Search This Blog

Sunday, September 15, 2024

Directive on the legal protection of biotechnological inventions

Directive 98/44/EC
European Union directive
TitleDirective on the legal protection of biotechnological inventions
Made byEuropean Parliament & Council
Made underArt. 100a
Journal referenceL213, 30 July 1998, pp. 13–21
History
Date made1998-07-06
Entry into force1998-07-30
Implementation date2000-07-30
Preparative texts
Commission proposalC296, 1996-10-08, p. 4.
C311, 1997-10-11, p. 12.
EESC opinionC295, 1996-10-07, p. 11
EP opinionC286, 1997-09-22, p. 87.
C167, 1998-06-01
ReportsCOM(2002) 2
COM(2002) 545
COM(2005) 312
Other legislation
Replaces
Amends
Amended by
Replaced by
Current legislation

Directive 98/44/EC of the European Parliament and of the Council of 6 July 1998 on the legal protection of biotechnological inventions is a European Union directive in the field of patent law, made under the internal market provisions of the Treaty of Rome. It was intended to harmonise the laws of Member States regarding the patentability of biotechnological inventions, including plant varieties (as legally defined) and human genes.

Content

The Directive is divided into the following five chapters:

  • Patentability (Chapter I)
  • Scope of Protection (Chapter II)
  • Compulsory cross-licensing (Chapter III)
  • Deposit, access and re-deposit of biological material (Chapter IV)
  • Final Provisions (entering into force) (Chapter V)

Timeline

The original proposal was adopted by the European Commission in 1988. The procedure for its adoption was slowed down by primarily ethical issues regarding the patentability of living matter. The European Parliament eventually rejected the joint text from the final Conciliation meeting at 3rd reading on 1 March 1995 so the first directive process did not yield a directive.

On 13 December 1995, the Commission adopted a new proposal was nearly identical to the rejected version, was changed again, but the Parliament put aside its ethical concerns on patenting of human genes in on 12 July 1998 in its second reading and adopted the Common Position of the Council, so in the second legislative process, the directive was adopted. The drafts person of the Parliament for this second procedure was Willi Rothley and the vote with the most yes votes was Amendment 9 from the Greens which got 221 against 294 votes out of 532 members voting with 17 abstentions but 314 yes votes would have been required to reach the required an absolute majority to adopt it.

On 6 July 1998, a final version was adopted. Its code is 98/44/EC.

The Kingdom of the Netherlands brought Case C-377/98 before the European Court of Justice against the adoption of the directive with six different pleas but the Court granted none of them.

Nevertheless, the ECJ decision does not preclude a further test of the validity of the directive on the ground that it is inconsistent with the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS). Art. 27.1 TRIPS provides that patents are only to be granted with respect to 'inventions'. The directive, however, provides that "biological material which is isolated from its natural environment ... may be the subject of an invention even if it previously occurred in nature." It is clearly arguable that merely isolating a human gene or protein from its natural environment is not an activity that can come within the meaning of the word 'invention'. The Danish Council of Bioethics in its Patenting Human Genes and Stem Cells Report noted that "In the members' view, it cannot be said with any reasonableness that a sequence or partial sequence of a gene ceases to be part of the human body merely because an identical copy of the sequence is isolated from or produced outside of the human body." TRIPS applies to the European Community as it is a member of the World Trade Organization (WTO) in its own right and accordingly must ensure "the conformity of its laws, regulations and administrative procedures with obligations as provided" by the WTO.

On 14 January 2002, the Commission submitted an assessment of the implications for basic genetic engineering research of failure to publish, or late publication of, papers on subjects which could be patentable as required under Article 16(b) of this directive.

Campaigning and lobbying

According to SmithKline Beecham lobbyist Simon Gentry, the company allocated 30 million ECU for a pro-Directive campaign. Part of this campaign was direct support of patient charities and organisations. On the day of the July 1997 vote, a number of people in wheelchairs from these groups demonstrated outside the main hall in Strasbourg, chanting the pharmaceutical industry's slogan, "No Patents, No Cure" in an emotional appeal to Parliamentarians to vote for the Directive.

Implementation

As of 15 January 2007, all of the 27 EU member states had implemented the Directive.

Invention

From Wikipedia, the free encyclopedia
Cover of Science and Invention Magazine
'BUILD YOUR OWN TELEVISION RECEIVER.' Science and Invention magazine cover, November 1928

An invention is a unique or novel device, method, composition, idea or process. An invention may be an improvement upon a machine, product, or process for increasing efficiency or lowering cost. It may also be an entirely new concept. If an idea is unique enough either as a stand-alone invention or as a significant improvement over the work of others, it can be patented. A patent, if granted, gives the inventor a proprietary interest in the patent over a specific period of time, which can be licensed for financial gain.

An inventor creates or discovers an invention. The word inventor comes from the Latin verb invenire, invent-, to find. Although inventing is closely associated with science and engineering, inventors are not necessarily engineers or scientists. Due to advances in artificial intelligence, the term "inventor" no longer exclusively applies to an occupation (see human computers).

Some inventions can be patented. The system of patents was established to encourage inventors by granting limited-term, limited monopoly on inventions determined to be sufficiently novel, non-obvious, and useful. A patent legally protects the intellectual property rights of the inventor and legally recognizes that a claimed invention is actually an invention. The rules and requirements for patenting an invention vary by country and the process of obtaining a patent is often expensive.

Another meaning of invention is cultural invention, which is an innovative set of useful social behaviours adopted by people and passed on to others. The Institute for Social Inventions collected many such ideas in magazines and books. Invention is also an important component of artistic and design creativity. Inventions often extend the boundaries of human knowledge, experience or capability.

Types

Inventions are of three kinds: scientific-technological (including medicine), sociopolitical (including economics and law), and humanistic, or cultural.

Scientific-technological inventions include railroads, aviation, vaccination, hybridization, antibiotics, astronautics, holography, the atomic bomb, computing, the Internet, and the smartphone.

Sociopolitical inventions comprise new laws, institutions, and procedures that change modes of social behavior and establish new forms of human interaction and organization. Examples include the British Parliament, the US Constitution, the Manchester (UK) General Union of Trades, the Boy Scouts, the Red Cross, the Olympic Games, the United Nations, the European Union, and the Universal Declaration of Human Rights, as well as movements such as socialism, Zionism, suffragism, feminism, and animal-rights veganism.

Humanistic inventions encompass culture in its entirety and are as transformative and important as any in the sciences, although people tend to take them for granted. In the domain of linguistics, for example, many alphabets have been inventions, as are all neologisms (Shakespeare invented about 1,700 words). Literary inventions include the epic, tragedy, comedy, the novel, the sonnet, the Renaissance, neoclassicism, Romanticism, Symbolism, Aestheticism, Socialist Realism, Surrealism, postmodernism, and (according to Freud) psychoanalysis. Among the inventions of artists and musicians are oil painting, printmaking, photography, cinema, musical tonality, atonality, jazz, rock, opera, and the symphony orchestra. Philosophers have invented logic (several times), dialectics, idealism, materialism, utopia, anarchism, semiotics, phenomenology, behaviorism, positivism, pragmatism, and deconstruction. Religious thinkers are responsible for such inventions as monotheism, pantheism, Methodism, Mormonism, iconoclasm, puritanism, deism, secularism, ecumenism, and the Baháʼí Faith. Some of these disciplines, genres, and trends may seem to have existed eternally or to have emerged spontaneously of their own accord, but most of them have had inventors.

Process

Practical means

Alessandro Volta with the first electrical battery. Volta is recognized as an influential inventor.

Ideas for an invention may be developed on paper or on a computer, by writing or drawing, by trial and error, by making models, by experimenting, by testing and/or by making the invention in its whole form. Brainstorming also can spark new ideas for an invention. Collaborative creative processes are frequently used by engineers, designers, architects and scientists. Co-inventors are frequently named on patents.

In addition, many inventors keep records of their working process - notebooks, photos, etc., including Leonardo da Vinci, Galileo Galilei, Evangelista Torricelli, Thomas Jefferson and Albert Einstein.

In the process of developing an invention, the initial idea may change. The invention may become simpler, more practical, it may expand, or it may even morph into something totally different. Working on one invention can lead to others too.

History shows that turning the concept of an invention into a working device is not always swift or direct. Inventions may also become more useful after time passes and other changes occur. For example, the parachute became more useful once powered flight was a reality.

Conceptual means

Thomas Edison with phonograph. Edison was one of the most prolific inventors in history, holding 1,093 U.S. patents in his name.

Invention is often a creative process. An open and curious mind allows an inventor to see beyond what is known. Seeing a new possibility, connection or relationship can spark an invention. Inventive thinking frequently involves combining concepts or elements from different realms that would not normally be put together. Sometimes inventors disregard the boundaries between distinctly separate territories or fields. Several concepts may be considered when thinking about invention.

Play

Johannes Gutenberg's printing press was voted the most important invention of the second millennium.

Play may lead to invention. Childhood curiosity, experimentation, and imagination can develop one's play instinct. Inventors feel the need to play with things that interest them, and to explore, and this internal drive brings about novel creations.

Sometimes inventions and ideas may seem to arise spontaneously while daydreaming, especially when the mind is free from its usual concerns. For example, both J. K. Rowling (the creator of Harry Potter) and Frank Hornby (the inventor of Meccano) first had their ideas while on train journeys.

In contrast, the successful aerospace engineer Max Munk advocated "aimful thinking".

Re-envisioning

To invent is to see anew. Inventors often envision a new idea, seeing it in their mind's eye. New ideas can arise when the conscious mind turns away from the subject or problem when the inventor's focus is on something else, or while relaxing or sleeping. A novel idea may come in a flash—a Eureka! moment. For example, after years of working to figure out the general theory of relativity, the solution came to Einstein suddenly in a dream "like a giant die making an indelible impress, a huge map of the universe outlined itself in one clear vision". Inventions can also be accidental, such as in the case of polytetrafluoroethylene (Teflon).

Insight

Insight can also be a vital element of invention. Such inventive insight may begin with questions, doubt or a hunch. It may begin by recognizing that something unusual or accidental may be useful or that it could open a new avenue for exploration. For example, the odd metallic color of plastic made by accidentally adding a thousand times too much catalyst led scientists to explore its metal-like properties, inventing electrically conductive plastic and light emitting plastic-—an invention that won the Nobel Prize in 2000 and has led to innovative lighting, display screens, wallpaper and much more (see conductive polymer, and organic light-emitting diode or OLED).

Exploration

A rare 1884 photo showing the experimental recording of voice patterns by a photographic process at the Alexander Graham Bell Laboratory in Washington, D.C. Many of their experimental designs panned out in failure.
Eric M. C. Tigerstedt (1887–1925) was known as a pioneer of sound-on-film technology. Tigerstedt in 1915.

Invention is often an exploratory process with an uncertain or unknown outcome. There are failures as well as successes. Inspiration can start the process, but no matter how complete the initial idea, inventions typically must be developed.

Improvement

Inventors may, for example, try to improve something by making it more effective, healthier, faster, more efficient, easier to use, serve more purposes, longer lasting, cheaper, more ecologically friendly, or aesthetically different, lighter weight, more ergonomic, structurally different, with new light or color properties, etc.

Implementation

Western Arabic numerals — an example of non-material inventions
Railways — probably the most important invention in land transport (railway station in Bratislava, Slovakia)

In economic theory, inventions are one of the chief examples of "positive externalities", a beneficial side effect that falls on those outside a transaction or activity. One of the central concepts of economics is that externalities should be internalized—unless some of the benefits of this positive externality can be captured by the parties, the parties are under-rewarded for their inventions, and systematic under-rewarding leads to under-investment in activities that lead to inventions. The patent system captures those positive externalities for the inventor or other patent owner so that the economy as a whole invests an optimum amount of resources in the invention process.

Comparison with innovation

In contrast to invention, innovation is the implementation of a creative idea that specifically leads to greater value or usefulness. That is, while an invention may be useless or have no value yet still be an invention, an innovation must have some sort of value, typically economic.

As defined by patent law

U.S. patent

The term invention is also an important legal concept and central to patent law systems worldwide. As is often the case for legal concepts, its legal meaning is slightly different from common usage of the word. Additionally, the legal concept of invention is quite different in American and European patent law.

In Europe, the first test a patent application must pass is, "Is this an invention?" If it is, subsequent questions are whether it is new and sufficiently inventive. The implication—counter-intuitively—is that a legal invention is not inherently novel. Whether a patent application relates to an invention is governed by Article 52 of the European Patent Convention, that excludes, e.g., discoveries as such and software as such. The EPO Boards of Appeal decided that the technical character of an application is decisive for it to represent an invention, following an age-old Italian and German tradition. British courts do not agree with this interpretation. Following a 1959 Australian decision ("NRDC"), they believe that it is not possible to grasp the invention concept in a single rule. A British court once stated that the technical character test implies a "restatement of the problem in more imprecise terminology."

In the United States, all patent applications are considered inventions. The statute explicitly says that the American invention concept includes discoveries (35 USC § 100(a)), contrary to the European invention concept. The European invention concept corresponds to the American "patentable subject matter" concept: the first test a patent application is submitted to. While the statute (35 USC § 101) virtually poses no limits to patenting whatsoever, courts have decided in binding precedents that abstract ideas, natural phenomena and laws of nature are not patentable. Various attempts have been made to substantiate the "abstract idea" test, which suffers from abstractness itself, but none have succeeded. The last attempt so far was the "machine or transformation" test, but the U.S. Supreme Court decided in 2010 that it is merely an indication at best.

In India, invention means a new product or process that involves an inventive step, and capable of being made or used in an industry. Whereas, "new invention" means any invention that has not been anticipated in any prior art or used in the country or anywhere in the world.

In the arts

Invention has a long and important history in the arts. Inventive thinking has always played a vital role in the creative process. While some inventions in the arts are patentable, others are not because they cannot fulfill the strict requirements governments have established for granting them. (see patent).

Some inventions in art include the:

Likewise, Jackson Pollock invented an entirely new form of painting and a new kind of abstraction by dripping, pouring, splashing and splattering paint onto un-stretched canvas lying on the floor.

Inventive tools of the artist's trade also produced advances in creativity. Impressionist painting became possible because of newly invented collapsible, resealable metal paint tubes that facilitated spontaneous painting outdoors. Inventions originally created in the form of artwork can also develop other uses, e.g. Alexander Calder's mobile, which is now commonly used over babies' cribs. Funds generated from patents on inventions in art, design and architecture can support the realization of the invention or other creative work. Frédéric Auguste Bartholdi's 1879 design patent on the Statue of Liberty helped fund the famous statue because it covered small replicas, including those sold as souvenirs.

The timeline for invention in the arts lists the most notable artistic inventors.

Gender gap in inventions

Historically, women in many regions have been unrecognised for their inventive contributions (except Russia and France), despite being the sole inventor or co-inventor in inventions, including highly notable inventions. Notable examples include Margaret Knight who faced significant challenges in receiving credit for her inventions; Elizabeth Magie who was not credited for her invention of the game of Monopoly; and among other such examples, Chien-Shiung Wu whose male colleagues alone were awarded the Nobel Prize for their joint contributions to physics. Societal prejudice, institutional, educational and often legal patent barriers have both played a role in the gender invention gap. For example, although there could be found female patenters in US patent Office who also are likely to be helpful in their experience, still a patent applications made to the US Patent Office for inventions are less likely to succeed where the applicant have a "feminine" name, and additionally women could lose their independent legal patent rights to their husbands once married. See also the gender gap in patents.

Applied science

From Wikipedia, the free encyclopedia
Food science is a branch of applied science.

Applied science is the application of the scientific method and scientific knowledge to attain practical goals. It includes a broad range of disciplines, such as engineering and medicine. Applied science is often contrasted with basic science, which is focused on advancing scientific theories and laws that explain and predict natural or other phenomena.

There are applied natural sciences, as well as applied formal and social sciences.  Applied science examples include genetic epidemiology which applies statistics and probability theory, and applied psychology, including criminology.

Applied research

Applied research is the use of empirical methods to collect data for practical purposes. It accesses and uses accumulated theories, knowledge, methods, and techniques for a specific state, business, or client-driven purpose. In contrast to engineering, applied research does not include analyses or optimization of business, economics, and costs. Applied research can be better understood in any area when contrasting it with basic or pure research. Basic geographical research strives to create new theories and methods that aid in explaining the processes that shape the spatial structure of physical or human environments. Instead, applied research utilizes existing geographical theories and methods to comprehend and address particular empirical issues. Applied research usually has specific commercial objectives related to products, procedures, or services. The comparison of pure research and applied research provides a basic framework and direction for businesses to follow. 

Applied research deals with solving practical problems and generally employs empirical methodologies. Because applied research resides in the messy real world, strict research protocols may need to be relaxed. For example, it may be impossible to use a random sample. Thus, transparency in the methodology is crucial. Implications for the interpretation of results brought about by relaxing an otherwise strict canon of methodology should also be considered.

Moreover, this type of research method applies natural sciences to human conditions:

  • Action Research: aids firms in identifying workable solutions to issues influencing them.
  • Evaluation Research: researchers examine available data to assist clients in making wise judgments.
  • Industrial Research: create new goods/services that will satisfy the demands of a target market. (Industrial development would be scaling up production of the new goods/services for mass consumption to satisfy the economic demand of the customers while maximizing the ratio of the good/service output rate to resource input rate, the ratio of good/service revenue to material & energy costs, and the good/service quality. Industrial development would be considered engineering. Industrial development would fall outside the scope of applied research.)

Since applied research has a provisional close-to-the-problem and close-to-the-data orientation, it may also use a more provisional conceptual framework, such as working hypotheses or pillar questions. The OECD's Frascati Manual describes applied research as one of the three forms of research, along with basic research & experimental development.

Due to its practical focus, applied research information will be found in the literature associated with individual disciplines.

Branches

Applied research is a method of problem-solving and is also practical in areas of science, such as its presence in applied psychology. Applied psychology uses human behavior to grab information to locate a main focus in an area that can contribute to finding a resolution. More specifically, this study is applied in the area of criminal psychology. With the knowledge obtained from applied research, studies are conducted on criminals alongside their behavior to apprehend them. Moreover, the research extends to criminal investigations. Under this category, research methods demonstrate an understanding of the scientific method and social research designs used in criminological research. These reach more branches along the procedure towards the investigations, alongside laws, policy, and criminological theory.

Engineering is the practice of using natural science, mathematics, and the engineering design process to solve technical problems, increase efficiency and productivity, and improve systems.The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. Engineering is often characterized as having four main branches: chemical engineering, civil engineering, electrical engineering, and mechanical engineering. Some scientific subfields used by engineers include thermodynamics, heat transfer, fluid mechanics, statics, dynamics, mechanics of materials, kinematics, electromagnetism, materials science, earth sciences, and engineering physics.

Medical sciences, such as medical microbiology, pharmaceutical research, and clinical virology, are applied sciences that apply biology and chemistry to medicine. Pharmaceutical development would fall within the scope of engineering.

In education

In Canada, the Netherlands, and other places, the Bachelor of Applied Science (BASc) is sometimes equivalent to the Bachelor of Engineering and is classified as a professional degree. This is based on the age of the school where applied science used to include boiler making, surveying, and engineering. There are also Bachelor of Applied Science degrees in Child Studies. The BASc tends to focus more on the application of the engineering sciences. In Australia and New Zealand, this degree is awarded in various fields of study and is considered a highly specialized professional degree.

In the United Kingdom's educational system, Applied Science refers to a suite of "vocational" science qualifications that run alongside "traditional" General Certificate of Secondary Education or A-Level Sciences. Applied Science courses generally contain more coursework (also known as portfolio or internally assessed work) compared to their traditional counterparts. These are an evolution of the GNVQ qualifications offered up to 2005. These courses regularly come under scrutiny and are due for review following the Wolf Report 2011; however, their merits are argued elsewhere.

In the United States, The College of William & Mary offers an undergraduate minor as well as Master of Science and Doctor of Philosophy degrees in "applied science". Courses and research cover varied fields, including neuroscience, optics, materials science and engineering, nondestructive testing, and nuclear magnetic resonance. University of Nebraska–Lincoln offers a Bachelor of Science in applied science, an online completion Bachelor of Science in applied science, and a Master of Applied Science. Coursework is centered on science, agriculture, and natural resources with a wide range of options, including ecology, food genetics, entrepreneurship, economics, policy, animal science, and plant science. In New York City, the Bloomberg administration awarded the consortium of Cornell-Technion $100 million in City capital to construct the universities' proposed Applied Sciences campus on Roosevelt Island.

19th century in science

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/19th_century_in_science

The 19th century in science saw the birth of science as a profession; the term scientist was coined in 1833 by William Whewell, which soon replaced the older term of (natural) philosopher.

Among the most influential ideas of the 19th century were those of Charles Darwin (alongside the independent research of Alfred Russel Wallace), who in 1859 published the book On the Origin of Species, which introduced the idea of evolution by natural selection. Another important landmark in medicine and biology were the successful efforts to prove the germ theory of disease. Following this, Louis Pasteur made the first vaccine against rabies, and also made many discoveries in the field of chemistry, including the asymmetry of crystals. In chemistry, Dmitri Mendeleev, following the atomic theory of John Dalton, created the first periodic table of elements. In physics, the experiments, theories and discoveries of Michael Faraday, Andre-Marie Ampere, James Clerk Maxwell, and their contemporaries led to the creation of electromagnetism as a new branch of science. Thermodynamics led to an understanding of heat and the notion of energy was defined.

The discovery of new types of radiation and the simultaneous revelation of the nature of atomic structure and matter are two additional highlights. In astronomy, the planet Neptune was discovered. In mathematics, the notion of complex numbers finally matured and led to a subsequent analytical theory; they also began the use of hypercomplex numbers. Karl Weierstrass and others carried out the arithmetization of analysis for functions of real and complex variables. It also saw rise to new progress in geometry beyond those classical theories of Euclid, after a period of nearly two thousand years. The mathematical science of logic likewise had revolutionary breakthroughs after a similarly long period of stagnation. But the most important step in science at this time were the ideas formulated by the creators of electrical science. Their work changed the face of physics and made possible for new technology to come about such as electric power, electrical telegraphy, the telephone, and radio.

Mathematics

Throughout the 19th century mathematics became increasingly abstract. Carl Friedrich Gauss (1777–1855) epitomizes this trend. He did revolutionary work on functions of complex variables, in geometry, and on the convergence of series, leaving aside his many contributions to science. He also gave the first satisfactory proofs of the fundamental theorem of algebra and of the quadratic reciprocity law. His 1801 volume Disquisitiones Arithmeticae laid the foundations of modern number theory.

Behavior of lines with a common perpendicular in each of the three types of geometry

This century saw the development of the two forms of non-Euclidean geometry, where the parallel postulate of Euclidean geometry no longer holds. The Russian mathematician Nikolai Ivanovich Lobachevsky and his rival, the Hungarian mathematician János Bolyai, independently defined and studied hyperbolic geometry, where uniqueness of parallels no longer holds. In this geometry the sum of angles in a triangle add up to less than 180°. Elliptic geometry was developed later in the 19th century by the German mathematician Bernhard Riemann; here no parallel can be found and the angles in a triangle add up to more than 180°. Riemann also developed Riemannian geometry, which unifies and vastly generalizes the three types of geometry.

The 19th century saw the beginning of a great deal of abstract algebra. Hermann Grassmann in Germany gave a first version of vector spaces, William Rowan Hamilton in Ireland developed noncommutative algebra. The British mathematician George Boole devised an algebra that soon evolved into what is now called Boolean algebra, in which the only numbers were 0 and 1. Boolean algebra is the starting point of mathematical logic and has important applications in computer science.

Augustin-Louis Cauchy, Bernhard Riemann, and Karl Weierstrass reformulated the calculus in a more rigorous fashion.

Also, for the first time, the limits of mathematics were explored. Niels Henrik Abel, a Norwegian, and Évariste Galois, a Frenchman, proved that there is no general algebraic method for solving polynomial equations of degree greater than four (Abel–Ruffini theorem). Other 19th-century mathematicians utilized this in their proofs that straightedge and compass alone are not sufficient to trisect an arbitrary angle, to construct the side of a cube twice the volume of a given cube, nor to construct a square equal in area to a given circle. Mathematicians had vainly attempted to solve all of these problems since the time of the ancient Greeks. On the other hand, the limitation of three dimensions in geometry was surpassed in the 19th century through considerations of parameter space and hypercomplex numbers.

In the later 19th century, Georg Cantor established the first foundations of set theory, which enabled the rigorous treatment of the notion of infinity and has become the common language of nearly all mathematics. Cantor's set theory, and the rise of mathematical logic in the hands of Peano, L. E. J. Brouwer, David Hilbert, Bertrand Russell, and A.N. Whitehead, initiated a long running debate on the foundations of mathematics.

The 19th century saw the founding of a number of national mathematical societies: the London Mathematical Society in 1865, the Société Mathématique de France in 1872, the Edinburgh Mathematical Society in 1883, the Circolo Matematico di Palermo in 1884, and the American Mathematical Society in 1888. The first international, special-interest society, the Quaternion Society, was formed in 1899, in the context of a vector controversy.

Physics

Michael Faraday
(1791–1867)

In 1800, Alessandro Volta invented the electric battery (known as the voltaic pile) and thus improved the way electric currents could also be studied. A year later, Thomas Young demonstrated the wave nature of light—which received strong experimental support from the work of Augustin-Jean Fresnel—and the principle of interference. In 1813, Peter Ewart supported the idea of the conservation of energy in his paper On the measure of moving force. In 1820, Hans Christian Ørsted found that a current-carrying conductor gives rise to a magnetic force surrounding it, and within a week after Ørsted's discovery reached France, André-Marie Ampère discovered that two parallel electric currents will exert forces on each other. In 1821, William Hamilton began his analysis of Hamilton's characteristic function. In 1821, Michael Faraday built an electricity-powered motor, while Georg Ohm stated his law of electrical resistance in 1826, expressing the relationship between voltage, current, and resistance in an electric circuit. A year later, botanist Robert Brown discovered Brownian motion: pollen grains in water undergoing movement resulting from their bombardment by the fast-moving atoms or molecules in the liquid. In 1829, Gaspard Coriolis introduced the terms of work (force times distance) and kinetic energy with the meanings they have today.

In 1831, Faraday (and independently Joseph Henry) discovered the reverse effect, the production of an electric potential or current through magnetism – known as electromagnetic induction; these two discoveries are the basis of the electric motor and the electric generator, respectively. In 1834, Carl Jacobi discovered his uniformly rotating self-gravitating ellipsoids (the Jacobi ellipsoid). In 1834, John Russell observed a nondecaying solitary water wave (soliton) in the Union Canal near Edinburgh and used a water tank to study the dependence of solitary water wave velocities on wave amplitude and water depth.[30] In 1835, William Hamilton stated Hamilton's canonical equations of motion. In the same year, Gaspard Coriolis examined theoretically the mechanical efficiency of waterwheels, and deduced the Coriolis effect. In 1841, Julius Robert von Mayer, an amateur scientist, wrote a paper on the conservation of energy but his lack of academic training led to its rejection. In 1842, Christian Doppler proposed the Doppler effect. In 1847, Hermann von Helmholtz formally stated the law of conservation of energy. In 1851, Léon Foucault showed the Earth's rotation with a huge pendulum (Foucault pendulum).

There were important advances in continuum mechanics in the first half of the century, namely formulation of laws of elasticity for solids and discovery of Navier–Stokes equations for fluids.

Laws of thermodynamics

William Thomson (Lord Kelvin)
(1824–1907)

In the 19th century, the connection between heat and mechanical energy was established quantitatively by Julius Robert von Mayer and James Prescott Joule, who measured the mechanical equivalent of heat in the 1840s. In 1849, Joule published results from his series of experiments (including the paddlewheel experiment) which show that heat is a form of energy, a fact that was accepted in the 1850s. The relation between heat and energy was important for the development of steam engines, and in 1824 the experimental and theoretical work of Sadi Carnot was published. Carnot captured some of the ideas of thermodynamics in his discussion of the efficiency of an idealized engine. Sadi Carnot's work provided a basis for the formulation of the first law of thermodynamics—a restatement of the law of conservation of energy—which was stated around 1850 by William Thomson, later known as Lord Kelvin, and Rudolf Clausius. Lord Kelvin, who had extended the concept of absolute zero from gases to all substances in 1848, drew upon the engineering theory of Lazare Carnot, Sadi Carnot, and Émile Clapeyron–as well as the experimentation of James Prescott Joule on the interchangeability of mechanical, chemical, thermal, and electrical forms of work—to formulate the first law.

Kelvin and Clausius also stated the second law of thermodynamics, which was originally formulated in terms of the fact that heat does not spontaneously flow from a colder body to a hotter. Other formulations followed quickly (for example, the second law was expounded in Thomson and Peter Guthrie Tait's influential work Treatise on Natural Philosophy) and Kelvin in particular understood some of the law's general implications. The second Law was the idea that gases consist of molecules in motion had been discussed in some detail by Daniel Bernoulli in 1738, but had fallen out of favor, and was revived by Clausius in 1857. In 1850, Hippolyte Fizeau and Léon Foucault measured the speed of light in water and find that it is slower than in air, in support of the wave model of light. In 1852, Joule and Thomson demonstrated that a rapidly expanding gas cools, later named the Joule–Thomson effect or Joule–Kelvin effect. Hermann von Helmholtz puts forward the idea of the heat death of the universe in 1854, the same year that Clausius established the importance of dQ/T (Clausius's theorem) (though he did not yet name the quantity).

James Clerk Maxwell

James Clerk Maxwell
(1831–1879)

In 1859, James Clerk Maxwell discovered the distribution law of molecular velocities. Maxwell showed that electric and magnetic fields are propagated outward from their source at a speed equal to that of light and that light is one of several kinds of electromagnetic radiation, differing only in frequency and wavelength from the others. In 1859, Maxwell worked out the mathematics of the distribution of velocities of the molecules of a gas. The wave theory of light was widely accepted by the time of Maxwell's work on the electromagnetic field, and afterward the study of light and that of electricity and magnetism were closely related. In 1864 James Maxwell published his papers on a dynamical theory of the electromagnetic field, and stated that light is an electromagnetic phenomenon in the 1873 publication of Maxwell's Treatise on Electricity and Magnetism. This work drew upon theoretical work by German theoreticians such as Carl Friedrich Gauss and Wilhelm Weber. The encapsulation of heat in particulate motion, and the addition of electromagnetic forces to Newtonian dynamics established an enormously robust theoretical underpinning to physical observations.

The prediction that light represented a transmission of energy in wave form through a "luminiferous ether", and the seeming confirmation of that prediction with Helmholtz student Heinrich Hertz's 1888 detection of electromagnetic radiation, was a major triumph for physical theory and raised the possibility that even more fundamental theories based on the field could soon be developed. Experimental confirmation of Maxwell's theory was provided by Hertz, who generated and detected electric waves in 1886 and verified their properties, at the same time foreshadowing their application in radio, television, and other devices. In 1887, Heinrich Hertz discovered the photoelectric effect. Research on the electromagnetic waves began soon after, with many scientists and inventors conducting experiments on their properties. In the mid to late 1890s Guglielmo Marconi developed a radio wave based wireless telegraphy system (see invention of radio).

The atomic theory of matter had been proposed again in the early 19th century by the chemist John Dalton and became one of the hypotheses of the kinetic-molecular theory of gases developed by Clausius and James Clerk Maxwell to explain the laws of thermodynamics. The kinetic theory in turn led to the statistical mechanics of Ludwig Boltzmann (1844–1906) and Josiah Willard Gibbs (1839–1903), which held that energy (including heat) was a measure of the speed of particles. Interrelating the statistical likelihood of certain states of organization of these particles with the energy of those states, Clausius reinterpreted the dissipation of energy to be the statistical tendency of molecular configurations to pass toward increasingly likely, increasingly disorganized states (coining the term "entropy" to describe the disorganization of a state). The statistical versus absolute interpretations of the second law of thermodynamics set up a dispute that would last for several decades (producing arguments such as "Maxwell's demon"), and that would not be held to be definitively resolved until the behavior of atoms was firmly established in the early 20th century. In 1902, James Jeans found the length scale required for gravitational perturbations to grow in a static nearly homogeneous medium.

Chemistry

Synthesize of First Organic Compound

see more about this in Wöhler synthesis

In 1828, Friedrich Wöhler synthesized urea from certain inorganic compounds. He synthesized urea by slowly evaporating a water solution of ammonium cyanate, which he had prepared by adding silver cyanate to ammonium chloride. It has been previously believed that, the substances produced by plants and animals (by generally all living beings or organisms) can not be produced in lab and can only be produced by "life force". But this synthesize of urea had changed that concept. