Search This Blog

Thursday, April 11, 2019

Herbig–Haro object

From Wikipedia, the free encyclopedia

Images are in false colour. Bright yellow star in brown-appearing nebula shoots out a blue-white jet, which then causes blue and purple emissions from the surrounding medium upon impact
Herbig–Haro object HH34, imaged by the Hubble Space Telescope. It resides about 1400 light-years away, near the Orion Nebula.
 
Herbig–Haro (HH) objects are turbulent looking patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionized gas ejected by said stars collide with nearby clouds of gas and dust at speeds of several hundred kilometres per second. Herbig–Haro objects are ubiquitous in star-forming regions, and several are often seen around a single star, aligned with its rotational axis. Most of them lie within about one parsec of the source, although some have been observed several parsecs away. HH objects are transient phenomena that last around a few tens of thousand years. They can change visibly over quite short timescales of a few years as they move rapidly away from their parent star into the gas clouds of interstellar space (the interstellar medium or ISM). Hubble Space Telescope observations have revealed the complex evolution of HH objects over the period of a few years, as parts of the nebula fade while others brighten as they collide with the clumpy material of the interstellar medium. 

First observed in the late 19th century by Sherburne Wesley Burnham, Herbig–Haro objects were not recognised as being a distinct type of emission nebula until the 1940s. The first astronomers to study them in detail were George Herbig and Guillermo Haro, after whom they have been named. Herbig and Haro were working independently on studies of star formation when they first analysed the objects, and recognised that they were a by-product of the star formation process. 

Although HH objects are a visible wavelength phenomena, many remain invisible at these wavelengths due to dust and gas envelope and are only visible at infrared wavelengths. Such objects, when observed in near infrared, are called MHOs.

Discovery and history of observations

HH1 and HH2 both appear like turbulence in red-green smoke. The top of each object is bright bluish, due to impacting jet material.
HH objects HH1 and HH2 lie about a light year apart, symmetrically flanking a young star which is ejecting material along its polar axis
 
The first HH object was observed in the late 19th century by Sherburne Wesley Burnham, when he observed the star T Tauri with the 36-inch (910 mm) refracting telescope at Lick Observatory and noted a small patch of nebulosity nearby. However, it was catalogued merely as an emission nebula, later becoming known as Burnham's Nebula, and was not recognised as a distinct class of object. T Tauri was found to be a very young and variable star, and is the prototype of the class of similar objects known as T Tauri stars which have yet to reach a state of hydrostatic equilibrium between gravitational collapse and energy generation through nuclear fusion at their centres.

Fifty years after Burnham's discovery, several similar nebulae were discovered which were so small as to be almost star-like in appearance. Both Haro and Herbig made independent observations of several of these objects in the Orion Nebula during the 1940s. Herbig also looked at Burnham's Nebula and found it displayed an unusual electromagnetic spectrum, with prominent emission lines of hydrogen, sulfur and oxygen. Haro found that all the objects of this type were invisible in infrared light.

Yellow-green emission cap produced by red jet from a star in a deep green nebula
This three-colour composite of the young object HH34 reveals the jet and the nebular emission.
 
Following their independent discoveries, Herbig and Haro met at an astronomy conference in Tucson, Arizona in December 1949. Herbig had initially paid little attention to the objects he had discovered, being primarily concerned with the nearby stars, but on hearing Haro's findings he carried out more detailed studies of them. The Soviet astronomer Viktor Ambartsumian gave the objects their name (Herbig–Haro objects, normally shortened to HH objects), and based on their occurrence near young stars (a few hundred thousand years old), suggested they might represent an early stage in the formation of T Tauri stars.

Studies of the HH objects showed they were highly ionized, and early theorists speculated that they were reflection nebulae containing low-luminosity hot stars deep inside. However, the absence of infrared radiation from the nebulae meant there could not be stars within them, as these would have emitted abundant infrared light. In 1975 American astronomer R. D. Schwartz theorized that winds from T Tauri stars produce shocks in ambient medium on encounter, resulting in generation of visible light.

With discovery of collimated jet in HH 46/47, it became clear that HH objects are indeed shock induced phenomenon with shocks being driven by collimated jet from protostars.

Formation

Drawing shows two arrows of matter movign outwards in opposite directions from a star-disk system, and creating bright emission caps at the ends, where they collide with the surrounding medium
Schematic diagram of how HH objects arise
 
Stars form by gravitational collapse of interstellar gas clouds. As the collapse increases the density, radiative energy loss decreases due to increased opacity. This raises the temperature of the cloud which prevents further collapse, and a hydrostatic equilibrium is established. Gas continues to fall towards the core in a rotating disk. This is called a protostar. Some of the accreting material is ejected out along the star's axis of rotation in two jets of partially-ionized gas (plasma). 

Grey-yellow bipolar jet emerges from a star obscured by grey, furry-looking dust clouds
In this image of HH24, similarities with the above schematic can be seen.
 
The mechanism for producing these collimated bipolar jets is not entirely understood, but it is believed that interaction between the accretion disk and the stellar magnetic field accelerates some of the accreting material from within a few astronomical units of the star away from the disk plane. At these distances the outflow is divergent, with fanning out at an angle in the range of 10−30°, but it becomes increasingly collimated at distances of tens to hundreds of astronomical units from the source, as its expansion is constrained. The jets also carry away the excess angular momentum resulting from accretion of material onto the star, which would otherwise cause the star to rotate rapidly and disintegrate. When these jets collide with the interstellar medium, they give rise to the small patches of bright emission which comprise HH objects.

