising the boy's potential, Maxwell's mother Frances took responsibility for his early education, which in the Victorian era was largely the job of the woman of the house. At eight he could recite long passages of Milton and the whole of the 119th psalm (176 verses). Indeed, his knowledge of scripture was already detailed; he could give chapter and verse for almost any quotation from the psalms. His mother was taken ill with abdominal cancer and, after an unsuccessful operation, died in December 1839 when he was eight years old. His education was then overseen by his father and his father's sister-in-law Jane, both of whom played pivotal roles in his life. His formal schooling began unsuccessfully under the guidance of a 16-year-old hired tutor. Little is known about the young man hired to instruct Maxwell, except that he treated the younger boy harshly, chiding him for being slow and wayward. The tutor was dismissed in November 1841. James' father took him to Robert Davidson's demonstration of electric propulsion and magnetic force on February 12, 1842, an experience with profound implications for the boy.

Edinburgh Academy, where Maxwell was educated

Maxwell was sent to the prestigious Edinburgh Academy. He lodged during term times at the house of his aunt Isabella. During this time his passion for drawing was encouraged by his older cousin Jemima. The 10-year-old Maxwell, having been raised in isolation on his father's countryside estate, did not fit in well at school. The first year had been full, obliging him to join the second year with classmates a year his senior. His mannerisms and Galloway accent struck the other boys as rustic. Having arrived on his first day of school wearing a pair of homemade shoes and a tunic, he earned the unkind nickname of "Daftie". He never seemed to resent the epithet, bearing it without complaint for many years. Social isolation at the Academy ended when he met Lewis Campbell and Peter Guthrie Tait, two boys of a similar age who were to become notable scholars later in life. They remained lifelong friends.

Maxwell was fascinated by geometry at an early age, rediscovering the regular polyhedra before he received any formal instruction. Despite his winning the school's scripture biography prize in his second year, his academic work remained unnoticed until, at the age of 13, he won the school's mathematical medal and first prize for both English and poetry.

Maxwell's interests ranged far beyond the school syllabus and he did not pay particular attention to examination performance. He wrote his first scientific paper at the age of 14. In it he described a mechanical means of drawing mathematical curves with a piece of twine, and the properties of ellipses, Cartesian ovals, and related curves with more than two foci. The work, of 1846, "On the description of oval curves and those having a plurality of foci"  was presented to the Royal Society of Edinburgh by James Forbes, a professor of natural philosophy at the University of Edinburgh, because Maxwell was deemed too young to present the work himself. The work was not entirely original, since René Descartes had also examined the properties of such multifocal ellipses in the 17th century, but Maxwell had simplified their construction.

University of Edinburgh, 1847–1850

Old College, University of Edinburgh

Maxwell left the Academy in 1847 at age 16 and began attending classes at the University of Edinburgh. He had the opportunity to attend the University of Cambridge, but decided, after his first term, to complete the full course of his undergraduate studies at Edinburgh. The academic staff of the university included some highly regarded names; his first year tutors included Sir William Hamilton, who lectured him on logic and metaphysics, Philip Kelland on mathematics, and James Forbes on natural philosophy. He did not find his classes demanding, and was therefore able to immerse himself in private study during free time at the university and particularly when back home at Glenlair. There he would experiment with improvised chemical, electric, and magnetic apparatus; however, his chief concerns regarded the properties of polarised light. He constructed shaped blocks of gelatine, subjected them to various stresses, and with a pair of polarising prisms given to him by William Nicol, viewed the coloured fringes that had developed within the jelly. Through this practice he discovered photoelasticity, which is a means of determining the stress distribution within physical structures.

At age 18, Maxwell contributed two papers for the Transactions of the Royal Society of Edinburgh. One of these, "On the Equilibrium of Elastic Solids", laid the foundation for an important discovery later in his life, which was the temporary double refraction produced in viscous liquids by shear stress. His other paper was "Rolling Curves" and, just as with the paper "Oval Curves" that he had written at the Edinburgh Academy, he was again considered too young to stand at the rostrum to present it himself. The paper was delivered to the Royal Society by his tutor Kelland instead.

