Search This Blog

Friday, July 19, 2024

Carbon price

From Wikipedia, the free encyclopedia
Carbon taxes and emission trading worldwide
Emission trading and carbon taxes around the world (2021)
  Carbon emission trading implemented or scheduled
  Carbon tax implemented or scheduled
  Carbon emission trading or carbon tax under consideration

Carbon pricing (or CO2 pricing) is a method for governments to mitigate climate change, in which a monetary cost is applied to greenhouse gas emissions in order to encourage polluters to reduce fossil fuel combustion, the main driver of climate change. A carbon price usually takes the form of a carbon tax, or an emissions trading scheme (ETS) that requires firms to purchase allowances to emit. The method is widely agreed to be an efficient policy for reducing greenhouse gas emissions. Carbon pricing seeks to address the economic problem that emissions of CO2 and other greenhouse gases are a negative externality – a detrimental product that is not charged for by any market.

21.7% of global GHG emissions are covered by carbon pricing in 2021, a major increase due to the introduction of the Chinese national carbon trading scheme. Regions with carbon pricing include most European countries and Canada. On the other hand, top emitters like India, Russia, the Gulf states and many US states have not introduced carbon pricing. Australia had a carbon pricing scheme from 2012 to 2014. In 2020, carbon pricing generated $53B in revenue.

According to the Intergovernmental Panel on Climate Change, a price level of $135–$5500 in 2030 and $245–$13,000 per metric ton CO2 in 2050 would be needed to drive carbon emissions to stay below the 1.5°C limit. Latest models of the social cost of carbon calculate a damage of more than $300 per ton of CO2 as a result of economy feedbacks and falling global GDP growth rates, while policy recommendations range from about $50 to $200. Many carbon pricing schemes including the ETS in China remain below $10 per ton of CO2.[3] One exception is the European Union Emissions Trading System (EU-ETS) which exceeded €100 ($108) per ton of CO2 in February 2023.

A carbon tax is generally favoured on economic grounds for its simplicity and stability, while cap-and-trade theoretically offers the possibility to limit allowances to the remaining carbon budget. Current implementations are only designed to meet certain reduction targets.

Overview

Carbon pricing is considered by many economists to be the most economically efficient way to reduce emissions, taking into account the costs of both efficiency measures and the inconvenience of lesser fossil fuels. By pricing the externalities of carbon emissions, efficiency comes about by eliminating the market failure of the unpriced external costs of carbon emissions at its source. It is regarded as more efficient than renewable energy subsidies given to individual firms, because the difficulties of determining the value of emissions to each firm makes command and control regulation less likely to be efficient.

In a carbon tax model, a tax is imposed on carbon emissions produced by a firm. In a cap-and-trade design, the government establishes an emissions cap and allocates to firms emission allowances, which can thereafter be privately traded. Emitters without the required allowances face a penalty more than the price of permits. Assuming all else is equal, the market for permits will automatically adjust the carbon price to a level that ensures that the cap is met. The EU ETS uses this method. In practice, it has resulted in a fairly strong carbon price from 2005 to 2009, but that was later undermined by an oversupply and the Great Recession. Recent policy changes have led to a steep increase of the carbon price since 2018, exceeding 100€ ($118) per ton of CO2 in February 2023.

The exact monetary damage of the social cost caused by a tonne of CO2 depends on climate and economic feedback effects and remains to some degree uncertain. Latest calculations show an increasing trend:

Source Year Carbon price per ton of CO2 Remarks
Interagency Working Group (US government) 2013 / 2016 $42 Central estimate for 3% discount rate in 2020
$212 High impact value for 2050 / 3% discount / 95th percentile
German Environmental Agency 2019 $213 (180 €) With 1% time preference
$757 (640 €) Without time preference
Kikstra et al. 2021 $3372 Including economic feedbacks

Implementation

Carbon emission trade – allowance prices from 2008

Cap-and-trade systems can include price stability provisions with floor and ceiling limits. Such designs are often referred to as hybrid designs. To the extent the price is controlled by these limits, it can be considered a tax.

Carbon tax versus emissions trade

Carbon emissions trading works by setting a quantitative limit on the emissions produced by emitters. As a result, the price automatically adjusts to this target. This is the main advantage compared to a fixed carbon tax. A carbon tax is considered easier to enforce on a broad-base scale than cap-and-trade programs. The simplicity and immediacy of a carbon tax has been proven effective in British Columbia, Canada – enacted and implemented in five months. A hybrid cap-and-trade program puts a limit on price increases and, in some cases, sets a floor price as well. The upper limit is set by adding more allowances to the market at a set price while the floor price is maintained by not allowing sales into the market at a price below the floor. The Regional Greenhouse Gas Initiative, for example, sets an upper limit on allowance prices through its cost containment provision.

However, industries may successfully lobby to exempt themselves from a carbon tax. It is therefore argued that with emissions trading, polluters have an incentive to cut emissions, but if they are exempted from a carbon tax, they have no incentive to cut emissions. On the other hand, freely distributing emission permits could potentially lead to corrupt behaviour.

Most cap and trade programs have a descending cap, usually a fixed percentage every year, which gives certainty to the market and guarantees that emissions will decline over time. With a tax, there can be estimates of reduction in carbon emissions, which may not be sufficient to change the course of climate change. A declining cap gives allowance for firm reduction targets and a system for measuring when targets are met. It also allows for flexibility, unlike rigid taxes. Providing emission permits (also called allowances) under emissions trading is preferred in situations where a more accurate target level of emissions certainty is needed.

Revenue policies

Standard proposals for using carbon revenues include

  • a return to the public on a per-capita basis This can compensate the risk of rising energy prices reaching high levels as long as cheap wind and solar power is not available yet. Rich people who tend to have a larger carbon footprint would pay more while poorer people can even benefit from such a regulation.
  • subsidies accelerating the transition to renewable energy
  • research, public transport, car sharing and other policies that promote carbon neutrality
  • subsidies for negative emissions: Depending on the technology, such as PyCCS or BECCS, the cost for generating negative emissions is about $150–165 per ton of CO2. The removal past emissions – 1,700 Gt in total – can theoretically be addressed by auctioning allowances starting with a price that exceeds the removal costs of the proposed emissions.

Price levels

About one third of the systems stays below $10/tCO2, the majority is below $40. One exception is the steep incline in the EU-ETS reaching $60 in September 2021. Sweden and Switzerland are the only countries with more than $100/tCO2.

Carbon prices (USD) in 2021

Market price surge in fossil fuels

Unexpected spikes in natural gas prices and commodities such as oil and coal in 2021 caused a debate whether a carbon price increase should be postponed to avoid additional social burden. On the other hand, a redistribution on a per-capita-basis would even release poorer households which tend to consume less energy compared to wealthier parts of the population. The higher the high carbon price the greater the relief. Looking at individual situations though, the compensation would not apply to commuters in rural areas or people living in houses with poor insulation. They neither have liquidity to invest into solutions using less fossil fuels and would be dependent on credits or subsidies. On the other hand, a carbon price still helps to provide an incentive to use more effective fossil fuel technologies such as CCGT gas turbines in contrast to high-emission coal.

Scope and coverage

In the relevant countries with ETS and taxes, about 40% to 80% of emissions are covered. The schemes differ much in detail. They include or exclude fuels, transport, heating, agriculture or other greenhouse gases apart from CO2 like methane or fluorinated gases. In many EU member states like France or Germany, there is a coexistence of two systems: The EU-ETS covers power generation and large industry emissions while national ETS or taxes put a different price on petrol, natural gas and oil for private consumption.