Properties

Electromagnetic emission from HH objects is caused when shock waves collide with the interstellar medium, creating what is called the "terminal working surfaces". Spectroscopic observations of their doppler shifts indicate velocities of several hundred kilometres per second, but the emission lines in those spectra are weaker than what would be expected from such high speed collisions. This suggests that some of the material they are colliding with is also moving along the beam, although at a lower speed. Spectroscopic observations of HH objects show they are moving away from the source stars at speeds of several hundred km/s. In recent years, the high optical resolution of Hubble Space Telescope has revealed the proper motion of many HH objects in observations spaced several years apart. As they move away from the parent star, HH objects evolve significantly, varying in brightness on timescales of a few years. Individual knots within an object may brighten and fade or disappear entirely, while new knots have been seen to appear. This is because of the precession of the jets and their pulsating, rather than steady, eruption from the parent stars. Faster jets catch up with earlier slower jets, creating the so-called "internal working surfaces", where streams of gas collide and generate shock waves and consequently emissions.

Three images of orange appearing disk-jet system from 1995, 1998 and 2000. Images differ slightly in brightness and jet appearance.
Hubble Space Telescope images of HH30 over a period of five years. Discontinuities in the jet are caused by the pulsating nature of the eruptions. Variations in brightness can also be noted.
 
The total mass being ejected to form typical HH objects is estimated to be of the order of 10−8–10−6 M per year, a very small amount of material compared to the mass of the stars themselves but amounts to about 1–10% of the total mass accreted in a year. Mass loss tends to decrease with increasing age of the source. The temperatures observed in HH objects are typically about 8000–12,000 K, similar to those found in other ionized nebulae such as H II regions and planetary nebulae. Densities, on the other hand, are higher than in other nebulae, ranging from a few thousand to a few tens of thousands of particles per cm3, compared to generally less than 1000/cm3 in H II regions and planetary nebulae.

Densities also decrease as the source evolves over time. HH objects consist mostly of hydrogen and helium, which account for about 75% and 24% of their mass respectively. Around 1% of the mass of HH objects is made up of heavier chemical elements, including oxygen, sulfur, nitrogen, iron, calcium and magnesium. Abundances of these elements, determined from emission lines of respective ions, are generally similar to their cosmic abundances. Many chemical compounds found in surrounding interstellar medium, but not present in the source material, such as metal hydrides, are believed to have been produced by shock induced chemical reactions.

Near to the source star, about 20–30% of the gas in HH objects is ionized, but this proportion decreases at increasing distances. This implies the material is ionized in the polar jet, and recombines as it moves away from the star, rather than being ionized by later collisions. Shocking at the end of the jet can re-ionize some material, however, giving rise to bright "caps" at the ends of the jets.

Numbers and distribution

Blue- and orange-appearing turbulent caps of emission
Episodically ejected by young stars like cannon salvos, the brightly glowing lobes travel through space at more than 700,000 kilometres per hour
 
Plot of light intensity vs wavelength has several dips in it, caused by absorption of light emitted from the star by the molecules in surrounding medium
Infrared spectrum of the gaseous envelope of HH 46/47, obtained by NASA Spitzer Space Telescope. The medium in immediate vicinity of the star is silicate-rich.
 
HH objects are named in order of their discovery; HH1 and HH2 being the earliest such objects to be identified. About 500 individual objects are now known. They are ubiquitous in star-forming H II regions, and are often found in large groups. They are typically observed near Bok globules (dark nebulae which contain very young stars) and often emanate from them. Several HH objects have been seen near a single energy source, forming a string of objects along the line of the polar axis of the parent star.

The number of known HH objects has increased rapidly over the last few years, but that is a very small proportion of the estimated up to 150,000 in the Milky Way, the vast majority of which are too far away to be resolved. Most HH objects lie within about one parsec of their parent star. Many, however, are seen several parsecs away.

HH46/47 is located about 450 parsecs away and is powered by class I protostar binary. Bipolar jet is slamming into the surrounding medium at a velocity of 300 km/s, producing two emission caps about 2.6 parsecs apart. Jet outflow is accompanied by a 0.3 parsec long molecular gas outflow which is swept up by the jet itself. Infrared studies by Spitzer Space Telescope have revealed a variety of chemical compounds in the molecular outflow, including water (ice), methanol, methane, carbon monoxide, carbon dioxide (dry ice) and various silicates.

Located around 460 parsecs away in Orion nebula, HH34 is produced by a highly collimated bipolar jet powered by class I protostar. Matter in the jet is moving at about 220 km/s. Two bright bow shocks, separated by about 0.44 parsec, are present on the opposite sides of the source, followed by series of fainter ones at larger distances, making the whole complex about 3 parsecs long. Jet is surrounded by 0.3 parsec long weak molecular outflow near the source.

Source stars

HH32 looks just like a star due to its intense brightness. The surrounding gas appears like clouds around a full moon
Herbig–Haro object HH32 is one of the brightest HH objects
 
The stars from which HH jets are emitted are all very young stars, few tens of thousands to about a million years old. Youngest of these are still protostars in the process of collecting from their surrounding gases. Astronomers divide these stars into classes 0, I, II and III, according to how much infrared radiation the stars emit. A greater amount of infrared radiation implies a larger amount of cooler material surrounding the star, which indicates it is still coalescing. The numbering of the classes arises because class 0 objects (the youngest) were not discovered until classes I, II and III had already been defined.

Class 0 objects are only a few thousand years old, so young that they are not yet undergoing nuclear fusion reactions at their centres. Instead, they are powered only by the gravitational potential energy released as material falls onto them. Nuclear fusion has begun in the cores of Class I objects, but gas and dust are still falling onto their surfaces from the surrounding nebula, and most of luminosity is accounted for by gravitational energy. They are generally still shrouded in dense clouds of dust and gas, which obscure all their visible light and as a result can only be observed at infrared and radio wavelengths. The in-fall of gas and dust has largely finished in Class II objects (Classical T Tauri stars), but they are still surrounded by disks of dust and gas, while class III objects (Weak-line T Tauri stars) have only trace remnants of their original accretion disk.