University of Cambridge, 1850–1856

A young Maxwell at Trinity College, Cambridge, holding one of his colour wheels.

In October 1850, already an accomplished mathematician, Maxwell left Scotland for the University of Cambridge. He initially attended Peterhouse, however before the end of his first term transferred to Trinity, where he believed it would be easier to obtain a fellowship. At Trinity he was elected to the elite secret society known as the Cambridge Apostles. Maxwell's intellectual understanding of his Christian faith and of science grew rapidly during his Cambridge years. He joined the "Apostles", an exclusive debating society of the intellectual elite, where through his essays he sought to work out this understanding.

Now my great plan, which was conceived of old, ... is to let nothing be wilfully left unexamined. Nothing is to be holy ground consecrated to Stationary Faith, whether positive or negative. All fallow land is to be ploughed up and a regular system of rotation followed. ... Never hide anything, be it weed or no, nor seem to wish it hidden. ... Again I assert the Right of Trespass on any plot of Holy Ground which any man has set apart. ... Now I am convinced that no one but a Christian can actually purge his land of these holy spots. ... I do not say that no Christians have enclosed places of this sort. Many have a great deal, and every one has some. But there are extensive and important tracts in the territory of the Scoffer, the Pantheist, the Quietist, Formalist, Dogmatist, Sensualist, and the rest, which are openly and solemnly Tabooed. ..."

Christianity—that is, the religion of the Bible—is the only scheme or form of belief which disavows any possessions on such a tenure. Here alone all is free. You may fly to the ends of the world and find no God but the Author of Salvation. You may search the Scriptures and not find a text to stop you in your explorations. ...

The Old Testament and the Mosaic Law and Judaism are commonly supposed to be "Tabooed" by the orthodox. Sceptics pretend to have read them and have found certain witty objections ... which too many of the orthodox unread admit, and shut up the subject as haunted. But a Candle is coming to drive out all Ghosts and Bugbears. Let us follow the light.

The extent to which Maxwell "ploughed up" his Christian beliefs and put them to the intellectual test, can be judged only incompletely from his writings. But there is plenty of evidence, especially from his undergraduate days, that he did deeply examine his faith. Certainly, his knowledge of the Bible was remarkable, so his confidence in the Scriptures was not based on ignorance.

In the summer of his third year, Maxwell spent some time at the Suffolk home of the Rev C.B. Tayler, the uncle of a classmate, G.W.H. Tayler. The love of God shown by the family impressed Maxwell, particularly after he was nursed back from ill health by the minister and his wife.

On his return to Cambridge, Maxwell writes to his recent host a chatty and affectionate letter including the following testimony,

... I have the capacity of being more wicked than any example that man could set me, and ... if I escape, it is only by God's grace helping me to get rid of myself, partially in science, more completely in society, —but not perfectly except by committing myself to God ...

In November 1851, Maxwell studied under William Hopkins, whose success in nurturing mathematical genius had earned him the nickname of "senior wrangler-maker".

In 1854, Maxwell graduated from Trinity with a degree in mathematics. He scored second highest in the final examination, coming behind Edward Routh and earning himself the title of Second Wrangler. He was later declared equal with Routh in the more exacting ordeal of the Smith's Prize examination. Immediately after earning his degree, Maxwell read his paper "On the Transformation of Surfaces by Bending" to the Cambridge Philosophical Society. This is one of the few purely mathematical papers he had written, demonstrating his growing stature as a mathematician. Maxwell decided to remain at Trinity after graduating and applied for a fellowship, which was a process that he could expect to take a couple of years. Buoyed by his success as a research student, he would be free, apart from some tutoring and examining duties, to pursue scientific interests at his own leisure.

The nature and perception of colour was one such interest which he had begun at the University of Edinburgh while he was a student of Forbes. With the coloured spinning tops invented by Forbes, Maxwell was able to demonstrate that white light would result from a mixture of red, green, and blue light. His paper "Experiments on Colour" laid out the principles of colour combination and was presented to the Royal Society of Edinburgh in March 1855. Maxwell was this time able to deliver it himself.

