From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Superheavy_element
Transactinide elements
in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium
Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium

Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Z ≥ 104 (Rf)

Superheavy elements, also known as transactinide elements, transactinides, or super-heavy elements, are the chemical elements with atomic numbers greater than 103. The superheavy elements are immediately beyond the actinides in the periodic table; the heaviest actinide is lawrencium (atomic number 103). By definition, superheavy elements are also transuranic elements, i.e. having atomic numbers greater than that of uranium (92).

Glenn T. Seaborg first proposed the actinide concept, which led to the acceptance of the actinide series. He also proposed a transactinide series ranging from element 104 to 121 and a superactinide series approximately spanning elements 122 to 153 (although more recent work suggests the end of the superactinide series to occur at element 157 instead). The transactinide seaborgium was named in his honor.

Superheavy elements are radioactive and have only been obtained synthetically in laboratories. None of these elements have ever been collected in a macroscopic sample. Superheavy elements are all named after physicists and chemists or important locations involved in the synthesis of the elements.

IUPAC defines an element to exist if its lifetime is longer than 10−14 seconds, which is the time it takes for the nucleus to form an electron cloud.

The known superheavy elements form part of the 6d and 7p series in the periodic table. Except for rutherfordium and dubnium, even the longest-lasting isotopes of superheavy elements have short half-lives of minutes or less. The element naming controversy involved elements 102–109. Some of these elements thus used systematic names for many years after their discovery had been confirmed. (Usually the systematic names are replaced with permanent names proposed by the discoverers relatively shortly after a discovery has been confirmed.)

Introduction