About 80% of the stars giving rise to HH objects are in fact binary or multiple systems (two or more stars orbiting each other), which is a much higher proportion than that found for low mass stars on the main sequence. This may indicate that binary systems are more likely to generate the jets which give rise to HH objects, and evidence suggests the largest HH outflows might be formed when multiple star systems disintegrate. It is thought that most stars originate from multiple star systems, but that a sizable fraction are disrupted before they reach the main sequence by gravitational interactions with nearby stars and dense clouds of gas.

Infrared counterparts

At infrared wavelengths MHO27 looks like mix of violet, orange, yellow and turquoise clouds
Infrared image of molecular bow shocks (MHO 27) associated with bipolar outflows in Orion. Credit: UKIRT/Joint Astronomy Centre
 
HH objects associated with very young stars or very massive protostars are often hidden from view at optical wavelengths by the cloud of gas and dust from which they form. The intervening material can diminish the visual magnitude by factors of tens or even hundreds at optical wavelengths. Such deeply embedded objects can only be observed at infrared or radio wavelengths, usually in the frequencies of hot molecular hydrogen or warm carbon monoxide emission.

In recent years, infrared images have revealed dozens of examples of "infrared HH objects". Most look like bow waves (similar to the waves at the head of a ship), and so are usually referred to as molecular "bow shocks". The physics of infrared bow shocks can be understood in much the same way as that of HH objects, since these objects are essentially the same – supersonic shocks driven by collimated jets from the opposite poles of a protostar. It is only the conditions in the jet and surrounding cloud that are different, causing infrared emission from molecules rather than optical emission from atoms and ions.

In 2009 the acronym "MHO", for Molecular Hydrogen emission-line Object, was approved for such objects, detected in near infrared, by the International Astronomical Union Working Group on Designations, and has been entered into their on-line Reference Dictionary of Nomenclature of Celestial Objects. The MHO catalogue (see external links below) contains over 2000 objects.

Seyfert galaxy

From Wikipedia, the free encyclopedia
The Circinus Galaxy, a Type II Seyfert galaxy
 
Seyfert galaxies are one of the two largest groups of active galaxies, along with quasars. They have quasar-like nuclei (very luminous, distant and bright sources of electromagnetic radiation) with very high surface brightnesses whose spectra reveal strong, high-ionisation emission lines, but unlike quasars, their host galaxies are clearly detectable.

Seyfert galaxies account for about 10% of all galaxies and are some of the most intensely studied objects in astronomy, as they are thought to be powered by the same phenomena that occur in quasars, although they are closer and less luminous than quasars. These galaxies have supermassive black holes at their centers which are surrounded by accretion discs of in-falling material. The accretion discs are believed to be the source of the observed ultraviolet radiation. Ultraviolet emission and absorption lines provide the best diagnostics for the composition of the surrounding material.

Seen in visible light, most Seyfert galaxies look like normal spiral galaxies, but when studied under other wavelengths, it becomes clear that the luminosity of their cores is of comparable intensity to the luminosity of whole galaxies the size of the Milky Way.

Seyfert galaxies are named after Carl Seyfert, who first described this class in 1943.

Discovery

NGC 1068 (Messier 77), one of the first Seyfert galaxies classified
 
Seyfert galaxies were first detected in 1908 by Edward A. Fath and Vesto Slipher, who were using the Lick Observatory to look at the spectra of astronomical objects that were thought to be "spiral nebulae". They noticed that NGC 1068 showed six bright emission lines, which was considered unusual as most objects observed showed an absorption spectrum corresponding to stars.

In 1926, Edwin Hubble looked at the emission lines of NGC 1068 and two other such "nebulae" and classified them as extragalactic objects. In 1943, Carl Keenan Seyfert discovered more galaxies similar to NGC 1068 and reported that these galaxies have very bright stellar-like nuclei that produce broad emission lines. In 1944 Cygnus A was detected at 160 MHz, and detection was confirmed in 1948 when it was established that it was a discrete source. Its double radio structure became apparent with the use of interferometry. In the next few years, other radio sources such as supernova remnants were discovered. By the end of the 1950s, more important characteristics of Seyfert galaxies were discovered, including the fact that their nuclei are extremely compact (< 100 pc, i.e. "unresolved"), have high mass (≈109±1 solar masses), and the duration of peak nuclear emissions is relatively short (> 108 years).

NGC 5793 is a Seyfert galaxy located over 150 million light-years away in the constellation of Libra.
 
In the 1960s and 1970s, research to further understand the properties of Seyfert galaxies was carried out. A few direct measurements of the actual sizes of Seyfert nuclei were taken, and it was established that the emission lines in NGC 1068 were produced in a region over a thousand light years in diameter. Controversy existed over whether Seyfert redshifts were of cosmological origin. Confirming estimates of the distance to Seyfert galaxies and their age were limited since their nuclei vary in brightness over a time scale of a few years; therefore arguments involving distance to such galaxies and the constant speed of light cannot always be used to determine their age. In the same time period, research had been undertaken to survey, identify and catalogue galaxies, including Seyferts. Beginning in 1967, Benjamin Markarian published lists containing a few hundred galaxies distinguished by their very strong ultraviolet emission, with measurements on the position of some of them being improved in 1973 by other researchers. At the time, it was believed that 1% of spiral galaxies are Seyferts. By 1977, it was found that very few Seyfert galaxies are ellipticals, most of them being spiral or barred spiral galaxies. During the same time period, efforts have been made to gather spectrophotometric data for Seyfert galaxies. It became obvious that not all spectra from Seyfert galaxies look the same, so they have been subclassified according to the characteristics of their emission spectra. A simple division into types I and II has been devised, with the classes depending on the relative width of their emission lines. It has been later noticed that some Seyfert nuclei show intermediate properties, resulting in their being further subclassified into types 1.2, 1.5, 1.8 and 1.9. Early surveys for Seyfert galaxies were biased in counting only the brightest representatives of this group. More recent surveys that count galaxies with low-luminosity and obscured Seyfert nuclei suggest that the Seyfert phenomenon is actually quite common, occurring in 16% ± 5% of galaxies; indeed, several dozen galaxies exhibiting the Seyfert phenomenon exist in the close vicinity (≈27 Mpc) of our own galaxy. Seyfert galaxies form a substantial fraction of the galaxies appearing in the Markarian catalog, a list of galaxies displaying an ultraviolet excess in their nuclei.