Maxwell was made a fellow of Trinity on 10 October 1855, sooner than was the norm, and was asked to prepare lectures on hydrostatics and optics and to set examination papers. The following February he was urged by Forbes to apply for the newly vacant Chair of Natural Philosophy at Marischal College, Aberdeen. His father assisted him in the task of preparing the necessary references, but died on 2 April at Glenlair before either knew the result of Maxwell's candidacy. He accepted the professorship at Aberdeen, leaving Cambridge in November 1856.

Marischal College, Aberdeen, 1856–1860

Maxwell proved that the Rings of Saturn were made of numerous small particles.

The 25-year-old Maxwell was a good 15 years younger than any other professor at Marischal. He engaged himself with his new responsibilities as head of a department, devising the syllabus and preparing lectures. He committed himself to lecturing 15 hours a week, including a weekly pro bono lecture to the local working men's college. He lived in Aberdeen with his cousin William Dyce Cay, a Scottish civil engineer, during the six months of the academic year and spent the summers at Glenlair, which he had inherited from his father.

James Clark Maxwell and his wife by Jemima Blackburn.

He focused his attention on a problem that had eluded scientists for 200 years: the nature of Saturn's rings. It was unknown how they could remain stable without breaking up, drifting away or crashing into Saturn. The problem took on a particular resonance at that time because St John's College, Cambridge had chosen it as the topic for the 1857 Adams Prize. Maxwell devoted two years to studying the problem, proving that a regular solid ring could not be stable, while a fluid ring would be forced by wave action to break up into blobs. Since neither was observed, he concluded that the rings must be composed of numerous small particles he called "brick-bats", each independently orbiting Saturn. Maxwell was awarded the £130 Adams Prize in 1859 for his essay "On the stability of the motion of Saturn's rings"; he was the only entrant to have made enough headway to submit an entry. His work was so detailed and convincing that when George Biddell Airy read it he commented "It is one of the most remarkable applications of mathematics to physics that I have ever seen." It was considered the final word on the issue until direct observations by the Voyager flybys of the 1980s confirmed Maxwell's prediction that the rings were composed of particles. It is now understood, however, that the rings' particles are not stable at all, being pulled by gravity onto Saturn. The rings are expected to vanish entirely over the next 300 million years.

In 1857 Maxwell befriended the Reverend Daniel Dewar, who was then the Principal of Marischal. Through him Maxwell met Dewar's daughter, Katherine Mary Dewar. They were engaged in February 1858 and married in Aberdeen on 2 June 1858. On the marriage record, Maxwell is listed as Professor of Natural Philosophy in Marischal College, Aberdeen. Katherine was seven years Maxwell's senior. Comparatively little is known of her, although it is known that she helped in his lab and worked on experiments in viscosity. Maxwell's biographer and friend, Lewis Campbell, adopted an uncharacteristic reticence on the subject of Katherine, though describing their married life as "one of unexampled devotion".

In 1860 Marischal College merged with the neighbouring King's College to form the University of Aberdeen. There was no room for two professors of Natural Philosophy, so Maxwell, despite his scientific reputation, found himself laid off. He was unsuccessful in applying for Forbes's recently vacated chair at Edinburgh, the post instead going to Tait. Maxwell was granted the Chair of Natural Philosophy at King's College, London, instead. After recovering from a near-fatal bout of smallpox in 1860, he moved to London with his wife.

King's College, London, 1860–1865

Commemoration of Maxwell's equations at King's College. One of three identical IEEE Milestone Plaques, the others being at Maxwell's birthplace in Edinburgh and the family home at Glenlair.

Maxwell's time at King's was probably the most productive of his career. He was awarded the Royal Society's Rumford Medal in 1860 for his work on colour and was later elected to the Society in 1861. This period of his life would see him display the world's first light-fast colour photograph, further develop his ideas on the viscosity of gases, and propose a system of defining physical quantities—now known as dimensional analysis. Maxwell would often attend lectures at the Royal Institution, where he came into regular contact with Michael Faraday. The relationship between the two men could not be described as being close, because Faraday was 40 years Maxwell's senior and showed signs of senility. They nevertheless maintained a strong respect for each other's talents.

