Search This Blog

Tuesday, December 18, 2018

Aeroponics

From Wikipedia, the free encyclopedia

Lettuce and wheat grown in an aeroponic apparatus, NASA, 1998

Aeroponics is the process of growing plants in an air or mist environment without the use of soil or an aggregate medium (known as geoponics). The word "aeroponic" is derived from the Greek meanings of aer (ἀήρ, "air") and ponos (πόνος, "labour"). Aeroponic culture differs from both conventional hydroponics, aquaponics, and in-vitro (plant tissue culture) growing. Unlike hydroponics, which uses a liquid nutrient solution as a growing medium and essential minerals to sustain plant growth; or aquaponics which uses water and fish waste, aeroponics is conducted without a growing medium. It is sometimes considered a type of hydroponics, since water is used in aeroponics to transmit nutrients.

Methods

The basic principle of aeroponic growing is to grow plants suspended in a closed or semi-closed environment by spraying the plant's dangling roots and lower stem with an atomized or sprayed, nutrient-rich water solution. The leaves and crown, often called the canopy, extend above. The roots of the plant are separated by the plant support structure. Often, closed-cell foam is compressed around the lower stem and inserted into an opening in the aeroponic chamber, which decreases labor and expense; for larger plants, trellising is used to suspend the weight of vegetation and fruit

Ideally, the environment is kept free from pests and disease so that the plants may grow healthier and more quickly than plants grown in a medium. However, since most aeroponic environments are not perfectly closed off to the outside, pests and disease may still cause a threat. Controlled environments advance plant development, health, growth, flowering and fruiting for any given plant species and cultivars

Due to the sensitivity of root systems, aeroponics is often combined with conventional hydroponics, which is used as an emergency "crop saver" – backup nutrition and water supply – if the aeroponic apparatus fails. 

High-pressure aeroponics is defined as delivering nutrients to the roots via 20–50 micrometre mist heads using a high-pressure (80 pounds per square inch (550 kPa)) diaphragm pump.

Benefits and drawbacks

Many types of plants can be grown aeroponically.

Increased air exposure

Close-up of the first patented aeroponic plant support structure (1983). Its unrestricted support of the plant allows for normal growth in the air/moisture environment, and is still in use today.

Air cultures optimize access to air for successful plant growth. Materials and devices which hold and support the aeroponic grown plants must be devoid of disease or pathogens. A distinction of a true aeroponic culture and apparatus is that it provides plant support features that are minimal. Minimal contact between a plant and support structure allows for 100% of the plant to be entirely in air. Long-term aeroponic cultivation requires the root systems to be free of constraints surrounding the stem and root systems. Physical contact is minimized so that it does not hinder natural growth and root expansion or access to pure water, air exchange and disease-free conditions.

Benefits of oxygen in the root zone

Oxygen (O2) in the rhizosphere (root zone) is necessary for healthy plant growth. As aeroponics is conducted in air combined with micro-droplets of water, almost any plant can grow to maturity in air with a plentiful supply of oxygen, water and nutrients. 

Some growers favor aeroponic systems over other methods of hydroponics because the increased aeration of nutrient solution delivers more oxygen to plant roots, stimulating growth and helping to prevent pathogen formation.

Clean air supplies oxygen which is an excellent purifier for plants and the aeroponic environment. For natural growth to occur, the plant must have unrestricted access to air. Plants must be allowed to grow in a natural manner for successful physiological development. The more confining the plant support becomes, the greater incidence of increasing disease pressure of the plant and the aeroponic system.

Some researchers have used aeroponics to study the effects of root zone gas composition on plant performance. Soffer and Burger [Soffer et al., 1988] studied the effects of dissolved oxygen concentrations on the formation of adventitious roots in what they termed “aero-hydroponics.” They utilized a 3-tier hydro and aero system, in which three separate zones were formed within the root area. The ends of the roots were submerged in the nutrient reservoir, while the middle of the root section received nutrient mist and the upper portion was above the mist. Their results showed that dissolved O2 is essential to root formation, but went on to show that for the three O2 concentrations tested, the number of roots and root length were always greater in the central misted section than either the submersed section or the un-misted section. Even at the lowest concentration, the misted section rooted successfully.

Other benefits of air (CO2)

Plants in a true aeroponic apparatus have 100% access to the CO2 concentrations ranging from 450 ppm to 780 ppm for photosynthesis. At one mile (1.6 km) above sea level, the CO2 concentration in the air is 450 ppm during daylight. At night, the CO2 level will rise to 780 ppm. Lower elevations will have higher levels. In any case, the air culture apparatus offers the ability for plants to have full access to all of the available CO2 in the air for photosynthesis. 

Growing under lights during the evening allows aeroponics to benefit from the natural occurrence.

Disease-free cultivation

Aeroponics can limit disease transmission since plant-to-plant contact is reduced and each spray pulse can be sterile. In the case of soil, aggregate, or other media, disease can spread throughout the growth media, infecting many plants. In most greenhouses, these solid media require sterilization after each crop and, in many cases, they are simply discarded and replaced with fresh, sterile media.

A distinct advantage of aeroponic technology is that if a particular plant does become diseased, it can be quickly removed from the plant support structure without disrupting or infecting the other plants.

Basil grown from seed in an aeroponic system located inside a modern greenhouse was first achieved 1986.

Due to the disease-free environment that is unique to aeroponics, many plants can grow at higher density (plants per square meter) when compared to more traditional forms of cultivation (hydroponics, soil and Nutrient Film Technique [NFT]). Commercial aeroponic systems incorporate hardware features that accommodate the crop's expanding root systems. 

Researchers have described aeroponics as a "valuable, simple, and rapid method for preliminary screening of genotypes for resistance to specific seedling blight or root rot.”

The isolating nature of the aeroponic system allowed them to avoid the complications encountered when studying these infections in soil culture.

Water and nutrient hydro-atomization

Aeroponic equipment involves the use of sprayers, misters, foggers, or other devices to create a fine mist of solution to deliver nutrients to plant roots. Aeroponic systems are normally closed-looped systems providing macro and micro-environments suitable to sustain a reliable, constant air culture. Numerous inventions have been developed to facilitate aeroponic spraying and misting. The key to root development in an aeroponic environment is the size of the water droplet. In commercial applications, a hydro-atomizing spray at 360° is employed to cover large areas of roots utilizing air pressure misting. 

A variation of the mist technique employs the use of ultrasonic foggers to mist nutrient solutions in low-pressure aeroponic devices. 