Carbon pricing schemes with more than $2 bn revenue
country / region type share coverage / remarks revenue 2020
EU ETS 39% industry, electricity, intra-EU aviation $22.5 bn
China ETS 40% electricity, district heating launched 2021
Canada tax 22% National pricing in Canada, additional taxes and ETS in provinces $3.4 bn
France tax 35% non EU-ETS $9.6 bn
Germany ETS 40% non EU-ETS: transport, heating $ 8.75 bn (€7.4 bn) expected, launch 2021
Japan tax 75%
$2.4 bn
Sweden tax 40% transport, buildings, industry, agriculture $2.3 bn

Other taxes and price components

The final consumer price for fuels and electric energy depends on individual tax regulations and conditions in each country. Though carbon pricing is playing an increasing role, energy taxes, VAT, utility expenses and other components are still the main cause for completely different price levels between countries.

Impact on retail prices

The table gives examples for a carbon price of $100 or 100 units of any other currency accordingly. Food calculation is all based on CO2 equivalents including the high impact of methane emissions.

FUEL impact
1 L petrol $0.24
1 L diesel $0.27
TRANSPORT impact remarks
500 km car travel, 1 passenger $8.40 7 L petrol per 100 km
500 km jet aircraft per seat $6.70 0.134 kgCO2/km, Domestic flight NZ, A320, 173 seats, all occupied, with radiative forcing multiplier
500 km small aircraft per seat $32.95 0.659 kgCO2/km, Domestic flight NZ, less than 50 seats, all occupied
5000 km jet aircraft, economy class, per seat $76.50 0.153 kgCO2/km, >3700 km
5000 km jet aircraft, first class, per seat $292.50 0.585 kgCO2/km, >3700 km
ELECTRICITY impact
1 kWh lignite $0.11
1 kWh hard coal $0.10
1 kWh natural gas $0.06
1 kWh natural gas (CCGT) $0.04
HEAT impact
1 KWh from natural gas $0.02
1 KWh from light fuel oil $0.03
1 L light fuel oil $0.29
FOOD at farm gate life cycle assessment source / remarks 
1 kg lamb $2.04 $3.92
1 kg beef $1.52 $2.70 $33.50 with land-use in tropical rain forests
1 kg butter $1.47

1 kg cheese $0.98 $1.35
1 kg pork $0.46 $1.21
1 kg rice $0.24 $0.27 white rice
1 kg chicken $0.23 $0.69
1 kg fish $0.41 $0.61 salmon / canned tuna
1 kg eggs $0.20 $0.41 100 g per egg
1 kg nuts $0.13 $0.23
1 L milk $0.11 $0.19 2% fat
1 kg tofu $0.07 $0.20
1 kg potatoes $0.03 $0.29 Eastern Idaho

Economics

Many economic properties of carbon pricing hold regardless of whether carbon is priced with a cap or a tax. However, there are a few important differences. Cap-based prices are more volatile and so they are riskier for investors, consumers and for governments that auction permits. Also, caps tend to short-out the effect of non-price policies such as renewables subsidies, while carbon taxes do not.

Carbon leakage

Carbon leakage is the effect that regulation of emissions in one country/sector has on the emissions in other countries/sectors that are not subject to the same regulation. There is no consensus over the magnitude of long-term carbon leakage.

The leakage rate is defined as the increase in CO2 emissions outside the countries taking domestic mitigation action, divided by the reduction in emissions of countries taking domestic mitigation action. Accordingly, a leakage rate greater than 100% means that actions to reduce emissions within countries had the effect of increasing emissions in other countries to a greater extent, i.e., domestic mitigation action had actually led to an increase in global emissions.

Estimates of leakage rates for action under the Kyoto Protocol ranged from 5% to 20% as a result of a loss in price competitiveness, but these leakage rates were considered very uncertain. For energy-intensive industries, the beneficial effects of Annex I actions through technological development were considered possibly substantial. However, this beneficial effect had not been reliably quantified. On the empirical evidence they assessed, Barker et al. (2007) concluded that the competitive losses of then-current mitigation actions, e.g., the EU-ETS, were not significant.

Under the EU ETS rules Carbon Leakage Exposure Factor is used to determine the volumes of free allocation of emission permits to industrial installations.

A general perception among developing countries is that discussion of climate change in trade negotiations could lead to green protectionism by high-income countries Eco-tariffs on imports ("virtual carbon") consistent with a carbon price of $50 per ton of CO2 could be significant for developing countries. In 2010, World Bank commented that introducing border tariffs could lead to a proliferation of trade measures where the competitive playing field is viewed as being uneven. Tariffs could also be a burden on low-income countries that have contributed very little to the problem of climate change.

Interactions with renewable energy policies

Cap-and-trade and carbon taxes interact differently with non-price policies such as renewable energy subsidies. The IPCC explains this as follows:

A carbon tax can have an additive environmental effect to policies such as subsidies for the supply of RE. By contrast, if a cap-and-trade system has a binding cap (sufficiently stringent to affect emission-related decisions), then other policies such as RE subsidies have no further impact on reducing emissions within the time period that the cap applies [emphasis added].

Carbon pricing and economic growth

According to a 2020 study carbon prices have not harmed economic growth in wealthy industrialized democracies.

In order for such a business model to become attractive, the subsidies would therefore have to exceed this value. Here, a technology openness could be the best choice, as a reduction in costs due to technical progress can be expected. Already today, these costs of generating negative emissions are below the costs of CO2 of $220 per ton, which means that a state-subsidized business model for creating negative emissions already makes economic sense today. In sum, while a carbon price has the potential to reduce future emissions, a carbon subsidy has the potential to reduce past emissions.

Advantages and disadvantages

In late 2013, William Nordhaus, president of the American Economic Association, published The Climate Casino, which culminates in a description of an international "carbon price regime". Such a regime would require national commitments to a carbon price, but not to a specific policy. Carbon taxes, caps, and hybrid schemes could all be used to satisfy such a commitment. At the same time Martin Weitzman, a leading climate economist at Harvard, published a theoretical study arguing that such a regime would make it far easier to reach an international agreement, while a focus on national targets would continue to make it nearly impossible. Nordhaus also makes this argument, but less formally.

Similar views have previously been discussed by Joseph Stiglitz and have previously appeared in a number of papers. The price-commitment view appears to have gained major support from independent positions taken by the World Bank and the International Monetary Fund (IMF).

The "Economists' Statement on Climate Change" was signed by over 2500 economists including nine Nobel Laureates in 1997. This statement summarizes the economic case for carbon pricing as follows:

The most efficient approach to slowing climate change is through market-based policies. In order for the world to achieve its climatic objectives at minimum cost, a cooperative approach among nations is required – such as an international emissions trading agreement. The United States and other nations can most efficiently implement their climate policies through market mechanisms, such as carbon taxes or the auction of emissions permits.

This statement argues that carbon pricing is a "market mechanism" in contrast to renewable subsidies or direct regulation of individual sources of carbon emissions and hence is the way that the "United States and other nations can most efficiently implement their climate policies."

Carbon offsets for individuals and businesses may also be purchased through carbon offset retailers like Carbonfund.org Foundation.

A new quantity commitment approach, suggested by Mutsuyoshi Nishimura, is for all countries to commit to the same global emission target. The "assembly of governments" would issue permits in the amount of the global target and all upstream fossil-fuel providers would be forced to buy these permits.

In 2019 the UN Secretary General asked governments to tax carbon.

The economics of carbon pricing is much the same for taxes and cap-and-trade. Both prices are efficient; they have the same social cost and the same effect on profits if permits are auctioned. However, some economists argue that caps prevent non-price policies, such as renewable energy subsidies, from reducing carbon emissions, while carbon taxes do not. Others argue that an enforced cap is the only way to guarantee that carbon emissions will actually be reduced; a carbon tax will not prevent those who can afford to do so from continuing to generate emissions.

Besides cap and trade, emission trading can refer to project-based programs, also referred to as a credit or offset programs. Such programs can sell credits for emission reductions provided by approved projects. Generally there is an additionality requirement that states that they must reduce emissions more than is required by pre-existing regulation. An example of such a program is the Clean Development Mechanism under the Kyoto Protocol. These credits can be traded to other facilities where they can be used for compliance with a cap-and-trade program. Unfortunately the concept of additionality is difficult to define and monitor, with the result that some companies purposefully increased emissions in order to get paid to eliminate them.

Cap-and-trade programs often allow "banking" of permits. This means that permits can be saved and can be used in the future. This allows an entity to over-comply in early periods in anticipation of higher carbon prices in subsequent years. This helps to stabilize the price of permits.

Free-market environmentalism

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Free-market_environmentalism

Free-market environmentalism
argues that the free market, property rights, and tort law provide the best means of preserving the environment, internalizing pollution costs, and conserving resources.

Free-market environmentalists therefore argue that the best way to protect the environment is to clarify and protect property rights. This allows parties to negotiate improvements in environmental quality. It also allows them to use torts to stop environmental harm. If affected parties can compel polluters to compensate them they will reduce or eliminate the externality. Market proponents advocate changes to the legal system that empower affected parties to obtain such compensation. They further claim that governments have limited affected parties' ability to do so by complicating the tort system to benefit producers over others.

Tenets

While environmental problems may be viewed as market failures, free market environmentalists argue that environmental problems arise because:

  1. The state encodes, provides and enforces laws which override or obscure property rights and thus fail to protect them adequately.
  2. Given the technological and legal context in which people operate, transaction costs are too high to allow parties to negotiate to a solution better for the environment.
  3. Laws governing class or individual tort claims provide polluters with immunity from tort claims, or interfere with those claims in such a way as to make it difficult to legally sustain them.

Though many environmentalists blame markets for many of today's environmental problems, free-market environmentalists blame many of these problems on distortions of the market and the lack of markets. Government actions are blamed for a number of environmental detriments.

  • A misunderstanding of the tragedy of the commons, which is seen as a fundamental problem for the environment. When land is held in common, anybody may use it. Since resources are consumable, this creates the incentive for entrepreneurs to use common resources before somebody else does. Many environmental resources are held by the government or in common, such as air, water, forests. A claimed problem with regulation is that it puts property into a political commons, where individuals try to appropriate public resources for their own gain, a phenomenon called rent-seeking.
  • Tenure – Renters do not benefit from value accrued during their tenure and thus face an incentive to extract as much value as possible without conservation.
  • Political allocation – Political information does not have the incentives that markets do to seek superior information (profit and loss). Though many participants provide input to governments, they can only make one decision. This means that governments create rules that are not well crafted for local situations. The government's strategy is that of anticipation, to hide from danger through regulations. A healthier society would use resilience, facing and overcoming risks.
  • Perverse subsidies – Governments offer cross subsidies that distort price systems. This means that underconsumers and overconsumers are paying the same rates, so the underconsumer is overpaying and the overconsumer is underpaying. The incentive leads to more overconsumers and fewer underconsumers.
  • Increased transaction costs – Governments may create rules that make it difficult to transfer rights in ways that benefit the environment. For example, in the western United States, many states have laws over water rights that make it difficult for environmental groups to purchase in-stream flows from farmers.

Market tools

Markets are not perfect, and free-market environmentalists assert that market-based solutions will have their mistakes. Through strong feedback mechanisms such as risk, profit and loss, market-driven have strong incentives to learn from mistakes.

  • Individual choice Consumers have the incentive to maximize their satisfaction and try to find low cost, high value options. Markets allocate resources to the highest bidder. Producers make purchases on behalf of the consumer. Due to many actors in the market, there is no one-size-fits-all solution and entrepreneurs will seek to fulfill many values of society, including conservation.
  • Entrepreneurship – Entrepreneurs seek value, problem-solve, and coordinate resources.
  • Price system – When resources become scarce, prices rise. Rising prices incentivize entrepreneurs to find substitutions for these resources. These resources are often conserved. E.g. as prices for coal rise, consumers will use less and higher prices will drive substitution for different energy sources.
  • Property rights – Owners face a strong incentive to take care of and protect their property. They must decide how much to use today and how much to use tomorrow. Everybody is trying to grow value. Corporate value and share price is based on their anticipated future profits. Owners with the possibility of transferring their property, either to an heir or through sale want their property to grow in value. Property rights encourage conservation and defend resources against depletion, since there is a strong incentive to maximize the value of the resource for the future.
  • Common law – In order to have working property rights, you need a good system to defend them. When rights are weak, people will violate them. By creating a strong system, where common resources can be homesteaded, transferred, and defended against harm, resources can be protected, managed, allocated with the results that aggregate and balance humanity's needs and wants.

The market is a non-political allocation device. Many environmentalists proposals call to return resources from markets to become political problems.

Issues

Coasian bargaining

Some economists argue that, if industries internalized the costs of negative externalities, they would face an incentive to reduce them, perhaps even becoming enthusiastic about taking advantage of opportunities to improve profitability through lower costs. Moreover, economists claim this would lead to the optimal balance between the marginal benefits of pursuing an activity and the marginal cost of its environmental consequences. One well-known means of internalizing a negative consequence is to establish a property right over some phenomenon formerly in the public domain.

The Coase theorem is one extreme version of this logic. If property rights are well defined and if there are no transaction costs, then market participants can negotiate to a solution that internalizes the externality. Moreover, this solution will not depend on who is allocated the property right. For example, a paper mill and a resort might be on the same lake. Suppose the benefits to the resort of a clean lake outweigh the benefits to the mill of being able to pollute. If the mill has the right to pollute, the resort will pay it not to. If the resort has the right to a pollution-free lake, it will keep that right, as the mill will be unable to compensate it for its pollution. However, critics have charged that the "theorem" attributed to Coase is of extremely limited practicability because of its assumptions, including no transaction costs, and is ill-suited to real world externalities which have high bargaining costs due to many factors.

More generally, free-market environmentalists argue that transaction costs "count" as real costs. If the cost of re-allocating property rights exceeds the benefits of doing so, then it is actually optimal to stay in the status quo. This means the initial allocation of property rights is not neutral and also that it has important implications for efficiency. Nevertheless, given the existing property rights regime, costly changes to it are not necessarily efficient, even if in hindsight an alternative regime would have been better. But if there are opportunities for property rights to evolve, entrepreneurs can find them to create new wealth.

Geolibertarianism

Libertarian Georgists (or Geolibertarians) maintain a strong essential commitment to free markets but reject the Coasian solution in favor of land value taxation, wherein the economic rent of land is collected by the community and either equally distributed to adult residents in the form of universal basic income, called the citizen's dividend, or used to fund necessary functions of a minimal government. Under the LVT system, only landholders are taxed and on the basis of the market value of the earth in its unimproved state, that is to say, apart from the value of any structures or products of human labor. Geolibertarians regard the LVT as just compensation for a legal land title granting exclusive access to that which logically precedes and generates private capital, whose supply is inelastic, which properly belongs to all, and to which all have an equal right because it is vital to human existence and economic activity—the ground itself—and thus consider land value capture both morally imperative and a natural source of revenue.

Taxation of land values has been advocated by many classical economists and theorists of classical liberalism, but this approach was popularized as the Single Tax by political economist and public intellectual Henry George in the late 19th century. Geolibertarians generally also support Pigouvian taxes on pollution and fees as compensation for natural resource extraction, negative externalities which adversely affect land values in particular. Many argue the monopolization of land promotes idle land speculation, real estate bubbles, urban sprawl and artificially severe wealth inequality, while violating the Lockean proviso and denying others rightful access to the earth.

Anarcho-capitalism

Rothbardian anarcho-capitalists also reject the proposed Coasian solution as making invalid assumptions about the purely subjective notion of costs being measurable in monetary terms, and also of making unexamined and invalid value judgments (i.e., ethical judgments). (Wayback Machine PDF) The Rothbardians' solution is to recognize individuals' Lockean property rights, of which the Rothbardians maintain that Wertfreiheit (i.e., value-free) economic analysis demonstrates that this arrangement necessarily maximizes social utility. (Toward a Reconstruction of Utility and Welfare Economics PDF)

Murray Rothbard himself believed the term "free-market environmentalism" to be oxymoronic. On his view the unimproved natural environment, undeveloped and unowned, can in no sense be considered property until it is transformed via Lockean homesteading. Unlike geolibertarians and many classical liberals, however, Rothbard emphatically rejected Locke's proviso as inconsistent with his theory of property acquisition. Against environmentalism Rothbard said: "The problem is that environmentalists are not interested in efficiency or preserving private property....The environmentalists are acolytes and prisoners of a monstrous literally anti-human philosophy. They despise and condemn the human race, which by its very nature and in contrast to other creatures, changes and transforms the environment instead of being passively subjected to it....I have come to the conclusion that a 'free-market environmentalist' is an oxymoron. Scratch one and you get...an environmentalist."

Markets and ecosystems as spontaneous orders

Recent arguments in the academic literature have used Friedrich Hayek's concept of a spontaneous order to defend a broadly non-interventionist environmental policy. Hayek originally used the concept of a spontaneous order to argue against government intervention in the market. Like the market, ecosystems contain complex networks of information, involve an ongoing dynamic process, contain orders within orders, and the entire system operates without being directed by a conscious mind. On this analysis, species takes the place of price as a visible element of the system formed by a complex set of largely unknowable elements. Human ignorance about the countless interactions between the organisms of an ecosystem limits our ability to manipulate nature. Since humans rely on the ecosystem to sustain themselves, it is argued that we have an obligation to not disrupt such systems. This analysis of ecosystems as spontaneous orders does not rely on markets qualifying as spontaneous orders. As such, one need not endorse Hayek's analysis of markets to endorse ecosystems as spontaneous orders.

Others

Proponents of free-market environmentalism use the example of the recent destruction of the once prosperous Grand Banks fishery off Newfoundland. Once one of the world's most abundant fisheries, it has been almost completely depleted of fish. Those primarily responsible were large "factory-fishing" enterprises driven by the imperative to realize profits in a competitive global market. It is contended that if the fishery had been owned by a single entity, the owner would have had an interest in keeping a renewable supply of fish to maintain profits over the long term. The owner would thus have charged high fees to fish in the area, sharply reducing how many fish were caught. The owner also would have closely enforced rules on not catching young fish. Instead commercial ships from around the world raced to get the fish out of the water before competitors could, including catching fish that had not yet reproduced.

Another example is in the 19th century early gold miners in California developed a trade in rights to draw from water courses based on the doctrine of prior appropriation. This was curtailed in 1902 by the Newlands Reclamation Act which introduced subsidies for irrigation projects. This had the effect of sending a signal to farmers that water was inexpensive and abundant, leading to uneconomic use of a scarce resource. Increasing difficulties in meeting demand for water in the western United States have been blamed on the continuing establishment of governmental control and a return to tradable property rights has been proposed.

Medea hypothesis

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Medea_hypothesis

The Medea hypothesis is a term coined by paleontologist Peter Ward for a hypothesis that contests the Gaian hypothesis and proposes that multicellular life, understood as a superorganism, may be self-destructive or suicidal. The metaphor refers to the mythological Medea (representing the Earth), who kills her own children (multicellular life).

In this view, microbial-triggered mass extinctions result in returns to the microbial-dominated state it has been for most of its history.

Examples

Possible examples of extinction events induced entirely or partially by biotic activities include:

  • The Great Oxidation Event, 2.45 billion years ago, believed to be responsible for the mass poisoning of anaerobic microbes to which oxygen was toxic, and for the Huronian glaciation that resulted from the reaction of methane with oxygen to form carbon dioxide (a less potent greenhouse gas than methane) and subsequent depletion of atmospheric carbon dioxide by aerobic photosynthesisers
  • The Sturtian and Marinoan Snowball Earth glaciations, 715 to 680 and 650 to 632.3 million years ago, respectively, resulting from the sequestration of atmospheric carbon dioxide during the Neoproterozoic Oxygenation Event
  • The Late Ordovician Mass Extinction (LOME), 445.2 million years ago to 443.8 million years ago, suggested by some studies to have been caused by glaciation resulting from carbon dioxide depletion driven by the radiation of land plants
  • Euxinic events, such as during the Great Dying, 251.9 million years ago, and the aforementioned LOME, caused by sulphur-reducing prokaryotes that produce hydrogen sulphide

The list excludes the Cretaceous–Paleogene extinction event, since this was, at least partially, externally induced by a meteor impact.

Current status and future extinctions

Peter Ward proposes that the current man-made climate change and mass extinction event may be considered to be the most recent Medean event. As these events are anthropogenic, he postulates that Medean events are not necessarily caused by microbes, but by intelligent life as well and that the final mass extinction of complex life, roughly about 500–900 million years in the future, can also be considered a Medean event: "Plant life that still exists then will be forced to adapt to a warming and expanding Sun, causing them to remove even more carbon dioxide from the atmosphere (which in turn will have already been lowered due to the increasing heat from the Sun gradually speeding up the weathering process that removes these molecules from the atmosphere), and ultimately accelerating the complete extinction of complex life by making carbon dioxide levels drop down to just 10 ppm, below which plants can no longer survive." However, Ward simultaneously argues that intelligent life such as humans may not necessarily just trigger future Medean events, but may eventually prevent them from occurring.

Gaia hypothesis

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Gaia_hypothesis
The study of planetary habitability is partly based upon extrapolation from knowledge of the Earth's conditions, as the Earth is the only planet currently known to harbour life (The Blue Marble, 1972 Apollo 17 photograph).

The Gaia hypothesis (/ˈɡ.ə/), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet.

The Gaia hypothesis was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s. Following the suggestion by his neighbour, novelist William Golding, Lovelock named the hypothesis after Gaia, the primordial deity who personified the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.

Topics related to the hypothesis include how the biosphere and the evolution of organisms affect the stability of global temperature, salinity of seawater, atmospheric oxygen levels, the maintenance of a hydrosphere of liquid water and other environmental variables that affect the habitability of Earth.

The Gaia hypothesis was initially criticized for being teleological and against the principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology. Even so, the Gaia hypothesis continues to attract criticism, and today many scientists consider it to be only weakly supported by, or at odds with, the available evidence.

Overview

Gaian hypotheses suggest that organisms co-evolve with their environment: that is, they "influence their abiotic environment, and that environment in turn influences the biota by Darwinian process". Lovelock (1995) gave evidence of this in his second book, Ages of Gaia, showing the evolution from the world of the early thermo-acido-philic and methanogenic bacteria towards the oxygen-enriched atmosphere today that supports more complex life.

A reduced version of the hypothesis has been called "influential Gaia" in the 2002 paper "Directed Evolution of the Biosphere: Biogeochemical Selection or Gaia?" by Andrei G. Lapenis, which states the biota influence certain aspects of the abiotic world, e.g. temperature and atmosphere. This is not the work of an individual but a collective of Russian scientific research that was combined into this peer-reviewed publication. It states the coevolution of life and the environment through "micro-forces" and biogeochemical processes. An example is how the activity of photosynthetic bacteria during Precambrian times completely modified the Earth atmosphere to turn it aerobic, and thus supports the evolution of life (in particular eukaryotic life).

Since barriers existed throughout the twentieth century between Russia and the rest of the world, it is only relatively recently that the early Russian scientists who introduced concepts overlapping the Gaia paradigm have become better known to the Western scientific community. These scientists include Piotr Alekseevich Kropotkin (1842–1921) (although he spent much of his professional life outside Russia), Rafail Vasil’evich Rizpolozhensky (1862 – c. 1922), Vladimir Ivanovich Vernadsky (1863–1945), and Vladimir Alexandrovich Kostitzin (1886–1963).

Biologists and Earth scientists usually view the factors that stabilize the characteristics of a period as an undirected emergent property or entelechy of the system; as each individual species pursues its own self-interest, for example, their combined actions may have counterbalancing effects on environmental change. Opponents of this view sometimes reference examples of events that resulted in dramatic change rather than stable equilibrium, such as the conversion of the Earth's atmosphere from a reducing environment to an oxygen-rich one at the end of the Archaean and the beginning of the Proterozoic periods.

Less accepted versions of the hypothesis claim that changes in the biosphere are brought about through the coordination of living organisms and maintain those conditions through homeostasis. In some versions of Gaia philosophy, all lifeforms are considered part of one single living planetary being called Gaia. In this view, the atmosphere, the seas and the terrestrial crust would be results of interventions carried out by Gaia through the coevolving diversity of living organisms.

The Gaia paradigm was an influence on the deep ecology movement.

Details

The Gaia hypothesis posits that the Earth is a self-regulating complex system involving the biosphere, the atmosphere, the hydrospheres and the pedosphere, tightly coupled as an evolving system. The hypothesis contends that this system as a whole, called Gaia, seeks a physical and chemical environment optimal for contemporary life.

Gaia evolves through a cybernetic feedback system operated by the biota, leading to broad stabilization of the conditions of habitability in a full homeostasis. Many processes in the Earth's surface, essential for the conditions of life, depend on the interaction of living forms, especially microorganisms, with inorganic elements. These processes establish a global control system that regulates Earth's surface temperature, atmosphere composition and ocean salinity, powered by the global thermodynamic disequilibrium state of the Earth system.

The existence of a planetary homeostasis influenced by living forms had been observed previously in the field of biogeochemistry, and it is being investigated also in other fields like Earth system science. The originality of the Gaia hypothesis relies on the assessment that such homeostatic balance is actively pursued with the goal of keeping the optimal conditions for life, even when terrestrial or external events menace them.

Regulation of global surface temperature

Rob Rohde's palaeotemperature graphs

Since life started on Earth, the energy provided by the Sun has increased by 25% to 30%; however, the surface temperature of the planet has remained within the levels of habitability, reaching quite regular low and high margins. Lovelock has also hypothesised that methanogens produced elevated levels of methane in the early atmosphere, giving a situation similar to that found in petrochemical smog, similar in some respects to the atmosphere on Titan. This, he suggests, helped to screen out ultraviolet light until the formation of the ozone layer, maintaining a degree of homeostasis. However, the Snowball Earth research has suggested that "oxygen shocks" and reduced methane levels led, during the Huronian, Sturtian and Marinoan/Varanger Ice Ages, to a world that very nearly became a solid "snowball". These epochs are evidence against the ability of the pre Phanerozoic biosphere to fully self-regulate.

Processing of the greenhouse gas CO2, explained below, plays a critical role in the maintenance of the Earth temperature within the limits of habitability.

The CLAW hypothesis, inspired by the Gaia hypothesis, proposes a feedback loop that operates between ocean ecosystems and the Earth's climate. The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses lead to a negative feedback loop that acts to stabilise the temperature of the Earth's atmosphere.

Currently the increase in human population and the environmental impact of their activities, such as the multiplication of greenhouse gases may cause negative feedbacks in the environment to become positive feedback. Lovelock has stated that this could bring an extremely accelerated global warming, but he has since stated the effects will likely occur more slowly.

Daisyworld simulations

Plots from a standard black and white Daisyworld simulation

In response to the criticism that the Gaia hypothesis seemingly required unrealistic group selection and cooperation between organisms, James Lovelock and Andrew Watson developed a mathematical model, Daisyworld, in which ecological competition underpinned planetary temperature regulation.

Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies, which are assumed to occupy a significant portion of the surface. The colour of the daisies influences the albedo of the planet such that black daisies absorb more light and warm the planet, while white daisies reflect more light and cool the planet. The black daisies are assumed to grow and reproduce best at a lower temperature, while the white daisies are assumed to thrive best at a higher temperature. As the temperature rises closer to the value the white daisies like, the white daisies outreproduce the black daisies, leading to a larger percentage of white surface, and more sunlight is reflected, reducing the heat input and eventually cooling the planet. Conversely, as the temperature falls, the black daisies outreproduce the white daisies, absorbing more sunlight and warming the planet. The temperature will thus converge to the value at which the reproductive rates of the plants are equal.

Lovelock and Watson showed that, over a limited range of conditions, this negative feedback due to competition can stabilize the planet's temperature at a value which supports life, if the energy output of the Sun changes, while a planet without life would show wide temperature changes. The percentage of white and black daisies will continually change to keep the temperature at the value at which the plants' reproductive rates are equal, allowing both life forms to thrive.

It has been suggested that the results were predictable because Lovelock and Watson selected examples that produced the responses they desired.

Regulation of oceanic salinity

Ocean salinity has been constant at about 3.5% for a very long time. Salinity stability in oceanic environments is important as most cells require a rather constant salinity and do not generally tolerate values above 5%. The constant ocean salinity was a long-standing mystery, because no process counterbalancing the salt influx from rivers was known. Recently it was suggested that salinity may also be strongly influenced by seawater circulation through hot basaltic rocks, and emerging as hot water vents on mid-ocean ridges. However, the composition of seawater is far from equilibrium, and it is difficult to explain this fact without the influence of organic processes. One suggested explanation lies in the formation of salt plains throughout Earth's history. It is hypothesized that these are created by bacterial colonies that fix ions and heavy metals during their life processes.

In the biogeochemical processes of Earth, sources and sinks are the movement of elements. The composition of salt ions within our oceans and seas is: sodium (Na+), chlorine (Cl), sulfate (SO42−), magnesium (Mg2+), calcium (Ca2+) and potassium (K+). The elements that comprise salinity do not readily change and are a conservative property of seawater. There are many mechanisms that change salinity from a particulate form to a dissolved form and back. Considering the metallic composition of iron sources across a multifaceted grid of thermomagnetic design, not only would the movement of elements hypothetically help restructure the movement of ions, electrons, and the like, but would also potentially and inexplicably assist in balancing the magnetic bodies of the Earth's geomagnetic field. The known sources of sodium i.e. salts are when weathering, erosion, and dissolution of rocks are transported into rivers and deposited into the oceans.

The Mediterranean Sea as being Gaia's kidney is found (here) by Kenneth J. Hsu, a correspondence author in 2001. Hsu suggests the "desiccation" of the Mediterranean is evidence of a functioning Gaia "kidney". In this and earlier suggested cases, it is plate movements and physics, not biology, which performs the regulation. Earlier "kidney functions" were performed during the "deposition of the Cretaceous (South Atlantic), Jurassic (Gulf of Mexico), Permo-Triassic (Europe), Devonian (Canada), and Cambrian/Precambrian (Gondwana) saline giants."

Regulation of oxygen in the atmosphere

Levels of gases in the atmosphere in 420,000 years of ice core data from Vostok, Antarctica research station. Current period is at the left.

The Gaia theorem states that the Earth's atmospheric composition is kept at a dynamically steady state by the presence of life. The atmospheric composition provides the conditions that contemporary life has adapted to. All the atmospheric gases other than noble gases present in the atmosphere are either made by organisms or processed by them.

The stability of the atmosphere in Earth is not a consequence of chemical equilibrium. Oxygen is a reactive compound, and should eventually combine with gases and minerals of the Earth's atmosphere and crust. Oxygen only began to persist in the atmosphere in small quantities about 50 million years before the start of the Great Oxygenation Event. Since the start of the Cambrian period, atmospheric oxygen concentrations have fluctuated between 15% and 35% of atmospheric volume. Traces of methane (at an amount of 100,000 tonnes produced per year) should not exist, as methane is combustible in an oxygen atmosphere.

Dry air in the atmosphere of Earth contains roughly (by volume) 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases including methane. Lovelock originally speculated that concentrations of oxygen above about 25% would increase the frequency of wildfires and conflagration of forests. This mechanism, however, would not raise oxygen levels if they became too low. If plants can be shown to robustly over-produce O2 then perhaps only the high oxygen forest fires regulator is necessary. Recent work on the findings of fire-caused charcoal in Carboniferous and Cretaceous coal measures, in geologic periods when O2 did exceed 25%, has supported Lovelock's contention. 

Processing of CO2

Gaia scientists see the participation of living organisms in the carbon cycle as one of the complex processes that maintain conditions suitable for life. The only significant natural source of atmospheric carbon dioxide (CO2) is volcanic activity, while the only significant removal is through the precipitation of carbonate rocks. Carbon precipitation, solution and fixation are influenced by the bacteria and plant roots in soils, where they improve gaseous circulation, or in coral reefs, where calcium carbonate is deposited as a solid on the sea floor. Calcium carbonate is used by living organisms to manufacture carbonaceous tests and shells. Once dead, the living organisms' shells fall. Some arrive at the bottom of shallow seas where the heat and pressure of burial, and/or the forces of plate tectonics, eventually convert them to deposits of chalk and limestone. Much of the falling dead shells, however, redissolve into the ocean below the carbon compensation depth.

One of these organisms is Emiliania huxleyi, an abundant coccolithophore algae which may have a role in the formation of clouds. CO2 excess is compensated by an increase of coccolithophorid life, increasing the amount of CO2 locked in the ocean floor. Coccolithophorids, if the CLAW Hypothesis turns out to be supported (see "Regulation of Global Surface Temperature" above), could help increase the cloud cover, hence control the surface temperature, help cool the whole planet and favor precipitation necessary for terrestrial plants. Lately the atmospheric CO2 concentration has increased and there is some evidence that concentrations of ocean algal blooms are also increasing.

Lichen and other organisms accelerate the weathering of rocks in the surface, while the decomposition of rocks also happens faster in the soil, thanks to the activity of roots, fungi, bacteria and subterranean animals. The flow of carbon dioxide from the atmosphere to the soil is therefore regulated with the help of living organisms. When CO2 levels rise in the atmosphere the temperature increases and plants grow. This growth brings higher consumption of CO2 by the plants, who process it into the soil, removing it from the atmosphere.

History

Precedents

Earthrise taken from Apollo 8 by astronaut William Anders, December 24, 1968

The idea of the Earth as an integrated whole, a living being, has a long tradition. The mythical Gaia was the primal Greek goddess personifying the Earth, the Greek version of "Mother Nature" (from Ge = Earth, and Aia = PIE grandmother), or the Earth Mother. James Lovelock gave this name to his hypothesis after a suggestion from the novelist William Golding, who was living in the same village as Lovelock at the time (Bowerchalke, Wiltshire, UK). Golding's advice was based on Gea, an alternative spelling for the name of the Greek goddess, which is used as prefix in geology, geophysics and geochemistry. Golding later made reference to Gaia in his Nobel prize acceptance speech.

In the eighteenth century, as geology consolidated as a modern science, James Hutton maintained that geological and biological processes are interlinked. Later, the naturalist and explorer Alexander von Humboldt recognized the coevolution of living organisms, climate, and Earth's crust. In the twentieth century, Vladimir Vernadsky formulated a theory of Earth's development that is now one of the foundations of ecology. Vernadsky was a Ukrainian geochemist and was one of the first scientists to recognize that the oxygen, nitrogen, and carbon dioxide in the Earth's atmosphere result from biological processes. During the 1920s he published works arguing that living organisms could reshape the planet as surely as any physical force. Vernadsky was a pioneer of the scientific bases for the environmental sciences. His visionary pronouncements were not widely accepted in the West, and some decades later the Gaia hypothesis received the same type of initial resistance from the scientific community.

Also in the turn to the 20th century Aldo Leopold, pioneer in the development of modern environmental ethics and in the movement for wilderness conservation, suggested a living Earth in his biocentric or holistic ethics regarding land.

It is at least not impossible to regard the earth's parts—soil, mountains, rivers, atmosphere etc,—as organs or parts of organs of a coordinated whole, each part with its definite function. And if we could see this whole, as a whole, through a great period of time, we might perceive not only organs with coordinated functions, but possibly also that process of consumption as replacement which in biology we call metabolism, or growth. In such case we would have all the visible attributes of a living thing, which we do not realize to be such because it is too big, and its life processes too slow.

— Stephan Harding, Animate Earth

Another influence for the Gaia hypothesis and the environmental movement in general came as a side effect of the Space Race between the Soviet Union and the United States of America. During the 1960s, the first humans in space could see how the Earth looked as a whole. The photograph Earthrise taken by astronaut William Anders in 1968 during the Apollo 8 mission became, through the Overview Effect an early symbol for the global ecology movement.

Formulation of the hypothesis

James Lovelock, 2005

Lovelock started defining the idea of a self-regulating Earth controlled by the community of living organisms in September 1965, while working at the Jet Propulsion Laboratory in California on methods of detecting life on Mars. The first paper to mention it was Planetary Atmospheres: Compositional and other Changes Associated with the Presence of Life, co-authored with C.E. Giffin. A main concept was that life could be detected in a planetary scale by the chemical composition of the atmosphere. According to the data gathered by the Pic du Midi observatory, planets like Mars or Venus had atmospheres in chemical equilibrium. This difference with the Earth atmosphere was considered to be a proof that there was no life in these planets.

Lovelock formulated the Gaia Hypothesis in journal articles in 1972 and 1974, followed by a popularizing 1979 book Gaia: A new look at life on Earth. An article in the New Scientist of February 6, 1975, and a popular book length version of the hypothesis, published in 1979 as The Quest for Gaia, began to attract scientific and critical attention.

Lovelock called it first the Earth feedback hypothesis, and it was a way to explain the fact that combinations of chemicals including oxygen and methane persist in stable concentrations in the atmosphere of the Earth. Lovelock suggested detecting such combinations in other planets' atmospheres as a relatively reliable and cheap way to detect life.

Lynn Margulis

Later, other relationships such as sea creatures producing sulfur and iodine in approximately the same quantities as required by land creatures emerged and helped bolster the hypothesis.

In 1971 microbiologist Dr. Lynn Margulis joined Lovelock in the effort of fleshing out the initial hypothesis into scientifically proven concepts, contributing her knowledge about how microbes affect the atmosphere and the different layers in the surface of the planet. The American biologist had also awakened criticism from the scientific community with her advocacy of the theory on the origin of eukaryotic organelles and her contributions to the endosymbiotic theory, nowadays accepted. Margulis dedicated the last of eight chapters in her book, The Symbiotic Planet, to Gaia. However, she objected to the widespread personification of Gaia and stressed that Gaia is "not an organism", but "an emergent property of interaction among organisms". She defined Gaia as "the series of interacting ecosystems that compose a single huge ecosystem at the Earth's surface. Period". The book's most memorable "slogan" was actually quipped by a student of Margulis'.

James Lovelock called his first proposal the Gaia hypothesis but has also used the term Gaia theory. Lovelock states that the initial formulation was based on observation, but still lacked a scientific explanation. The Gaia hypothesis has since been supported by a number of scientific experiments[45] and provided a number of useful predictions.

First Gaia conference

In 1985, the first public symposium on the Gaia hypothesis, Is The Earth a Living Organism? was held at University of Massachusetts Amherst, August 1–6. The principal sponsor was the National Audubon Society. Speakers included James Lovelock, Lynn Margulis, George Wald, Mary Catherine Bateson, Lewis Thomas, Thomas Berry, David Abram, John Todd, Donald Michael, Christopher Bird, Michael Cohen, and William Fields. Some 500 people attended.

Second Gaia conference

In 1988, climatologist Stephen Schneider organised a conference of the American Geophysical Union. The first Chapman Conference on Gaia, was held in San Diego, California on March 7, 1988.

During the "philosophical foundations" session of the conference, David Abram spoke on the influence of metaphor in science, and of the Gaia hypothesis as offering a new and potentially game-changing metaphorics, while James Kirchner criticised the Gaia hypothesis for its imprecision. Kirchner claimed that Lovelock and Margulis had not presented one Gaia hypothesis, but four:

  • CoEvolutionary Gaia: that life and the environment had evolved in a coupled way. Kirchner claimed that this was already accepted scientifically and was not new.
  • Homeostatic Gaia: that life maintained the stability of the natural environment, and that this stability enabled life to continue to exist.
  • Geophysical Gaia: that the Gaia hypothesis generated interest in geophysical cycles and therefore led to interesting new research in terrestrial geophysical dynamics.
  • Optimising Gaia: that Gaia shaped the planet in a way that made it an optimal environment for life as a whole. Kirchner claimed that this was not testable and therefore was not scientific.

Of Homeostatic Gaia, Kirchner recognised two alternatives. "Weak Gaia" asserted that life tends to make the environment stable for the flourishing of all life. "Strong Gaia" according to Kirchner, asserted that life tends to make the environment stable, to enable the flourishing of all life. Strong Gaia, Kirchner claimed, was untestable and therefore not scientific.

Lovelock and other Gaia-supporting scientists, however, did attempt to disprove the claim that the hypothesis is not scientific because it is impossible to test it by controlled experiment. For example, against the charge that Gaia was teleological, Lovelock and Andrew Watson offered the Daisyworld Model (and its modifications, above) as evidence against most of these criticisms. Lovelock said that the Daisyworld model "demonstrates that self-regulation of the global environment can emerge from competition amongst types of life altering their local environment in different ways".

Lovelock was careful to present a version of the Gaia hypothesis that had no claim that Gaia intentionally or consciously maintained the complex balance in her environment that life needed to survive. It would appear that the claim that Gaia acts "intentionally" was a statement in his popular initial book and was not meant to be taken literally. This new statement of the Gaia hypothesis was more acceptable to the scientific community. Most accusations of teleologism ceased, following this conference.

Third Gaia conference

By the time of the 2nd Chapman Conference on the Gaia Hypothesis, held at Valencia, Spain, on 23 June 2000, the situation had changed significantly. Rather than a discussion of the Gaian teleological views, or "types" of Gaia hypotheses, the focus was upon the specific mechanisms by which basic short term homeostasis was maintained within a framework of significant evolutionary long term structural change.

The major questions were:

  1. "How has the global biogeochemical/climate system called Gaia changed in time? What is its history? Can Gaia maintain stability of the system at one time scale but still undergo vectorial change at longer time scales? How can the geologic record be used to examine these questions?"
  2. "What is the structure of Gaia? Are the feedbacks sufficiently strong to influence the evolution of climate? Are there parts of the system determined pragmatically by whatever disciplinary study is being undertaken at any given time or are there a set of parts that should be taken as most true for understanding Gaia as containing evolving organisms over time? What are the feedbacks among these different parts of the Gaian system, and what does the near closure of matter mean for the structure of Gaia as a global ecosystem and for the productivity of life?"
  3. "How do models of Gaian processes and phenomena relate to reality and how do they help address and understand Gaia? How do results from Daisyworld transfer to the real world? What are the main candidates for "daisies"? Does it matter for Gaia theory whether we find daisies or not? How should we be searching for daisies, and should we intensify the search? How can Gaian mechanisms be collaborated with using process models or global models of the climate system that include the biota and allow for chemical cycling?"

In 1997, Tyler Volk argued that a Gaian system is almost inevitably produced as a result of an evolution towards far-from-equilibrium homeostatic states that maximise entropy production, and Axel Kleidon (2004) agreed stating: "...homeostatic behavior can emerge from a state of MEP associated with the planetary albedo"; "...the resulting behavior of a symbiotic Earth at a state of MEP may well lead to near-homeostatic behavior of the Earth system on long time scales, as stated by the Gaia hypothesis". M. Staley (2002) has similarly proposed "...an alternative form of Gaia theory based on more traditional Darwinian principles... In [this] new approach, environmental regulation is a consequence of population dynamics. The role of selection is to favor organisms that are best adapted to prevailing environmental conditions. However, the environment is not a static backdrop for evolution, but is heavily influenced by the presence of living organisms. The resulting co-evolving dynamical process eventually leads to the convergence of equilibrium and optimal conditions".

Fourth Gaia conference

A fourth international conference on the Gaia hypothesis, sponsored by the Northern Virginia Regional Park Authority and others, was held in October 2006 at the Arlington, VA campus of George Mason University.

Martin Ogle, Chief Naturalist, for NVRPA, and long-time Gaia hypothesis proponent, organized the event. Lynn Margulis, Distinguished University Professor in the Department of Geosciences, University of Massachusetts-Amherst, and long-time advocate of the Gaia hypothesis, was a keynote speaker. Among many other speakers: Tyler Volk, co-director of the Program in Earth and Environmental Science at New York University; Dr. Donald Aitken, Principal of Donald Aitken Associates; Dr. Thomas Lovejoy, President of the Heinz Center for Science, Economics and the Environment; Robert Corell, Senior Fellow, Atmospheric Policy Program, American Meteorological Society and noted environmental ethicist, J. Baird Callicott.

Criticism

After initially receiving little attention from scientists (from 1969 until 1977), thereafter for a period the initial Gaia hypothesis was criticized by a number of scientists, including Ford Doolittle, Richard Dawkins and Stephen Jay Gould. Lovelock has said that because his hypothesis is named after a Greek goddess, and championed by many non-scientists, the Gaia hypothesis was interpreted as a neo-Pagan religion. Many scientists in particular also criticized the approach taken in his popular book Gaia, a New Look at Life on Earth for being teleological—a belief that things are purposeful and aimed towards a goal. Responding to this critique in 1990, Lovelock stated, "Nowhere in our writings do we express the idea that planetary self-regulation is purposeful, or involves foresight or planning by the biota".

Stephen Jay Gould criticized Gaia as being "a metaphor, not a mechanism." He wanted to know the actual mechanisms by which self-regulating homeostasis was achieved. In his defense of Gaia, David Abram argues that Gould overlooked the fact that "mechanism", itself, is a metaphor—albeit an exceedingly common and often unrecognized metaphor—one which leads us to consider natural and living systems as though they were machines organized and built from outside (rather than as autopoietic or self-organizing phenomena). Mechanical metaphors, according to Abram, lead us to overlook the active or agentic quality of living entities, while the organismic metaphors of the Gaia hypothesis accentuate the active agency of both the biota and the biosphere as a whole. With regard to causality in Gaia, Lovelock argues that no single mechanism is responsible, that the connections between the various known mechanisms may never be known, that this is accepted in other fields of biology and ecology as a matter of course, and that specific hostility is reserved for his own hypothesis for other reasons.

Aside from clarifying his language and understanding of what is meant by a life form, Lovelock himself ascribes most of the criticism to a lack of understanding of non-linear mathematics by his critics, and a linearizing form of greedy reductionism in which all events have to be immediately ascribed to specific causes before the fact. He also states that most of his critics are biologists but that his hypothesis includes experiments in fields outside biology, and that some self-regulating phenomena may not be mathematically explainable.

Natural selection and evolution

Lovelock has suggested that global biological feedback mechanisms could evolve by natural selection, stating that organisms that improve their environment for their survival do better than those that damage their environment. However, in the early 1980s, W. Ford Doolittle and Richard Dawkins separately argued against this aspect of Gaia. Doolittle argued that nothing in the genome of individual organisms could provide the feedback mechanisms proposed by Lovelock, and therefore the Gaia hypothesis proposed no plausible mechanism and was unscientific. Dawkins meanwhile stated that for organisms to act in concert would require foresight and planning, which is contrary to the current scientific understanding of evolution. Like Doolittle, he also rejected the possibility that feedback loops could stabilize the system.

Margulis argued in 1999 that "Darwin's grand vision was not wrong, only incomplete. In accentuating the direct competition between individuals for resources as the primary selection mechanism, Darwin (and especially his followers) created the impression that the environment was simply a static arena". She wrote that the composition of the Earth's atmosphere, hydrosphere, and lithosphere are regulated around "set points" as in homeostasis, but those set points change with time.

Evolutionary biologist W. D. Hamilton called the concept of Gaia Copernican, adding that it would take another Newton to explain how Gaian self-regulation takes place through Darwinian natural selection.  More recently Ford Doolittle building on his and Inkpen's ITSNTS (It's The Song Not The Singer) proposal proposed that differential persistence can play a similar role to differential reproduction in evolution by natural selections, thereby providing a possible reconciliation between the theory of natural selection and the Gaia hypothesis.

Criticism in the 21st century

The Gaia hypothesis continues to be broadly skeptically received by the scientific community. For instance, arguments both for and against it were laid out in the journal Climatic Change in 2002 and 2003. A significant argument raised against it are the many examples where life has had a detrimental or destabilising effect on the environment rather than acting to regulate it. Several recent books have criticised the Gaia hypothesis, expressing views ranging from "... the Gaia hypothesis lacks unambiguous observational support and has significant theoretical difficulties" to "Suspended uncomfortably between tainted metaphor, fact, and false science, I prefer to leave Gaia firmly in the background" to "The Gaia hypothesis is supported neither by evolutionary theory nor by the empirical evidence of the geological record". The CLAW hypothesis, initially suggested as a potential example of direct Gaian feedback, has subsequently been found to be less credible as understanding of cloud condensation nuclei has improved. In 2009 the Medea hypothesis was proposed: that life has highly detrimental (biocidal) impacts on planetary conditions, in direct opposition to the Gaia hypothesis.

In a 2013 book-length evaluation of the Gaia hypothesis considering modern evidence from across the various relevant disciplines, Toby Tyrrell concluded that: "I believe Gaia is a dead end. Its study has, however, generated many new and thought provoking questions. While rejecting Gaia, we can at the same time appreciate Lovelock's originality and breadth of vision, and recognize that his audacious concept has helped to stimulate many new ideas about the Earth, and to champion a holistic approach to studying it". Elsewhere he presents his conclusion "The Gaia hypothesis is not an accurate picture of how our world works". This statement needs to be understood as referring to the "strong" and "moderate" forms of Gaia—that the biota obeys a principle that works to make Earth optimal (strength 5) or favourable for life (strength 4) or that it works as a homeostatic mechanism (strength 3). The latter is the "weakest" form of Gaia that Lovelock has advocated. Tyrrell rejects it. However, he finds that the two weaker forms of Gaia—Coeveolutionary Gaia and Influential Gaia, which assert that there are close links between the evolution of life and the environment and that biology affects the physical and chemical environment—are both credible, but that it is not useful to use the term "Gaia" in this sense and that those two forms were already accepted and explained by the processes of natural selection and adaptation.

Anthropic principle

As emphasized by multiple critics, no plausible mechanism exists that would drive the evolution of negative feedback loops leading to planetary self-regulation of the climate. Indeed, multiple incidents in Earth's history (see the Medea hypothesis) have shown that the Earth and the biosphere can enter self-destructive positive feedback loops that lead to mass extinction events.

For example, the Snowball Earth glaciations appeared to result from the development of photosynthesis during a period when the Sun was cooler than it is now. The removal of carbon dioxide from the atmosphere, along with the oxidation of atmospheric methane by the released oxygen, resulted in a dramatic diminishment of the greenhouse effect. The resulting expansion of the polar ice sheets decreased the overall fraction of sunlight absorbed by the Earth, resulting in a runaway ice–albedo positive feedback loop ultimately resulting in glaciation over nearly the entire surface of the Earth. Breaking out of the Earth from the frozen condition appears to have primarily been due to the release of carbon dioxide and methane by volcanos, although release of methane by microbes trapped underneath the ice could also have played a part. Lesser contributions to warming would come from the fact that coverage of the Earth by ice sheets largely inhibited photosynthesis and lessened the removal of carbon dioxide from the atmosphere by the weathering of siliceous rocks. However, in the absence of tectonic activity, the snowball condition could have persisted indefinitely.

Geologic events with amplifying positive feedbacks (along with some possible biologic participation) led to the greatest mass extinction event on record, the Permian–Triassic extinction event about 250 million years ago. The precipitating event appears to have been volcanic eruptions in the Siberian Traps, a hilly region of flood basalts in Siberia. These eruptions released high levels of carbon dioxide and sulfur dioxide which elevated world temperatures and acidified the oceans. Estimates of the rise in carbon dioxide levels range widely, from as little as a two-fold increase, to as much as a twenty-fold increase. Amplifying feedbacks increased the warming to considerably greater than that to be expected merely from the greenhouse effect of carbon dioxide: these include the ice albedo feedback, the increased evaporation of water vapor (another greenhouse gas) into the atmosphere, the release of methane from the warming of methane hydrate deposits buried under the permafrost and beneath continental shelf sediments, and increased wildfires. The rising carbon dioxide acidified the oceans, leading to widespread die-off of creatures with calcium carbonate shells, killing mollusks and crustaceans like crabs and lobsters and destroying coral reefs. Their demise led to disruption of the entire oceanic food chain. It has been argued that rising temperatures may have led to disruption of the chemocline separating sulfidic deep waters from oxygenated surface waters, which led to massive release of toxic hydrogen sulfide (produced by anerobic bacteria) to the surface ocean and even into atmosphere, contributing to the (primarily methane-driven) collapse of the ozone layer, and helping to explain the die-off of terrestrial animal and plant life.

Despite the evidence from multiple mass extinction events that the biosphere is not fully capable of self-regulation, the fact remains that negative feedback loops do exist. As mentioned above, despite the energy provided by the Sun having increased by 25% to 30% over the last four billion years of life on Earth, the surface temperature of the planet has remained within habitable limits. The participation of living organisms in the oxygen and carbon cycles is well-established. Yet given the lack of plausible explanation by natural selection whereby life on Earth could have evolved to regulate its abiotic environment, how could such feedback loops have arisen?

According to the weak anthropic principle, our observation of such stabilizing feedback loops is an observer selection effect. In all the universe, it is only planets with Gaian properties that could have evolved intelligent, self-aware organisms capable of asking such questions. One can imagine innumerable worlds where life evolved with different biochemistries or where the worlds had different geophysical properties such that the worlds are presently dead due to runaway greenhouse effect, or else are in perpetual Snowball, or else due to one factor or another, life has been inhibited from evolving beyond the microbial level.

If no means exists for natural selection to operate at the biosphere level, then it would appear that the anthropic principle provides the only explanation for the survival of Earth's biosphere over geologic time. But in recent years, this strictly reductionistic view has been modified by recognition that natural selection can operate at multiple levels of the biological hierarchy — not just at the level of individual organisms. Traditional Darwinian natural selection requires reproducing entities that display inheritable properties or abilities that result in their having more offspring than their competitors. Successful biospheres clearly cannot reproduce to spawn copies of themselves, and so traditional Darwinian natural selection cannot operate. A mechanism for biosphere-level selection was proposed by Ford Doolittle: Although he had been a strong and early critic of the Gaia hypothesis, he had by 2015 started to think of ways whereby Gaia might be "Darwinised", seeking means whereby the planet could have evolved biosphere-level adaptations. Doolittle has suggested that differential persistence — mere survival — could be considered a legitimate mechanism for natural selection. As the Earth passes through various challenges, the phenomenon of differential persistence enables selected entities to achieve fixation by surviving the death of their competitors. Although Earth's biosphere is not competing against other biospheres on other planets, there are many competitors for survival on this planet. Collectively, Gaia constitutes the single clade of all living survivors descended from life’s last universal common ancestor (LUCA). Various other proposals for biosphere-level selection include sequential selection, entropic hierarchy, and considering Gaia as a holobiont-like system. Ultimately speaking, differential persistence and sequential selection are variants of the anthropic principle, while entropic hierarchy and holobiont arguments may possibly allow understanding the emergence of Gaia without anthropic arguments.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...