Blue plaque, 16 Palace Gardens Terrace, Kensington, Maxwell's home, 1860–1865

This time is especially noteworthy for the advances Maxwell made in the fields of electricity and magnetism. He examined the nature of both electric and magnetic fields in his two-part paper "On physical lines of force", which was published in 1861. In it he provided a conceptual model for electromagnetic induction, consisting of tiny spinning cells of magnetic flux. Two more parts were later added to and published in that same paper in early 1862. In the first additional part he discussed the nature of electrostatics and displacement current. In the second additional part, he dealt with the rotation of the plane of the polarisation of light in a magnetic field, a phenomenon that had been discovered by Faraday and is now known as the Faraday effect.

Later years, 1865–1879

The gravestone at Parton Kirk (Galloway) of James Clerk Maxwell, his parents and his wife
 
This memorial stone to James Clerk Maxwell stands on a green in front of the church, beside the war memorial at Parton (Galloway).

In 1865 Maxwell resigned the chair at King's College, London, and returned to Glenlair with Katherine. In his paper 'On governors' (1868) he mathematically described the behaviour of governors, devices that control the speed of steam engines, thereby establishing the theoretical basis of control engineering. In his paper "On reciprocal figures, frames and diagrams of forces" (1870) he discussed the rigidity of various designs of lattice. He wrote the textbook Theory of Heat (1871) and the treatise Matter and Motion (1876). Maxwell was also the first to make explicit use of dimensional analysis, in 1871.

In 1871 he returned to Cambridge to become the first Cavendish Professor of Physics. Maxwell was put in charge of the development of the Cavendish Laboratory, supervising every step in the progress of the building and of the purchase of the collection of apparatus. One of Maxwell's last great contributions to science was the editing (with copious original notes) of the research of Henry Cavendish, from which it appeared that Cavendish researched, amongst other things, such questions as the density of the Earth and the composition of water. He was elected as a member to the American Philosophical Society in 1876.

In March 1879 Maxwell sent an important letter to the astronomer David Todd. In April 1879 Maxwell began to have difficulty in swallowing, the first symptom of his fatal illness.

Maxwell died in Cambridge of abdominal cancer on 5 November 1879 at the age of 48. His mother had died at the same age of the same type of cancer. The minister who regularly visited him in his last weeks was astonished at his lucidity and the immense power and scope of his memory, but comments more particularly,

... his illness drew out the whole heart and soul and spirit of the man: his firm and undoubting faith in the Incarnation and all its results; in the full sufficiency of the Atonement; in the work of the Holy Spirit. He had gauged and fathomed all the schemes and systems of philosophy, and had found them utterly empty and unsatisfying—"unworkable" was his own word about them—and he turned with simple faith to the Gospel of the Saviour.

As death approached Maxwell told a Cambridge colleague,

I have been thinking how very gently I have always been dealt with. I have never had a violent shove all my life. The only desire which I can have is like David to serve my own generation by the will of God, and then fall asleep.

Maxwell is buried at Parton Kirk, near Castle Douglas in Galloway close to where he grew up. The extended biography The Life of James Clerk Maxwell, by his former schoolfellow and lifelong friend Professor Lewis Campbell, was published in 1882. His collected works were issued in two volumes by the Cambridge University Press in 1890.

The executors of Maxwell's estate were his physician George Edward Paget, G. G. Stokes, and Colin Mackenzie, who was Maxwell's cousin. Overburdened with work, Stokes passed Maxwell's papers to William Garnett, who had effective custody of the papers until about 1884.

There is a memorial inscription to him near the choir screen at Westminster Abbey.

James Clark Maxwell by Jemima Blackburn.

Personal life

As a great lover of Scottish poetry, Maxwell memorised poems and wrote his own. The best known is Rigid Body Sings, closely based on "Comin' Through the Rye" by Robert Burns, which he apparently used to sing while accompanying himself on a guitar. It has the opening lines

Gin a body meet a body

Flyin' through the air.
Gin a body hit a body,

Will it fly? And where?

A collection of his poems was published by his friend Lewis Campbell in 1882.

Descriptions of Maxwell remark upon his remarkable intellectual qualities being matched by social awkwardness.

Maxwell was an evangelical Presbyterian and in his later years became an Elder of the Church of Scotland. Maxwell's religious beliefs and related activities have been the focus of a number of papers. Attending both Church of Scotland (his father's denomination) and Episcopalian (his mother's denomination) services as a child, Maxwell later underwent an evangelical conversion in April 1853. One facet of this conversion may have aligned him with an antipositivist position.

Scientific legacy

Electromagnetism

A postcard from Maxwell to Peter Tait

Maxwell had studied and commented on electricity and magnetism as early as 1855 when his paper "On Faraday's lines of force" was read to the Cambridge Philosophical Society. The paper presented a simplified model of Faraday's work and how electricity and magnetism are related. He reduced all of the current knowledge into a linked set of differential equations with 20 equations in 20 variables. This work was later published as "On Physical Lines of Force" in March 1861.

Around 1862, while lecturing at King's College, Maxwell calculated that the speed of propagation of an electromagnetic field is approximately that of the speed of light. He considered this to be more than just a coincidence, commenting, "We can scarcely avoid the conclusion that light consists in the transverse undulations of the same medium which is the cause of electric and magnetic phenomena.

Working on the problem further, Maxwell showed that the equations predict the existence of waves of oscillating electric and magnetic fields that travel through empty space at a speed that could be predicted from simple electrical experiments; using the data available at the time, Maxwell obtained a velocity of 310,740,000 metres per second (1.0195×109 ft/s). In his 1864 paper "A Dynamical Theory of the Electromagnetic Field", Maxwell wrote, "The agreement of the results seems to show that light and magnetism are affections of the same substance, and that light is an electromagnetic disturbance propagated through the field according to electromagnetic laws".

His famous twenty equations, in their modern form of four partial differential equations, first appeared in fully developed form in his textbook A Treatise on Electricity and Magnetism in 1873. Most of this work was done by Maxwell at Glenlair during the period between holding his London post and his taking up the Cavendish chair. Oliver Heaviside reduced the complexity of Maxwell's theory down to four differential equations, known now collectively as Maxwell's Laws or Maxwell's equations. Although potentials became much less popular in the nineteenth century, the use of scalar and vector potentials is now standard in the solution of Maxwell's equations.

As Barrett and Grimes (1995) describe:

Maxwell expressed electromagnetism in the algebra of quaternions and made the electromagnetic potential the centerpiece of his theory. In 1881 Heaviside replaced the electromagnetic potential field by force fields as the centerpiece of electromagnetic theory. According to Heaviside, the electromagnetic potential field was arbitrary and needed to be "assassinated". (sic) A few years later there was a debate between Heaviside and [Peter Guthrie] Tate (sic) about the relative merits of vector analysis and quaternions. The result was the realization that there was no need for the greater physical insights provided by quaternions if the theory was purely local, and vector analysis became commonplace.

Maxwell was proved correct, and his quantitative connection between light and electromagnetism is considered one of the great accomplishments of 19th century mathematical physics.

Maxwell also introduced the concept of the electromagnetic field in comparison to force lines that Faraday described. By understanding the propagation of electromagnetism as a field emitted by active particles, Maxwell could advance his work on light. At that time, Maxwell believed that the propagation of light required a medium for the waves, dubbed the luminiferous aether. Over time, the existence of such a medium, permeating all space and yet apparently undetectable by mechanical means, proved impossible to reconcile with experiments such as the Michelson–Morley experiment. Moreover, it seemed to require an absolute frame of reference in which the equations were valid, with the distasteful result that the equations changed form for a moving observer. These difficulties inspired Albert Einstein to formulate the theory of special relativity; in the process Einstein dispensed with the requirement of a stationary luminiferous aether.

Colour vision

First durable colour photographic image, demonstrated by Maxwell in an 1861 lecture

Along with most physicists of the time, Maxwell had a strong interest in psychology. Following in the steps of Isaac Newton and Thomas Young, he was particularly interested in the study of colour vision. From 1855 to 1872, Maxwell published at intervals a series of investigations concerning the perception of colour, colour-blindness, and colour theory, and was awarded the Rumford Medal for "On the Theory of Colour Vision".

Isaac Newton had demonstrated, using prisms, that white light, such as sunlight, is composed of a number of monochromatic components which could then be recombined into white light. Newton also showed that an orange paint made of yellow and red could look exactly like a monochromatic orange light, although being composed of two monochromatic yellow and red lights. Hence the paradox that puzzled physicists of the time: two complex lights (composed of more than one monochromatic light) could look alike but be physically different, called metameres. Thomas Young later proposed that this paradox could be explained by colours being perceived through a limited number of channels in the eyes, which he proposed to be threefold, the trichromatic colour theory. Maxwell used the recently developed linear algebra to prove Young's theory. Any monochromatic light stimulating three receptors should be able to be equally stimulated by a set of three different monochromatic lights (in fact, by any set of three different lights). He demonstrated that to be the case, inventing colour matching experiments and Colourimetry.

Maxwell was also interested in applying his theory of colour perception, namely in colour photography. Stemming directly from his psychological work on colour perception: if a sum of any three lights could reproduce any perceivable colour, then colour photographs could be produced with a set of three coloured filters. In the course of his 1855 paper, Maxwell proposed that, if three black-and-white photographs of a scene were taken through red, green, and blue filters, and transparent prints of the images were projected onto a screen using three projectors equipped with similar filters, when superimposed on the screen the result would be perceived by the human eye as a complete reproduction of all the colours in the scene.

During an 1861 Royal Institution lecture on colour theory, Maxwell presented the world's first demonstration of colour photography by this principle of three-colour analysis and synthesis. Thomas Sutton, inventor of the single-lens reflex camera, took the picture. He photographed a tartan ribbon three times, through red, green, and blue filters, also making a fourth photograph through a yellow filter, which, according to Maxwell's account, was not used in the demonstration. Because Sutton's photographic plates were insensitive to red and barely sensitive to green, the results of this pioneering experiment were far from perfect. It was remarked in the published account of the lecture that "if the red and green images had been as fully photographed as the blue", it "would have been a truly-coloured image of the riband. By finding photographic materials more sensitive to the less refrangible rays, the representation of the colours of objects might be greatly improved."] Researchers in 1961 concluded that the seemingly impossible partial success of the red-filtered exposure was due to ultraviolet light, which is strongly reflected by some red dyes, not entirely blocked by the red filter used, and within the range of sensitivity of the wet collodion process Sutton employed.

Kinetic theory and thermodynamics

Maxwell's demon, a thought experiment where entropy decreases
 

Maxwell also investigated the kinetic theory of gases. Originating with Daniel Bernoulli, this theory was advanced by the successive labours of John Herapath, John James Waterston, James Joule, and particularly Rudolf Clausius, to such an extent as to put its general accuracy beyond a doubt; but it received enormous development from Maxwell, who in this field appeared as an experimenter (on the laws of gaseous friction) as well as a mathematician.

Between 1859 and 1866, he developed the theory of the distributions of velocities in particles of a gas, work later generalised by Ludwig Boltzmann. The formula, called the Maxwell–Boltzmann distribution, gives the fraction of gas molecules moving at a specified velocity at any given temperature. In the kinetic theory, temperatures and heat involve only molecular movement. This approach generalised the previously established laws of thermodynamics and explained existing observations and experiments in a better way than had been achieved previously. His work on thermodynamics led him to devise the thought experiment that came to be known as Maxwell's demon, where the second law of thermodynamics is violated by an imaginary being capable of sorting particles by energy.

In 1871, he established Maxwell's thermodynamic relations, which are statements of equality among the second derivatives of the thermodynamic potentials with respect to different thermodynamic variables. In 1874, he constructed a plaster thermodynamic visualisation as a way of exploring phase transitions, based on the American scientist Josiah Willard Gibbs's graphical thermodynamics papers.

Control theory

Maxwell published the paper "On governors" in the Proceedings of the Royal Society, vol. 16 (1867–1868). This paper is considered a central paper of the early days of control theory. Here "governors" refers to the governor or the centrifugal governor used to regulate steam engines.

Post-normal science

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Post-normal_science ...