Water droplet size is crucial for sustaining aeroponic growth. Too large a water droplet means less oxygen is available to the root system. Too fine a water droplet, such as those generated by the ultrasonic mister, produce excessive root hair without developing a lateral root system for sustained growth in an aeroponic system.

Mineralization of the ultrasonic transducers requires maintenance and potential for component failure. This is also a shortcoming of metal spray jets and misters. Restricted access to the water causes the plant to lose turgidity and wilt.

Advanced materials

NASA has funded research and development of new advanced materials to improve aeroponic reliability and maintenance reduction. It also has determined that high pressure hydro-atomized mist of 5-50 micrometres micro-droplets is necessary for long-term aeroponic growing. 

For long-term growing, the mist system must have significant pressure to force the mist into the dense root system(s). Repeatability is the key to aeroponics and includes the hydro-atomized droplet size. Degradation of the spray due to mineralization of mist heads inhibits the delivery of the water nutrient solution, leading to an environmental imbalance in the air culture environment. 

Special low-mass polymer materials were developed and are used to eliminate mineralization in next generation hydro-atomizing misting and spray jets.

Nutrient uptake

Close-up of roots grown from wheat seed using aeroponics, 1998

The discrete nature of interval and duration aeroponics allows the measurement of nutrient uptake over time under varying conditions. Barak et al. used an aeroponic system for non-destructive measurement of water and ion uptake rates for cranberries (Barak, Smith et al. 1996).

In their study, these researchers found that by measuring the concentrations and volumes of input and efflux solutions, they could accurately calculate the nutrient uptake rate (which was verified by comparing the results with N-isotope measurements). After verification of their analytical method, Barak et al. went on to generate additional data specific to the cranberry, such as diurnal variation in nutrient uptake, correlation between ammonium uptake and proton efflux, and the relationship between ion concentration and uptake. Work such as this not only shows the promise of aeroponics as a research tool for nutrient uptake, but also opens up possibilities for the monitoring of plant health and optimization of crops grown in closed environments.

Atomization (>65 pounds per square inch (450 kPa)), increases bioavailability of nutrients, consequently, nutrient strength must be significantly reduced or leaf and root burn will develop. Note the large water droplets in the photo to the right. This is caused by the feed cycle being too long or the pause cycle too short; either discourages both lateral root growth and root hair development. Plant growth and fruiting times are significantly shortened when feed cycles are as short as possible. Ideally, roots should never be more than slightly damp nor overly dry. A typical feed/pause cycle is < 2 seconds on, followed by ~1.5-2 minute pause- 24/7, however, when an accumulator system is incorporated, cycle times can be further reduced to < ~1 second on, ~1 minute pause.

As a research tool

Soon after its development, aeroponics took hold as a valuable research tool. Aeroponics offered researchers a noninvasive way to examine roots under development. This new technology also allowed researchers a larger number and a wider range of experimental parameters to use in their work.

The ability to precisely control the root zone moisture levels and the amount of water delivered makes aeroponics ideally suited for the study of water stress. K. Hubick evaluated aeroponics as a means to produce consistent, minimally water-stressed plants for use in drought or flood physiology experiments.

Aeroponics is the ideal tool for the study of root morphology. The absence of aggregates offers researchers easy access to the entire, intact root structure without the damage that can be caused by removal of roots from soils or aggregates. It’s been noted that aeroponics produces more normal root systems than hydroponics.

Terminology

  • Aeroponic growing refers to plants grown in an air culture that can develop and grow in a normal and natural manner.
  • Aeroponic growth refers to growth achieved in an air culture.
  • Aeroponic system refers to hardware and system components assembled to sustain plants in an air culture.
  • Aeroponic greenhouse refers to a climate controlled glass or plastic structure with equipment to grow plants in air/mist environment.
  • Aeroponic conditions refers to air culture environmental parameters for sustaining plant growth for a plant species.
  • Aeroponic roots refers to a root system grown in an air culture.

Types of aeroponics

Low-pressure units

In most low-pressure aeroponic gardens, the plant roots are suspended above a reservoir of nutrient solution or inside a channel connected to a reservoir. A low-pressure pump delivers nutrient solution via jets or by ultrasonic transducers, which then drips or drains back into the reservoir. As plants grow to maturity in these units they tend to suffer from dry sections of the root systems, which prevent adequate nutrient uptake. These units, because of cost, lack features to purify the nutrient solution, and adequately remove incontinuities, debris, and unwanted pathogens. Such units are usually suitable for bench top growing and demonstrating the principles of aeroponics.

High-pressure devices

High-pressure aeroponic techniques, where the mist is generated by high-pressure pump(s), are typically used in the cultivation of high value crops and plant specimens that can offset the high setup costs associated with this method of horticulture

High-pressure aeroponics systems include technologies for air and water purification, nutrient sterilization, low-mass polymers and pressurized nutrient delivery systems.

Commercial systems

Commercial aeroponic systems comprise high-pressure device hardware and biological systems. The biological systems matrix includes enhancements for extended plant life and crop maturation. 

Biological subsystems and hardware components include effluent controls systems, disease prevention, pathogen resistance features, precision timing and nutrient solution pressurization, heating and cooling sensors, thermal control of solutions, efficient photon-flux light arrays, spectrum filtration spanning, fail-safe sensors and protection, reduced maintenance & labor saving features, and ergonomics and long-term reliability features. 

Commercial aeroponic systems, like the high-pressure devices, are used for the cultivation of high value crops where multiple crop rotations are achieved on an ongoing commercial basis. 

Advanced commercial systems include data gathering, monitoring, analytical feedback and internet connections to various subsystems.

History

In 1911, V.M.Artsikhovski published in the journal "Experienced Agronomy" an article "On Air Plant Cultures", which talks about his method of physiological studies of root systems by spraying various substances in the surrounding air - the aeroponics method. He designed the first aeroponics and in practice showed their suitability for plant cultivation. 

It was W. Carter in 1942 who first researched air culture growing and described a method of growing plants in water vapor to facilitate examination of roots. As of 2006, aeroponics is used in agriculture around the globe.

In 1944, L.J. Klotz was the first to discover vapor misted citrus plants in a facilitated research of his studies of diseases of citrus and avocado roots. In 1952, G.F. Trowel grew apple trees in a spray culture.

It was F. W. Went in 1957 who first coined the air-growing process as “aeroponics”, growing coffee plants and tomatoes with air-suspended roots and applying a nutrient mist to the root section.