Characteristics

Optical and ultraviolet images of the black hole in the center of NGC 4151, a Seyfert Galaxy
 
An active galactic nucleus (AGN) is a compact region at the center of a galaxy that has a higher than normal luminosity over portions of the electromagnetic spectrum. A galaxy having an active nucleus is called an active galaxy. Active galactic nuclei are the most luminous sources of electromagnetic radiation in the Universe, and their evolution puts constraints on cosmological models. Depending on the type, their luminosity varies over a timescale from a few hours to a few years. The two largest subclasses of active galaxies are quasars and Seyfert galaxies, the main difference between the two being the amount of radiation they emit. In a typical Seyfert galaxy, the nuclear source emits at visible wavelengths an amount of radiation comparable to that of the whole galaxy's constituent stars, while in a quasar, the nuclear source is brighter than the constituent stars by at least a factor of 100. Seyfert galaxies have extremely bright nuclei, with luminosities ranging between 108 and 1011 solar luminosities. Only about 5% of them are radio bright; their emissions are moderate in gamma rays and bright in X-rays. Their visible and infrared spectra shows very bright emission lines of hydrogen, helium, nitrogen, and oxygen. These emission lines exhibit strong Doppler broadening, which implies velocities from 500 to 4,000 km/s (310 to 2,490 mi/s), and are believed to originate near an accretion disc surrounding the central black hole.

Eddington luminosity

Active galaxy Markarian 1018 has a supermassive black hole at its core.
 
A lower limit to the mass of the central black hole can be calculated using the Eddington luminosity. This limit arises because light exhibits radiation pressure. Assume that a black hole is surrounded by a disc of luminous gas. Both the attractive gravitational force acting on electron-ion pairs in the disc and the repulsive force exerted by radiation pressure follow an inverse-square law. If the gravitational force exerted by the black hole is less than the repulsive force due to radiation pressure, the disc will be blown away by radiation pressure.

The image shows a model of an active galactic nucleus. The central black hole is surrounded by an accretion disc, which is surrounded by a torus. The broad line region and narrow line emission region are shown, as well as jets coming out of the nucleus.

Emissions

The emission lines seen on the spectrum of a Seyfert galaxy may come from the surface of the accretion disc itself, or may come from clouds of gas illuminated by the central engine in an ionization cone. The exact geometry of the emitting region is difficult to determine due to poor resolution of the galactic center. However, each part of the accretion disc has a different velocity relative to our line of sight, and the faster the gas is rotating around the black hole, the broader the emission line will be. Similarly, an illuminated disc wind also has a position-dependent velocity.

The narrow lines are believed to originate from the outer part of the active galactic nucleus, where velocities are lower, while the broad lines originate closer to the black hole. This is confirmed by the fact that the narrow lines do not vary detectably, which implies that the emitting region is large, contrary to the broad lines which can vary on relatively short timescales. Reverberation mapping is a technique which uses this variability to try to determine the location and morphology of the emitting region. This technique measures the structure and kinematics of the broad line emitting region by observing the changes in the emitted lines as a response to changes in the continuum. The use of reverberation mapping requires the assumption that the continuum originates in a single central source. For 35 AGN, reverberation mapping has been used to calculate the mass of the central black holes and the size of the broad line regions.

In the few radio-loud Seyfert galaxies that have been observed, the radio emission is believed to represent synchrotron emission from the jet. The infrared emission is due to radiation in other bands being reprocessed by dust near the nucleus. The highest energy photons are believed to be created by inverse Compton scattering by a high temperature corona near the black hole.

Classification

NGC 1097 is an example of a Seyfert galaxy. A supermassive black hole with a mass of 100 million solar masses lies at the center of the galaxy. The area around the black hole emits large amounts of radiation from the matter falling into the black hole.
 
Seyferts were first classified as Type I or II, depending on the emission lines shown by their spectra. The spectra of Type I Seyfert galaxies show broad lines that include both allowed lines, like H I, He I or He II and narrower forbidden lines, like O III. They show some narrower allowed lines as well, but even these narrow lines are much broader than the lines shown by normal galaxies. However, the spectra of Type II Seyfert galaxies show only narrow lines, both permitted and forbidden. Forbidden lines are spectral lines that occur due to electron transitions not normally allowed by the selection rules of quantum mechanics, but that still have a small probability of spontaneously occurring. The term "forbidden" is slightly misleading, as the electron transitions causing them are not forbidden but highly improbable.

NGC 6300 is a Seyfert II galaxy in the southern constellation of Ara.
 
In some cases, the spectra show both broad and narrow permitted lines, which is why they are classified as an intermediate type between Type I and Type II, such as Type 1.5 Seyfert. The spectra of some of these galaxies have changed from Type 1.5 to Type II in a matter of a few years. However, the characteristic broad emission line has rarely, if ever, disappeared. The origin of the differences between Type I and Type II Seyfert galaxies is not known yet. There are a few cases where galaxies have been identified as Type II only because the broad components of the spectral lines have been very hard to detect. It is believed by some that all Type II Seyferts are in fact Type I, where the broad components of the lines are impossible to detect because of the angle we are at with respect to the galaxy. Specifically, in Type I Seyfert galaxies, we observe the central compact source more or less directly, therefore sampling the high velocity clouds in the broad line emission region moving around the supermassive black hole thought to be at the center of the galaxy. By contrast, in Type II Seyfert galaxies, the active nuclei are obscured and only the colder outer regions located further away from the clouds' broad line emission region are seen. This theory is known as the "Unification scheme" of Seyfert galaxies. However, it is not yet clear if this hypothesis can explain all the observed differences between the two types.

Type I Seyfert galaxies

NGC 6814 is a Seyfert galaxy with a highly variable source of X-ray radiation.
 
Type I Seyferts are very bright sources of ultraviolet light and X-rays in addition to the visible light coming from their cores. They have two sets of emission lines on their spectra: narrow lines with widths (measured in velocity units) of several hundred km/s, and broad lines with widths up to 104 km/s. The broad lines originate above the accretion disc of the supermassive black hole thought to power the galaxy, while the narrow lines occur beyond the broad line region of the accretion disc. Both emissions are caused by heavily ionised gas. The broad line emission arises in a region 0.1-1 parsec across. The broad line emission region, RBLR, can be estimated from the time delay corresponding to the time taken by light to travel from the continuum source to the line-emitting gas.

Type II Seyfert galaxies

NGC 3081 is known as a type II Seyfert galaxy, characterised by its dazzling nucleus.
 
Type II Seyfert galaxies have the characteristic bright core, as well as appearing bright when viewed at infrared wavelengths. Their spectra contain narrow lines associated with forbidden transitions, and broad lines associated with allowed strong dipole or intercombination transitions. In some Type II Seyfert galaxies, analysis with a technique called spectro-polarimetry (spectroscopy of polarised light component) revealed obscured type I regions. In the case of NGC 1068, nuclear light reflected off a dust cloud was measured, which led scientists to believe in the presence of an obscuring dust torus around a bright continuum and broad emission line nucleus. When the galaxy is viewed from the side, the nucleus is indirectly observed through reflection by gas and dust above and below the torus. This reflection causes the polarisation.

Type 1.2, 1.5, 1.8 and 1.9 Seyfert galaxies

NGC 1275, a type 1.5 Seyfert galaxy
 
In 1981, Donald Osterbrock introduced the notations Seyfert 1.5, 1.8 and 1.9, where the subclasses are based on the optical appearance of the spectrum, with the numerically larger subclasses having weaker broad-line components relative to the narrow lines. For example, Type 1.9 only shows a broad component in the line, and not in higher order Balmer lines. In Type 1.8, very weak broad lines can be detected in the lines as well as Hα, even if they are very weak compared to the Hα. In Type 1.5, the strength of the Hα and Hβ lines are comparable.

Other Seyfert-like galaxies

Messier 94, a galaxy with a Seyfert-like LINER nucleus
 
In addition to the Seyfert progression from Type I to Type II (including Type 1.2 to Type 1.9), there are other types of galaxies that are very similar to Seyferts or that can be considered as subclasses of them. Very similar to Seyferts are the low-ionisation narrow-line emission radio galaxies (LINER), discovered in 1980. These galaxies have strong emission lines from weakly ionised or neutral atoms, while the emission lines from strongly ionised atoms are relatively weak by comparison. LINERs share a large amount of traits with low luminosity Seyferts. In fact, when seen in visible light, the global characteristics of their host galaxies are indistinguishable. Also, they both show a broad line emission region, but the line emitting region in LINERs has a lower density than in Seyferts. An example of such a galaxy is M104 in the Virgo constellation, also known as the Sombrero galaxy. A galaxy that is both a LINER and a Type I Seyfert is NGC 7213, a galaxy that is relatively close compared to other AGNs. Another very interesting subclass are the narrow line Seyfert I galaxies (NLSy1), which have been subject to extensive research in recent years. They have much narrower lines than the broad lines from classic Seyfert I galaxies, steep hard and soft X-ray spectra and strong Fe[II] emission. Their properties suggest that NLSy1 galaxies are young AGNs with high accretion rates, suggesting a relatively small but growing central black hole mass. There are theories suggesting that NLSy1s are galaxies in an early stage of evolution, and links between them and ultraluminous infrared galaxies or Seyfert II galaxies have been proposed.

Evolution

The majority of active galaxies are very distant and show large Doppler shifts. This suggests that active galaxies occurred in the early Universe and, due to cosmic inflation, are receding away from the Milky Way at very high speeds. Quasars are the furthest active galaxies, some of them being observed at distances 12 billion light years away. Seyfert galaxies are much closer than quasars. Because light has a finite speed, looking across large distances in the Universe is equivalent to looking back in time. Therefore, the observation of active galactic nuclei at large distances and their scarcity in the nearby Universe suggests that they were much more common in the early Universe, implying that active galactic nuclei could be early stages of galactic evolution. This leads to the question about what would be the local (modern-day) counterparts of AGNs found at large redshifts. It has been proposed that NLSy1s could be the small redshift counterparts of quasars found at large redshifts (z>4). The two have many similar properties, for example: high metallicities or similar pattern of emission lines (strong Fe [II], weak O [III]). Some observations suggest that AGN emission from the nucleus is not spherically symmetric and that the nucleus often shows axial symmetry, with radiation escaping in a conical region. Based on these observations, models have been devised to explain the different classes of AGNs as due to their different orientations with respect to the observational line of sight. Such models are called unified models. Unified models explain the difference between Seyfert I and Seyfert II galaxies as being the result of Seyfert II galaxies being surrounded by obscuring toruses which prevent telescopes from seeing the broad line region. Quasars and blazars can be fit quite easily in this model. The main problem of such an unification scheme is trying to explain why some AGN are radio loud while others are radio quiet. It has been suggested that these differences may be due to differences in the spin of the central black hole.

Examples

Seyfert galaxy Messier 51
 
Seyfert galaxy Messier 88
 
Seyfert galaxy Centaurus A
 
Here are some examples of Seyfert galaxies:
  • Circinus Galaxy, has rings of gas ejected from its center
  • Centaurus A or NGC 5128, apparently the brightest Seyfert galaxy as seen from Earth; a giant elliptical galaxy and also classified as a radio galaxy notable for its relativistic jet spanning more than a million light years in length.
  • Cygnus A, the first identified radio galaxy and the brightest radio source in the sky as seen in frequencies above 1 GHz
  • Messier 51a (NGC 5194), the Whirlpool Galaxy, one of the best known galaxies in the sky
  • Messier 66 (NGC 3627), a part of the Leo Triplet
  • Messier 77 (NGC 1068), one of the first Seyfert galaxies classified
  • Messier 81 (NGC 3031), the second brightest Seyfert galaxy in the sky after Centaurus A
  • Messier 88 (NGC 4501), a member of the large Virgo Cluster and one of the brightest Seyfert galaxies in the sky.
  • Messier 106 (NGC 4258), one of the best known Seyfert galaxies, has a water vapor megamaser in its nucleus seen by 22-GHz line of ortho-H2O.
  • NGC 262, an example of a galaxy with an extended gaseous H I halo
  • NGC 1097, has four narrow optical jets coming out from its nucleus
  • NGC 1275, whose central black hole producing the lowest B-flat note ever recorded
  • NGC 1365, notable for its central black hole spinning almost the speed of light
  • NGC 1566, one of the first Seyfert galaxies classified
  • NGC 1672, has a nucleus engulfed by intense starburst regions
  • NGC 1808, also a starburst galaxy
  • NGC 3079, has a giant bubble of hot gas coming out from its center
  • NGC 3185, member of the Hickson 44 group
  • NGC 3259, also a strong source of X-rays
  • NGC 3783, also a strong source of X-rays
  • NGC 3982, also a starburst galaxy
  • NGC 4151, has two supermassive black holes in its center.
  • NGC 4395, an example of a low surface brightness galaxy with an intermediate-mass black hole in its center.
  • NGC 4725, one of the closest and brightest Seyfert galaxies to Earth; has a very long spiraling cloud of gas surrounding its center seen in infrared.
  • NGC 4945, a galaxy relatively close to Centaurus A.
  • NGC 5033, has a Seyfert nucleus displaced from its kinematic center.
  • NGC 5548, an example of a lenticular Seyfert galaxy
  • NGC 6240, also classified as an ultraluminous infrared galaxy (ULIRG)
  • NGC 6251, the X-ray brightest low-excitation radio galaxy in the 3CRR catalog
  • NGC 7479, a spiral galaxy with arms opening in a direction opposite to the optical arms
  • IC 2560, a spiral galaxy with a nucleus similar to NGC 1097

H II region

From Wikipedia, the free encyclopedia

NGC 604, a giant H II region in the Triangulum Galaxy
 
An H II region or HII region is a region of interstellar atomic hydrogen that is ionized. It is typically a cloud of partially ionized gas in which star formation has recently taken place, with a size ranging from one to hundreds of light years, and density from a few to about a million particles per cubic cm. The Orion Nebula, now known to be an H II region, was observed in 1610 by Nicolas-Claude Fabri de Peiresc by telescope, the first such object discovered. 

They may be of any shape, because the distribution of the stars and gas inside them is irregular. The short-lived blue stars created in these regions emit copious amounts of ultraviolet light that ionize the surrounding gas. H II regions—sometimes several hundred light-years across—are often associated with giant molecular clouds. They often appear clumpy and filamentary, sometimes showing intricate shapes such as the Horsehead Nebula. H II regions may give birth to thousands of stars over a period of several million years. In the end, supernova explosions and strong stellar winds from the most massive stars in the resulting star cluster will disperse the gases of the H II region, leaving behind a cluster of stars which have formed, such as the Pleiades

H II regions can be observed at considerable distances in the universe, and the study of extragalactic H II regions is important in determining the distance and chemical composition of galaxies. Spiral and irregular galaxies contain many H II regions, while elliptical galaxies are almost devoid of them. In spiral galaxies, including our Milky Way, H II regions are concentrated in the spiral arms, while in irregular galaxies they are distributed chaotically. Some galaxies contain huge H II regions, which may contain tens of thousands of stars. Examples include the 30 Doradus region in the Large Magellanic Cloud and NGC 604 in the Triangulum Galaxy.

Terminology

Bubbles of brand new stars LHA 120-N 180B.
 
The term H II is pronounced "H two" by astronomers. "H" is the chemical symbol for hydrogen, and "II" is the Roman numeral for 2. It is customary in astronomy to use the Roman numeral I for neutral atoms, II for singly-ionised—H II is H+ in other sciences—III for doubly-ionised, e.g. O III is O++, etc. H II, or H+, consists of free protons. An H I region being neutral atomic hydrogen, and a molecular cloud being molecular hydrogen, H2. In spoken discussion with non-astronomers there is sometimes confusion between the identical spoken forms of "H II" and "H2".

Observations

Dark star-forming regions within the Eagle Nebula commonly referred to as the Pillars of Creation
 
A few of the brightest H II regions are visible to the naked eye. However, none seem to have been noticed before the advent of the telescope in the early 17th century. Even Galileo did not notice the Orion Nebula when he first observed the star cluster within it (previously cataloged as a single star, θ Orionis, by Johann Bayer). The French observer Nicolas-Claude Fabri de Peiresc is credited with the discovery of the Orion Nebula in 1610. Since that early observation large numbers of H II regions have been discovered in the Milky Way and other galaxies.

William Herschel observed the Orion Nebula in 1774, and described it later as "an unformed fiery mist, the chaotic material of future suns". In early days astronomers distinguished between "diffuse nebulae" (now known to be H II regions), which retained their fuzzy appearance under magnification through a large telescope, and nebulae that could be resolved into stars, now known to be galaxies external to our own.

Confirmation of Herschel's hypothesis of star formation had to wait another hundred years, when William Huggins together with his wife Mary Huggins turned his spectroscope on various nebulae. Some, such as the Andromeda Nebula, had spectra quite similar to those of stars, but turned out to be galaxies consisting of hundreds of millions of individual stars. Others looked very different. Rather than a strong continuum with absorption lines superimposed, the Orion Nebula and other similar objects showed only a small number of emission lines. In planetary nebulae, the brightest of these spectral lines was at a wavelength of 500.7 nanometres, which did not correspond with a line of any known chemical element. At first it was hypothesized that the line might be due to an unknown element, which was named nebulium—a similar idea had led to the discovery of helium through analysis of the Sun's spectrum in 1868. However, while helium was isolated on earth soon after its discovery in the spectrum of the sun, nebulium was not. In the early 20th century, Henry Norris Russell proposed that rather than being a new element, the line at 500.7 nm was due to a familiar element in unfamiliar conditions.

Interstellar matter, considered dense in an astronomical context, is at high vacuum by laboratory standards. Physicists showed in the 1920s that in gas at extremely low density, electrons can populate excited metastable energy levels in atoms and ions, which at higher densities are rapidly de-excited by collisions. Electron transitions from these levels in doubly ionized oxygen give rise to the 500.7 nm line. These spectral lines, which can only be seen in very low density gases, are called forbidden lines. Spectroscopic observations thus showed that planetary nebulae consisted largely of extremely rarefied ionised oxygen gas (OIII). 

During the 20th century, observations showed that H II regions often contained hot, bright stars. These stars are many times more massive than the Sun, and are the shortest-lived stars, with total lifetimes of only a few million years (compared to stars like the Sun, which live for several billion years). Therefore, it was surmised that H II regions must be regions in which new stars were forming. Over a period of several million years, a cluster of stars will form in an H II region, before radiation pressure from the hot young stars causes the nebula to disperse. The Pleiades are an example of a cluster which has 'boiled away' the H II region from which it was formed. Only a trace of reflection nebulosity remains.

Origin and lifetime

A small portion of the Tarantula Nebula, a giant H II region in the Large Magellanic Cloud
 
The precursor to an H II region is a giant molecular cloud (GMC). A GMC is a cold (10–20 K) and dense cloud consisting mostly of molecular hydrogen. GMCs can exist in a stable state for long periods of time, but shock waves due to supernovae, collisions between clouds, and magnetic interactions can trigger its collapse. When this happens, via a process of collapse and fragmentation of the cloud, stars are born (see stellar evolution for a lengthier description).

As stars are born within a GMC, the most massive will reach temperatures hot enough to ionise the surrounding gas. Soon after the formation of an ionising radiation field, energetic photons create an ionisation front, which sweeps through the surrounding gas at supersonic speeds. At greater and greater distances from the ionising star, the ionisation front slows, while the pressure of the newly ionised gas causes the ionised volume to expand. Eventually, the ionisation front slows to subsonic speeds, and is overtaken by the shock front caused by the expansion of the material ejected from the nebula. The H II region has been born.

The lifetime of an H II region is of the order of a few million years. Radiation pressure from the hot young stars will eventually drive most of the gas away. In fact, the whole process tends to be very inefficient, with less than 10 percent of the gas in the H II region forming into stars before the rest is blown off. Contributing to the loss of gas are the supernova explosions of the most massive stars, which will occur after only 1–2 million years.

Destruction of stellar nurseries

Bok globules in H II region IC 2944
 
Stars form in clumps of cool molecular gas that hide the nascent stars. It is only when the radiation pressure from a star drives away its 'cocoon' that it becomes visible. The hot, blue stars that are powerful enough to ionize significant amounts of hydrogen and form H II regions will do this quickly, and light up the region in which they just formed. The dense regions which contain younger or less massive still-forming stars and which have not yet blown away the material from which they are forming are often seen in silhouette against the rest of the ionised nebula. Bart Bok and E. F. Reilly searched astronomical photographs in the 1940s for "relatively small dark nebulae", following suggestions that stars might be formed from condensations in the interstellar medium; they found several such "approximately circular or oval dark objects of small size", which they referred to as "globules", since referred to as Bok globules. Bok proposed at the December 1946 Harvard Observatory Centennial Symposia that these globules were likely sites of star formation. It was confirmed in 1990 that they were indeed stellar birthplaces. The hot young stars dissipate these globules, as the radiation from the stars powering the H II region drives the material away. In this sense, the stars which generate H II regions act to destroy stellar nurseries. In doing so, however, one last burst of star formation may be triggered, as radiation pressure and mechanical pressure from supernova may act to squeeze globules, thereby enhancing the density within them.

The young stars in H II regions show evidence for containing planetary systems. The Hubble Space Telescope has revealed hundreds of protoplanetary disks (proplyds) in the Orion Nebula. At least half the young stars in the Orion Nebula appear to be surrounded by disks of gas and dust, thought to contain many times as much matter as would be needed to create a planetary system like the Solar System.

Characteristics

Physical properties

Messier 17 is an H II region in the constellation Sagittarius.
 
H II regions vary greatly in their physical properties. They range in size from so-called ultra-compact (UCHII) regions perhaps only a light-year or less across, to giant H II regions several hundred light-years across.[5] Their size is also known as the Stromgren radius and essentially depends on the intensity of the source of ionising photons and the density of the region. Their densities range from over a million particles per cm³ in the ultra-compact H II regions to only a few particles per cm³ in the largest and most extended regions. This implies total masses between perhaps 100 and 105 solar masses.

There are also "ultra-dense H II" regions (UDHII).

Depending on the size of an H II region there may be several thousand stars within it. This makes H II regions more complicated than planetary nebulae, which have only one central ionising source. Typically H II regions reach temperatures of 10,000 K. They are mostly ionised gases with weak magnetic fields with strengths of several nanoteslas. Nevertheless, H II regions are almost always associated with a cold molecular gas, which originated from the same parent GMC. Magnetic fields are produced by these weak moving electric charges in the ionised gas, suggesting that H II regions might contain electric fields.

Stellar nursery N159 is an HII region over 150 light-years across.
 
A number of H II regions also show signs of being permeated by a plasma with temperatures exceeding 10,000,000 K, sufficiently hot to emit X-rays. X-ray observatories such as Einstein and Chandra have noted diffuse X-ray emissions in a number of star-forming regions, notably the Orion Nebula, Messier 17, and the Carina Nebula. The hot gas is likely supplied by the strong stellar winds from O-type stars, which may be heated by supersonic shock waves in the winds, through collisions between winds from different stars, or through colliding winds channeled by magnetic fields. This plasma will rapidly expand to fill available cavities in the molecular clouds due to the high speed of sound in the gas at this temperature. It will also leak out through holes in the periphery of the H II region, which appears to be happening in Messier 17.

Chemically, H II regions consist of about 90% hydrogen. The strongest hydrogen emission line, the H-alpha line at 656.3 nm, gives H II regions their characteristic red colour. (This emission line comes from excited unionized hydrogen.) Most of the rest of an H II region consists of helium, with trace amounts of heavier elements. Across the galaxy, it is found that the amount of heavy elements in H II regions decreases with increasing distance from the galactic centre. This is because over the lifetime of the galaxy, star formation rates have been greater in the denser central regions, resulting in greater enrichment of those regions of the interstellar medium with the products of nucleosynthesis.

Numbers and distribution

Strings of red H II regions delineate the arms of the Whirlpool Galaxy.
 
H II regions are found only in spiral galaxies like the Milky Way and irregular galaxies. They are not seen in elliptical galaxies. In irregular galaxies, they may be dispersed throughout the galaxy, but in spirals they are most abundant within the spiral arms. A large spiral galaxy may contain thousands of H II regions.

The reason H II regions rarely appear in elliptical galaxies is that ellipticals are believed to form through galaxy mergers. In galaxy clusters, such mergers are frequent. When galaxies collide, individual stars almost never collide, but the GMCs and H II regions in the colliding galaxies are severely agitated. Under these conditions, enormous bursts of star formation are triggered, so rapid that most of the gas is converted into stars rather than the normal rate of 10% or less.

Galaxies undergoing such rapid star formation are known as starburst galaxies. The post-merger elliptical galaxy has a very low gas content, and so H II regions can no longer form. Twenty-first century observations have shown that a very small number of H II regions exist outside galaxies altogether. These intergalactic H II regions may be the remnants of tidal disruptions of small galaxies, and in some cases may represent a new generation of stars in a galaxy's most recently accreted gas.

Morphology

H II regions come in an enormous variety of sizes. They are usually clumpy and inhomogeneous on all scales from the smallest to largest. Each star within an H II region ionises a roughly spherical region—known as a Strömgren sphere—of the surrounding gas, but the combination of ionisation spheres of multiple stars within a H II region and the expansion of the heated nebula into surrounding gases creates sharp density gradients that result in complex shapes. Supernova explosions may also sculpt H II regions. In some cases, the formation of a large star cluster within an H II region results in the region being hollowed out from within. This is the case for NGC 604, a giant H II region in the Triangulum Galaxy. For a H II region which cannot be resolved, some information on the spatial structure (the electron density as a function of the distance from the center, and an estimate of the clumpiness) can be inferred by performing an inverse Laplace transform on the frequency spectrum.

Notable regions

An optical image (left) reveals clouds of gas and dust in the Orion Nebula; an infrared image (right) reveals new stars shining within.
 
Notable Galactic H II regions include the Orion Nebula, the Eta Carinae Nebula, and the Berkeley 59 / Cepheus OB4 Complex. The Orion Nebula, about 500 pc (1,500 light-years) from Earth, is part of OMC-1, a GMC that, if visible, would be seen to fill most of the constellation of Orion. The Horsehead Nebula and Barnard's Loop are two other illuminated parts of this cloud of gas. The Orion Nebula is actually a thin layer of ionised gas on the outer border of the OMC-1 cloud. The stars in the Trapezium cluster, and especially θ1 Orionis, are responsible for this ionisation.

The Large Magellanic Cloud, a satellite galaxy of the Milky Way at about 50 kpc (160 thousand light years), contains a giant H II region called the Tarantula Nebula. Measuring at about 200 pc (650 light years) across, this nebula is the most massive and the second-largest H II region in the Local Group.[36] It is much bigger than the Orion Nebula, and is forming thousands of stars, some with masses of over 100 times that of the sun—OB and Wolf-Rayet stars. If the Tarantula Nebula were as close to Earth as the Orion Nebula, it would shine about as brightly as the full moon in the night sky. The supernova SN 1987A occurred in the outskirts of the Tarantula Nebula.

Another giant H II region—NGC 604 is located in M33 spiral galaxy, which is at 817 kpc (2.66 million light years). Measuring at approximately 240 × 250 pc (800 × 830 light years) across, NGC 604 is the second-most-massive H II region in the Local Group after the Tarantula Nebula, although it is slightly larger in size than the latter. It contains around 200 hot OB and Wolf-Rayet stars, which heat the gas inside it to millions of degrees, producing bright X-ray emissions. The total mass of the hot gas in NGC 604 is about 6,000 Solar masses.

Current issues

Trifid Nebula seen at different wavelengths
 
As with planetary nebulae, estimates of the abundance of elements in H II regions are subject to some uncertainty. There are two different ways of determining the abundance of metals (metals in this case are elements other than hydrogen and helium) in nebulae, which rely on different types of spectral lines, and large discrepancies are sometimes seen between the results derived from the two methods. Some astronomers put this down to the presence of small temperature fluctuations within H II regions; others claim that the discrepancies are too large to be explained by temperature effects, and hypothesise the existence of cold knots containing very little hydrogen to explain the observations.

The full details of massive star formation within H II regions are not yet well known. Two major problems hamper research in this area. First, the distance from Earth to large H II regions is considerable, with the nearest H II (California Nebula) region at 300 pc (1,000 light-years); other H II regions are several times that distance from Earth. Secondly, the formation of these stars is deeply obscured by dust, and visible light observations are impossible. Radio and infrared light can penetrate the dust, but the youngest stars may not emit much light at these wavelengths.

Cooperative

From Wikipedia, the free encyclopedia ...