Genesis Machine, 1983

GTi’s Genesis Rooting System, 1983

The first commercially available aeroponic apparatus was manufactured and marketed by GTi in 1983. It was known then as the Genesis Machine - taken from the movie Star Trek II: The Wrath of Khan. The Genesis Machine was marketed as the "Genesis Rooting System".

GTi's device incorporated an open-loop water driven apparatus, controlled by a microchip, and delivered a high pressure, hydro-atomized nutrient spray inside an aeroponic chamber. 

At the time, the achievement was revolutionary in terms of a developing (artificial air culture) technology. The Genesis Machine simply connected to a water faucet and an electrical outlet.

Aeroponic propagation (cloning)

GTi's apparatus cut-away of vegetative cutting propagated aeroponically, achieved 1983

Aeroponic culturing revolutionized cloning (propagation from cutting) of plants. Firstly, aeroponics allowed the whole process to be carried out in a single, automated unit. Numerous plants which were previously considered difficult, or impossible, to propagate from cuttings could now be replicated simply from a single stem cutting. This was a major boon to green houses attempting to propagate delicate hardwoods or cacti – plants normally propagated by seed due to the likeliness of bacterial infection in cuttings. 

Aeroponics has now largely surpassed hydroponics and tissue culture as means for sterile propagation of plant species. With the Genesis Machine, or other comparable aeroponics setup, any grower could clone plants. Due to the automation of most parts of the process, plants could be cloned and grown by the hundreds or even thousands. In short, cloning became easier because the aeroponic apparatus initiated faster and cleaner root development through a sterile, nutrient rich, highly oxygenated, and moist environment (Hughes, 1983).

Air-rooted transplants

Cloned aeroponics transplanted directly into soil

Aeroponics significantly advanced tissue culture technology. It cloned plants in less time and reduced numerous labor steps associated with tissue culture techniques. Aeroponics could eliminate stage I and stage II plantings into soil (the bane of all tissue culture growers). Tissue culture plants must be planted in a sterile media (stage-I) and expanded out for eventual transfer into sterile soil (stage-II). After they are strong enough they are transplanted directly to field soil. Besides being labor-intensive, the entire process of tissue culture is prone to disease, infection, and failure. 

With the use of aeroponics, growers cloned and transplanted air-rooted plants directly into field soil. Aeroponic roots were not susceptible to wilting and leaf loss, or loss due to transplant shock (something hydroponics can never overcome). Because of their healthiness, air-rooted plants were less likely to be infected with pathogens. (If the RH of the root chamber gets above 70 degrees F, fungus gnats, algae, anaerobic bacteria are likely to develop.) 

The efforts by GTi ushered in a new era of artificial life support for plants capable of growing naturally without the use of soil or hydroponics. GTi received a patent for an all-plastic aeroponic method and apparatus, controlled by a microprocessor in 1985. 

Aeroponics became known as a time and cost saver. The economic factors of aeroponic’s contributions to agriculture were taking shape.

Genesis Growing System, 1985

GTi's Aeroponic Growing System greenhouse facility, 1985

By 1985, GTi introduced second generation aeroponics hardware, known as the "Genesis Growing System". This second generation aeroponic apparatus was a closed-loop system. It utilized recycled effluent precisely controlled by a microprocessor. Aeroponics graduated to the capability of supporting seed germination, thus making GTi's the world's first plant and harvest aeroponic system.
Many of these open-loop unit and closed-loop aeroponic systems are still in operation today.

Commercialization

Aeroponics eventually left the laboratories and entered into the commercial cultivation arena. In 1966, commercial aeroponic pioneer B. Briggs succeeded in inducing roots on hardwood cuttings by air-rooting. Briggs discovered that air-rooted cuttings were tougher and more hardened than those formed in soil and concluded that the basic principle of air-rooting is sound. He discovered air-rooted trees could be transplanted to soil without suffering from transplant shock or setback to normal growth. Transplant shock is normally observed in hydroponic transplants.

In Israel in 1982, L. Nir developed a patent for an aeroponic apparatus using compressed low-pressure air to deliver a nutrient solution to suspended plants, held by styrofoam, inside large metal containers.

In summer 1976, British researcher John Prewer carried out a series of aeroponic experiments near Newport, Isle of Wight, U.K., in which lettuces (variety Tom Thumb) were grown from seed to maturity in 22 days in polyethylene film tubes made rigid by pressurized air supplied by ventilating fans. The equipment used to convert the water-nutrient into fog droplets was supplied by Mee Industries of California. "In 1984 in association with John Prewer, a commercial grower on the Isle of Wight - Kings Nurseries - used a different design of aeroponics system to grow strawberry plants. The plants flourished and produced a heavy crop of strawberries which were picked by the nursery's customers. The system proved particularly popular with elderly customers who appreciated the cleanliness, quality and flavor of the strawberries, and the fact they did not have to stoop when picking the fruit." 

In 1983, R. Stoner filed a patent for the first microprocessor interface to deliver tap water and nutrients into an enclosed aeroponic chamber made of plastic. Stoner has gone on to develop numerous companies researching and advancing aeroponic hardware, interfaces, biocontrols and components for commercial aeroponic crop production.

The first commercial aeroponic greenhouse for aeroponic food production – 1986

In 1985, Stoner's company, GTi, was the first company to manufacture, market and apply large-scale closed-loop aeroponic systems into greenhouses for commercial crop production.

In the 1990s, GHE or General Hydroponics [Europe] thought to try to introduce aeroponics to the hobby hydroponics market and finally came to the Aerogarden system. However, this could not be classed as 'true' aeroponics because the Aerogarden produced tiny droplets of solution rather than a fine mist of solution; the fine mist was meant to reproduce true Amazon rain. In any case, a product was introduced to the market and the grower could broadly claim to be growing their hydroponic produce aeroponically. A demand for aeroponic growing in the hobby market had been established and moreover it was thought of as the ultimate hydroponic growing technique. The difference between true aeroponic mist growing and aeroponic droplet growing had become very blurred in the eyes of many people. At the end of the nineties, a UK firm, Nutriculture, was encouraged enough by industry talk to trial true aeroponic growing; although these trials showed positive results compared with more traditional growing techniques such as NFT and Ebb & Flood there were drawbacks, namely cost and maintenance. To accomplish true mist aeroponics a special pump had to be used which also presented scalability problems. Droplet-aeroponics was easier to manufacture, and as it produced comparable results to mist-aeroponics, Nutriculture began development of a scalable, easy to use droplet-aeroponic system. Through trials they found that aeroponics was ideal for plant propagation; plants could be propagated without medium and could even be grown-on. In the end, Nutriculture acknowledged that better results could be achieved if the plant was propagated in their branded X-stream aeroponic propagator and moved on to a specially designed droplet-aeroponic growing system - the Amazon.

Aeroponically grown food

In 1986, Stoner became the first person to market fresh aeroponically grown food to a national grocery chain. He was interviewed on NPR and discussed the importance of the water conservation features of aeroponics for both modern agriculture and space.

Aeroponics in space

Space plants

NASA life support GAP technology with untreated beans (left tube) and biocontrol treated beans (right tube) returned from the Mir space station aboard the space shuttle – September 1997

Plants were first taken into Earth's orbit in 1960 on two separate missions, Sputnik 4 and Discoverer 17. On the former mission, wheat, pea, maize, spring onion, and Nigella damascena seeds were carried into space, and on the latter mission Chlorella pyrenoidosa cells were brought into orbit.

Plant experiments were later performed on a variety of Bangladesh, China, and joint Soviet-American missions, including Biosatellite II (Biosatellite program), Skylab 3 and 4, Apollo-Soyuz, Sputnik, Vostok, and Zond. Some of the earliest research results showed the effect of low gravity on the orientation of roots and shoots (Halstead and Scott 1990).

Subsequent research went on to investigate the effect of low gravity on plants at the organismic, cellular, and subcellular levels. At the organismic level, for example, a variety of species, including pine, oat, mung bean, lettuce, cress, and Arabidopsis thaliana, showed decreased seedling, root, and shoot growth in low gravity, whereas lettuce grown on Cosmos showed the opposite effect of growth in space (Halstead and Scott 1990). Mineral uptake seems also to be affected in plants grown in space. For example, peas grown in space exhibited increased levels of phosphorus and potassium and decreased levels of the divalent cations calcium, magnesium, manganese, zinc, and iron (Halstead and Scott 1990).

Biocontrols in space

In 1996, NASA sponsored Stoner’s research for a natural liquid biocontrol, known then as ODC (organic disease control), that activates plants to grow without the need for pesticides as a means to control pathogens in a closed-loop culture system. ODC is derived from natural aquatic materials.

By 1997, Stoner’s biocontrol experiments were conducted by NASA. BioServe Space Technologies’s GAP technology (miniature growth chambers) delivered the ODC solution unto bean seeds. Triplicate ODC experiments were conducted in GAP’s flown to the MIR by the space shuttle; at the Kennedy Space Center; and at Colorado State University (J. Linden). All GAPS were housed in total darkness to eliminate light as an experiment variable. The NASA experiment was to study only the benefits of the biocontrol.

NASA's experiments aboard the MIR space station and shuttle confirmed that ODC elicited increased germination rate, better sprouting, increased growth and natural plant disease mechanisms when applied to beans in an enclosed environment. ODC is now a standard for pesticide-free aeroponic growing and organic farming. Soil and hydroponics growers can benefit by incorporating ODC into their planting techniques. ODC meets USDA NOP standards for organic farms.

Aeroponics for space and Earth

NASA aeroponic lettuce seed germination. Day 30.

In 1998, Stoner received NASA funding to develop a high performance aeroponic system for earth and space. Stoner demonstrated that a dry bio-mass of lettuce can be significantly increased with aeroponics. NASA utilized numerous aeroponic advancements developed by Stoner. Due to this advancement we can use as a reference to space aeroponics. 

Abstract: The purpose of the research conducted was to identify and demonstrate technologies for high-performance plant growth in a variety of gravitational environments. A low-gravity environment, for example, poses the problems of effectively bringing water and other nutrients to the plants and effecting recovery of effluents. Food production in the low-gravity environment of space provides further challenges, such as minimization of water use, water handling, and system weight. Food production on planetary bodies such as the Moon or Mars also requires dealing with a hypogravity environment. Because of the impacts to fluid dynamics in these various gravity environments, the nutrient delivery system has been a major focus in plant growth system optimization.

There are a number of methods currently utilized (both in low gravity and on Earth) to deliver nutrients to plants. Substrate dependent methods include traditional soil cultivation, zeoponics, agar, and nutrient-loaded ion exchange resins. In addition to substrate dependent cultivation, many methods using no soil have been developed such as nutrient film technique, ebb and flow, aeroponics, and many other variants. Many hydroponic systems can provide high plant performance but nutrient solution throughput is high, necessitating large water volumes and substantial recycling of solutions, and the control of the solution in hypogravity conditions is difficult at best. 

Aeroponics, with its use of a hydro-atomized spray to deliver nutrients, minimizes water use, increases oxygenation of roots, and offers excellent plant growth, while at the same time approaching or bettering the low nutrient solution throughput of other systems developed to operate in low gravity. Aeroponics’ elimination of substrates and the need for large nutrient stockpiles reduces the amount of waste materials to be processed by other life support systems. Furthermore, the absence of substrates simplifies planting and harvesting (providing opportunities for automation), decreases the volume and weight of expendable materials, and eliminates a pathway for pathogen transmission. These many advantages combined with the results of this research that prove the viability of aeroponics in microgravity makes aeroponics a logical choice for efficient food production in space.]

NASA inflatable aeroponics

In 1999, Stoner, funded by NASA, developed an inflatable low-mass aeroponic system (AIS) for space and earth for high performance food production.This advancements are very useful in space aeroponics. 

Abstract: Aeroponics International’s (AI’s) innovation is a self-contained, self-supporting, inflatable aeroponic crop production unit with integral environmental systems for the control and delivery of a nutrient/mist to the roots. This inflatable aeroponic system addresses the needs of subtopic 08.03 Spacecraft Life Support Infrastructure and, in particular, water and nutrient delivery systems technologies for food production. The inflatable nature of our innovation makes it lightweight, allowing it to be deflated so it takes up less volume during transportation and storage. It improves on AI’s current aeroponic system design that uses rigid structures, which use more expensive materials, manufacture processes, and transportation. As a stationary aeroponic system, these existing high-mass units perform very well, but transporting and storing them can be problematic.

On Earth, these problems may hinder the economic feasibility of aeroponics for commercial growers. However, such problems become insurmountable obstacles for using these systems on long-duration space missions because of the high cost of payload volume and mass during launch and transit.

The NASA efforts lead to developments of numerous advanced materials for aeroponics for earth and space.

Benefits of aeroponics for earth and space

NASA aeroponic lettuce seed germination- Day 3

Aeroponics possesses many characteristics that make it an effective and efficient means of growing plants.

Less nutrient solution throughout

NASA aeroponic lettuce seed germination- Day 12

Plants grown using aeroponics spend 99.98% of their time in air and 0.02% in direct contact with hydro-atomized nutrient solution. The time spent without water allows the roots to capture oxygen more efficiently. Furthermore, the hydro-atomized mist also significantly contributes to the effective oxygenation of the roots. For example, NFT has a nutrient throughput of 1 liter per minute compared to aeroponics’ throughput of 1.5 milliliters per minute.

The reduced volume of nutrient throughput results in reduced amounts of nutrients required for plant development.

Another benefit of the reduced throughput, of major significance for space-based use, is the reduction in water volume used. This reduction in water volume throughput corresponds with a reduced buffer volume, both of which significantly lighten the weight needed to maintain plant growth. In addition, the volume of effluent from the plants is also reduced with aeroponics, reducing the amount of water that needs to be treated before reuse. 

The relatively low solution volumes used in aeroponics, coupled with the minimal amount of time that the roots are exposed to the hydro-atomized mist, minimizes root-to-root contact and spread of pathogens between plants.

Greater control of plant environment

NASA aeroponic lettuce seed germination (close-up of root zone environment)- Day 19

Aeroponics allows more control of the environment around the root zone, as, unlike other plant growth systems, the plant roots are not constantly surrounded by some medium (as, for example, with hydroponics, where the roots are constantly immersed in water).

Improved nutrient feeding

A variety of different nutrient solutions can be administered to the root zone using aeroponics without needing to flush out any solution or matrix in which the roots had previously been immersed. This elevated level of control would be useful when researching the effect of a varied regimen of nutrient application to the roots of a plant species of interest. In a similar manner, aeroponics allows a greater range of growth conditions than other nutrient delivery systems. The interval and duration of the nutrient spray, for example, can be very finely attuned to the needs of a specific plant species. The aerial tissue can be subjected to a completely different environment from that of the roots.

More user-friendly

The design of an aeroponic system allows ease of working with the plants. This results from the separation of the plants from each other, and the fact that the plants are suspended in air and the roots are not entrapped in any kind of matrix. Consequently, the harvesting of individual plants is quite simple and straightforward. Likewise, removal of any plant that may be infected with some type of pathogen is easily accomplished without risk of uprooting or contaminating nearby plants.

More cost effective

Close-up of aeroponically grown corn and roots inside an aeroponic (air-culture) apparatus, 2005

Aeroponic systems are more cost effective than other systems. Because of the reduced volume of solution throughput (discussed above), less water and fewer nutrients are needed in the system at any given time compared to other nutrient delivery systems. The need for substrates is also eliminated, as is the need for many moving parts .

Use of seed stocks

With aeroponics, the deleterious effects of seed stocks that are infected with pathogens can be minimized. As discussed above, this is due to the separation of the plants and the lack of shared growth matrix. In addition, due to the enclosed, controlled environment, aeroponics can be an ideal growth system in which to grow seed stocks that are pathogen-free. The enclosing of the growth chamber, in addition to the isolation of the plants from each other discussed above, helps to both prevent initial contamination from pathogens introduced from the external environment and minimize the spread from one plant to others of any pathogens that may exist.

21st century aeroponics

Modern aeroponics allows high density companion planting of many food and horticultural crops without the use of pesticides - due to unique discoveries aboard the space shuttle

Aeroponics is an improvement in artificial life support for non-damaging plant support, seed germination, environmental control and rapid unrestricted growth when compared with hydroponics and drip irrigation techniques that have been used for decades by traditional agriculturalists.

Contemporary aeroponics

Contemporary aeroponic techniques have been researched at NASA's research and commercialization center BioServe Space Technologies located on the campus of the University of Colorado in Boulder, Colorado. Other research includes enclosed loop system research at Ames Research Center, where scientists were studying methods of growing food crops in low gravity situations for future space colonization

In 2000, Stoner was granted a patent for an organic disease control biocontrol technology that allows for pesticide-free natural growing in an aeroponic systems.

In 2004, Ed Harwood, founder of AeroFarms, invented an aeroponic system that grows lettuces on micro fleece cloth. AeroFarms, utilizing Harwood's patented aeroponic technology, is now operating the largest indoor vertical farm in the world based on annual growing capacity in Newark, New Jersey. By using aeroponic technology the farm is able to produce and sell up to two million pounds of pesticide-free leafy greens per year.

Aeroponic bio-pharming

Aeroponically grown biopharma corn, 2005

Aeroponic bio-pharming is used to grow pharmaceutical medicine inside of plants. The technology allows for completed containment of allow effluents and by-products of biopharma crops to remain inside a closed-loop facility. As recently as 2005, GMO research at South Dakota State University by Dr. Neil Reese applied aeroponics to grow genetically modified corn

According to Reese it is a historical feat to grow corn in an aeroponic apparatus for bio-massing. The university’s past attempts to grow all types of corn using hydroponics ended in failure. 

Using advanced aeroponics techniques to grow genetically modified corn Reese harvested full ears of corn, while containing the corn pollen and spent effluent water and preventing them from entering the environment. Containment of these by-products ensures the environment remains safe from GMO contamination. 

Reese says, aeroponics offers the ability to make bio-pharming economically practical.

Large scale integration of aeroponics

Aeroponic Graduate Program: Hanoi Agricultural University, Hanoi, Vietnam

In 2006, the Institute of Biotechnology at Vietnam National University of Agriculture, in joint efforts with Stoner, established a postgraduate doctoral program in aeroponics. The university's Agrobiotech Research Center, under the direction of Professor Nguyen Quang Thach, is using aeroponic laboratories to advance Vietnam's minituber potato production for certified seed potato production. 

Aeroponic potato explants on day 3 after insertion in the aeroponic system, Hanoi

The historical significance for aeroponics is that it is the first time a nation has specifically called out for aeroponics to further an agricultural sector, stimulate farm economic goals, meet increased demands, improve food quality and increase production.

"We have shown that aeroponics, more than any other form of agricultural technology, will significantly improve Vietnam's potato production. We have very little tillable land, aeroponics makes complete economic sense to us”, attested Thach. 

Aeroponic greenhouse for potato minituber product Hanoi 2006

Vietnam joined the World Trade Organization (WTO) in January 2007. The impact of aeroponics in Vietnam will be felt at the farm level.

Aeroponic integration in Vietnamese agriculture will begin by producing a low cost certified disease-free organic minitubers, which in turn will be supplied to local farmers for their field plantings of seed potatoes and commercial potatoes. Potato farmers will benefit from aeroponics because their seed potatoes will be disease-free and grown without pesticides. Most importantly for the Vietnamese farmer, it will lower their cost of operation and increase their yields, says Thach.

Transposable element

From Wikipedia, the free encyclopedia
A bacterial DNA transposon

A transposable element (TE or transposon) is a DNA sequence that can change its position within a genome, sometimes creating or reversing mutations and altering the cell's genetic identity and genome size. Transposition often results in duplication of the same genetic material. Barbara McClintock's discovery of these jumping genes earned her a Nobel Prize in 1983.

Transposable elements make up a large fraction of the genome and are responsible for much of the mass of DNA in a eukaryotic cell. It has been shown that TEs are important in genome function and evolution. In Oxytricha, which has a unique genetic system, these elements play a critical role in development. Transposons are also very useful to researchers as a means to alter DNA inside a living organism. 

There are at least two classes of TEs: Class I TEs or retrotransposons generally function via reverse transcription, while Class II TEs or DNA transposons encode the protein transposase, which they require for insertion and excision, and some of these TEs also encode other proteins.

Discovery

Barbara McClintock discovered the first TEs in maize (Zea mays) at the Cold Spring Harbor Laboratory in New York. McClintock was experimenting with maize plants that had broken chromosomes.

In the winter of 1944–1945, McClintock planted corn kernels that were self-pollinated, meaning that the silk (style) of the flower received pollen from its own anther. These kernels came from a long line of plants that had been self-pollinated, causing broken arms on the end of their ninth chromosomes. As the maize plants began to grow, McClintock noted unusual color patterns on the leaves. For example, one leaf had two albino patches of almost identical size, located side by side on the leaf. McClintock hypothesized that during cell division certain cells lost genetic material, while others gained what they had lost. However, when comparing the chromosomes of the current generation of plants with the parent generation, she found certain parts of the chromosome had switched position. This refuted the popular genetic theory of the time that genes were fixed in their position on a chromosome. McClintock found that genes could not only move, but they could also be turned on or off due to certain environmental conditions or during different stages of cell development.

McClintock also showed that gene mutations could be reversed. She presented her report on her findings in 1951, and published an article on her discoveries in Genetics in November 1953 entitled "Induction of Instability at Selected Loci in Maize".

Her work was largely dismissed and ignored until the late 1960s–1970s when, after TEs were found in bacteria, it was rediscovered. She was awarded a Nobel Prize in Physiology or Medicine in 1983 for her discovery of TEs, more than thirty years after her initial research.

Approximately 90% of the maize genome is made up of TEs, as is 44% of the human genome.

Classification

Transposable elements represent one of several types of mobile genetic elements. TEs are assigned to one of two classes according to their mechanism of transposition, which can be described as either copy and paste (Class I TEs) or cut and paste (Class II TEs).

Class I (retrotransposons)

Class I TEs are copied in two stages: first, they are transcribed from DNA to RNA, and the RNA produced is then reverse transcribed to DNA. This copied DNA is then inserted back into the genome at a new position. The reverse transcription step is catalyzed by a reverse transcriptase, which is often encoded by the TE itself. The characteristics of retrotransposons are similar to retroviruses, such as HIV

Retrotransposons are commonly grouped into three main orders:
  1. Retrotransposons, with long terminal repeats (LTRs), which encode reverse transcriptase, similar to retroviruses
  2. Retroposons, Long interspersed nuclear elements (LINEs, LINE-1s, or L1s), which encode reverse transcriptase but lack LTRs, and are transcribed by RNA polymerase II
  3. Short interspersed nuclear elements (SINEs) do not encode reverse transcriptase and are transcribed by RNA polymerase III
(Retroviruses can also be considered TEs. For example, after conversion of retroviral RNA into DNA inside a host cell, the newly produced retroviral DNA is integrated into the genome of the host cell. These integrated DNAs are termed proviruses. The provirus is a specialized form of eukaryotic retrotransposon, which can produce RNA intermediates that may leave the host cell and infect other cells. The transposition cycle of retroviruses has similarities to that of prokaryotic TEs, suggesting a distant relationship between the two.) 

A.Structure of DNA transposons (Mariner type). Two inverted tandem repeats (TIR) flank the transposase gene. Two short tandem site duplications (TSD) are present on both sides of the insert. B. Mechanism of transposition: Two transposases recognize and bind to TIR sequences, join together and promote DNA double-strand cleavage. The DNA-transposase complex then inserts its DNA cargo at specific DNA motifs elsewhere in the genome, creating short TSDs upon integration.

Class II (DNA transposons)

The cut-and-paste transposition mechanism of class II TEs does not involve an RNA intermediate. The transpositions are catalyzed by several transposase enzymes. Some transposases non-specifically bind to any target site in DNA, whereas others bind to specific target sequences. The transposase makes a staggered cut at the target site producing sticky ends, cuts out the DNA transposon and ligates it into the target site. A DNA polymerase fills in the resulting gaps from the sticky ends and DNA ligase closes the sugar-phosphate backbone. This results in target site duplication and the insertion sites of DNA transposons may be identified by short direct repeats (a staggered cut in the target DNA filled by DNA polymerase) followed by inverted repeats (which are important for the TE excision by transposase). 

Cut-and-paste TEs may be duplicated if their transposition takes place during S phase of the cell cycle, when a donor site has already been replicated but a target site has not yet been replicated. Such duplications at the target site can result in gene duplication, which plays an important role in genomic evolution.

Not all DNA transposons transpose through the cut-and-paste mechanism. In some cases, a replicative transposition is observed in which a transposon replicates itself to a new target site (e.g. helitron). 

Class II TEs comprise less than 2% of the human genome, making the rest Class I.

Autonomous and non-autonomous

Transposition can be classified as either "autonomous" or "non-autonomous" in both Class I and Class II TEs. Autonomous TEs can move by themselves, whereas non-autonomous TEs require the presence of another TE to move. This is often because dependent TEs lack transposase (for Class II) or reverse transcriptase (for Class I). 

Activator element (Ac) is an example of an autonomous TE, and dissociation elements (Ds) is an example of a non-autonomous TE. Without Ac, Ds is not able to transpose.

Examples

  • The first TEs were discovered in maize (Zea mays) by Barbara McClintock in 1948, for which she was later awarded a Nobel Prize. She noticed chromosomal insertions, deletions, and translocations caused by these elements. These changes in the genome could, for example, lead to a change in the color of corn kernels. About 85% of the maize genome consists of TEs. The Ac/Ds system described by McClintock are Class II TEs. Transposition of Ac in tobacco has been demonstrated by B. Baker (Plant Transposable Elements, pp 161–174, 1988, Plenum Publishing Corp., ed. Nelson).
  • One family of TEs in the fruit fly Drosophila melanogaster are called P elements. They seem to have first appeared in the species only in the middle of the twentieth century; within the last 50 years, they spread through every population of the species. Gerald M. Rubin and Allan C. Spradling pioneered technology to use artificial P elements to insert genes into Drosophila by injecting the embryo.
  • Transposons in bacteria usually carry an additional gene for functions other than transposition, often for antibiotic resistance. In bacteria, transposons can jump from chromosomal DNA to plasmid DNA and back, allowing for the transfer and permanent addition of genes such as those encoding antibiotic resistance (multi-antibiotic resistant bacterial strains can be generated in this way). Bacterial transposons of this type belong to the Tn family. When the transposable elements lack additional genes, they are known as insertion sequences.
  • The most common transposable element in humans is the Alu sequence. It is approximately 300 bases long and can be found between 300,000 and one million times in the human genome. Alu alone is estimated to make up 15–17% of the human genome.
  • Mariner-like elements are another prominent class of transposons found in multiple species, including humans. The Mariner transposon was first discovered by Jacobson and Hartl in Drosophila. This Class II transposable element is known for its uncanny ability to be transmitted horizontally in many species. There are an estimated 14,000 copies of Mariner in the human genome comprising 2.6 million base pairs. The first mariner-element transposons outside of animals were found in Trichomonas vaginalis. These characteristics of the Mariner transposon inspired the science fiction novel The Mariner Project by Bob Marr.
  • Mu phage transposition is the best-known example of replicative transposition.
  • Yeast (Saccharomyces cerevisiae) genomes contain five distinct retrotransposon families: Ty1, Ty2, Ty3, Ty4 and Ty5.
  • A helitron is a TE found in eukaryotes that is thought to replicate by a rolling-circle mechanism.
  • In human embryos, two types of transposons combined to form noncoding RNA that catalyzes the development of stem cells. During the early stages of a fetus's growth, the embryo's inner cell mass expands as these stem cells enumerate. The increase of this type of cells is crucial, since stem cells later change form and give rise to all the cells in the body.
  • In peppered moths, a transposon in a gene called cortex caused the moths' wings to turn completely black. This change in coloration helped moths to blend in with ash and soot-covered areas during the Industrial Revolution.

In disease

TEs are mutagens and their movements are often the causes of genetic disease. They can damage the genome of their host cell in different ways:
  • a transposon or a retrotransposon that inserts itself into a functional gene will most likely disable that gene;
  • after a DNA transposon leaves a gene, the resulting gap will probably not be repaired correctly;
  • multiple copies of the same sequence, such as Alu sequences, can hinder precise chromosomal pairing during mitosis and meiosis, resulting in unequal crossovers, one of the main reasons for chromosome duplication.
Diseases often caused by TEs include hemophilia A and B, severe combined immunodeficiency, porphyria, predisposition to cancer, and Duchenne muscular dystrophy. LINE1 (L1) TEs that land on the human Factor VIII have been shown to cause haemophilia and insertion of L1 into the APC gene causes colon cancer, confirming that TEs play an important role in disease development. Transposable element dysregulation can cause neuronal death in Alzheimer's disease and similar tauopathies.

Additionally, many TEs contain promoters which drive transcription of their own transposase. These promoters can cause aberrant expression of linked genes, causing disease or mutant phenotypes.

Rate of transposition, induction and defense

One study estimated the rate of transposition of a particular retrotransposon, the Ty1 element in Saccharomyces cerevisiae. Using several assumptions, the rate of successful transposition event per single Ty1 element came out to be about once every few months to once every few years. Some TEs contain heat-shock like promoters and their rate of transposition increases if the cell is subjected to stress, thus increasing the mutation rate under these conditions, which might be beneficial to the cell.
Cells defend against the proliferation of TEs in a number of ways. These include piRNAs and siRNAs, which silence TEs after they have been transcribed. 

If organisms are mostly composed of TEs, one might assume that disease caused by misplaced TEs is very common, but in most cases TEs are silenced through epigenetic mechanisms like DNA methylation, chromatin remodeling and piRNA, such that little to no phenotypic effects nor movements of TEs occur as in some wild-type plant TEs. Certain mutated plants have been found to have defects in methylation-related enzymes (methyl transferase) which cause the transcription of TEs, thus affecting the phenotype.

One hypothesis suggests that only approximately 100 LINE1 related sequences are active, despite their sequences making up 17% of the human genome. In human cells, silencing of LINE1 sequences is triggered by an RNA interference (RNAi) mechanism. Surprisingly, the RNAi sequences are derived from the 5' untranslated region (UTR) of the LINE1, a long terminal which repeats itself. Supposedly, the 5' LINE1 UTR that codes for the sense promoter for LINE1 transcription also encodes the antisense promoter for the miRNA that becomes the substrate for siRNA production. Inhibition of the RNAi silencing mechanism in this region showed an increase in LINE1 transcription.

Evolution

TEs are found in almost all life forms, and the scientific community is still exploring their evolution and their effect on genome evolution. It is unclear whether TEs originated in the last universal common ancestor, arose independently multiple times, or arose once and then spread to other kingdoms by horizontal gene transfer. While some TEs confer benefits on their hosts, most are regarded as selfish DNA parasites. In this way, they are similar to viruses. Various viruses and TEs also share features in their genome structures and biochemical abilities, leading to speculation that they share a common ancestor.

Because excessive TE activity can damage exons, many organisms have acquired mechanisms to inhibit their activity. Bacteria may undergo high rates of gene deletion as part of a mechanism to remove TEs and viruses from their genomes, while eukaryotic organisms typically use RNA interference to inhibit TE activity. Nevertheless, some TEs generate large families often associated with speciation events. Evolution often deactivates DNA transposons, leaving them as introns (inactive gene sequences). In vertebrate animal cells, nearly all 100,000+ DNA transposons per genome have genes that encode inactive transposase polypeptides. In humans, all Tc1-like transposons are inactive. The first synthetic transposon designed for use in vertebrate cells, the Sleeping Beauty transposon system, is a Tc1/mariner-like transposon. It exists in the human genome as an intron and was activated through reconstruction.

Large quantities of TEs within genomes may still present evolutionary advantages, however. Interspersed repeats within genomes are created by transposition events accumulating over evolutionary time. Because interspersed repeats block gene conversion, they protect novel gene sequences from being overwritten by similar gene sequences and thereby facilitate the development of new genes. TEs may also have been co-opted by the vertebrate immune system as a means of producing antibody diversity. The V(D)J recombination system operates by a mechanism similar to that of some TEs. 

TEs can contain many types of genes, including those conferring antibiotic resistance and ability to transpose to conjugative plasmids. Some TEs also contain integrons, genetic elements that can capture and express genes from other sources. These contain integrase, which can integrate gene cassettes. There are over 40 antibiotic resistance genes identified on cassettes, as well as virulence genes. 

Transposons do not always excise their elements precisely, sometimes removing the adjacent base pairs; this phenomenon is called exon shuffling. Shuffling two unrelated exons can create a novel gene product or, more likely, an intron.

Applications

The first TE was discovered in maize (Zea mays) and is named dissociator (Ds). Likewise, the first TE to be molecularly isolated was from a plant (snapdragon). Appropriately, TEs have been an especially useful tool in plant molecular biology. Researchers use them as a means of mutagenesis. In this context, a TE jumps into a gene and produces a mutation. The presence of such a TE provides a straightforward means of identifying the mutant allele relative to chemical mutagenesis methods. 

Sometimes the insertion of a TE into a gene can disrupt that gene's function in a reversible manner, in a process called insertional mutagenesis; transposase-mediated excision of the DNA transposon restores gene function. This produces plants in which neighboring cells have different genotypes. This feature allows researchers to distinguish between genes that must be present inside of a cell in order to function (cell-autonomous) and genes that produce observable effects in cells other than those where the gene is expressed. 

TEs are also a widely used tool for mutagenesis of most experimentally tractable organisms. The Sleeping Beauty transposon system has been used extensively as an insertional tag for identifying cancer genes.

The Tc1/mariner-class of TEs Sleeping Beauty transposon system, awarded Molecule of the Year in 2009, is active in mammalian cells and is being investigated for use in human gene therapy.

TEs are used for the reconstruction of phylogenies by the means of presence/absence analyses.

De novo repeat identification

De novo repeat identification is an initial scan of sequence data that seeks to find the repetitive regions of the genome, and to classify these repeats. Many computer programs exist to perform de novo repeat identification, all operating under the same general principles. As short tandem repeats are generally 1–6 base pairs in length and are often consecutive, their identification is relatively simple. Dispersed repetitive elements, on the other hand, are more challenging to identify, due to the fact that they are longer and have often acquired mutations. However, it is important to identify these repeats as they are often found to be transposable elements (TEs).

De novo identification of transposons involves three steps: 1) find all repeats within the genome, 2) build a consensus of each family of sequences, and 3) classify these repeats. There are three groups of algorithms for the first step. One group is referred to as the k-mer approach, where a k-mer is a sequence of length k. In this approach, the genome is scanned for overrepresented k-mers; that is, k-mers that occur more often than is likely based on probability alone. The length k is determined by the type of transposon being searched for. The k-mer approach also allows mismatches, the number of which is determined by the analyst. Some k-mer approach programs use the k-mer as a base, and extend both ends of each repeated k-mer until there is no more similarity between them, indicating the ends of the repeats. Another group of algorithms employs a method called sequence self-comparison. Sequence self-comparison programs use databases such as AB-BLAST to conduct an initial sequence alignment. As these programs find groups of elements that partially overlap, they are useful for finding highly diverged transposons, or transposons with only a small region copied into other parts of the genome. Another group of algorithms follows the periodicity approach. These algorithms perform a Fourier transformation on the sequence data, identifying periodicities, regions that are repeated periodically, and are able to use peaks in the resultant spectrum to find candidate repetitive elements. This method works best for tandem repeats, but can be used for dispersed repeats as well. However, it is a slow process, making it an unlikely choice for genome scale analysis.

The second step of de novo repeat identification involves building a consensus of each family of sequences. A consensus sequence is a sequence that is created based on the repeats that comprise a TE family. A base pair in a consensus is the one that occurred most often in the sequences being compared to make the consensus. For example, in a family of 50 repeats where 42 have a T base pair in the same position, the consensus sequence would have a T at this position as well, as the base pair is representative of the family as a whole at that particular position, and is most likely the base pair found in the family's ancestor at that position. Once a consensus sequence has been made for each family, it is then possible to move on to further analysis, such as TE classification and genome masking in order to quantify the overall TE content of the genome.

Adaptive TEs

Transposable elements have been recognized as good candidates for stimulating gene adaptation, through their ability to regulate the expression levels of nearby genes. Combined with their "mobility", transposable elements can be relocated adjacent to their targeted genes, and control the expression levels of the gene, dependent upon the circumstances. 

The study conducted in 2008, "High Rate of Recent Transposable Element–Induced Adaptation in Drosophila melanogaster", used D. melanogaster that had recently migrated from Africa to other parts of the world, as a basis for studying adaptations caused by transposable elements. Although most of the TEs were located on introns, the experiment showed the significant difference on gene expressions between the population in Africa and other parts of the world. The four TEs that caused the selective sweep were more prevalent in D. melanogaster from temperate climates, leading the researchers to conclude that the selective pressures of the climate prompted genetic adaptation. From this experiment, it has been confirmed that adaptive TEs are prevalent in nature, by enabling organisms to adapt gene expression as a result of new selective pressures. 

However, not all effects of adaptive TEs are beneficial to the population. In the research conducted in 2009, "A Recent Adaptive Transposable Element Insertion Near Highly Conserved Developmental Loci in Drosophila melanogaster", a TE, inserted between Jheh 2 and Jheh 3, revealed a downgrade in the expression level of both of the genes. Down regulation of such genes has caused Drosophila to exhibit extended developmental time and reduced egg to adult viability. Although this adaptation was observed in high frequency in all non-African populations, it was not fixed in any of them. This is not hard to believe, since it is logical for a population to favor higher egg to adult viability, therefore trying to purge the trait caused by this specific TE adaptation. 

At the same time, there have been several reports showing the advantageous adaptation caused by TEs. In the research done with silkworms, "An Adaptive Transposable Element insertion in the Regulatory Region of the EO Gene in the Domesticated Silkworm", a TE insertion was observed in the cis-regulatory region of the EO gene, which regulates molting hormone 20E, and enhanced expression was recorded. While populations without the TE insert are often unable to effectively regulate hormone 20E under starvation conditions, those with the insert had a more stable development, which resulted in higher developmental uniformity.

These three experiments all demonstrated different ways in which TE insertions can be advantageous or disadvantageous, through means of regulating the expression level of adjacent genes. The field of adaptive TE research is still under development and more findings can be expected in the future.

Representation of a Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Representation_of_a_Lie_group...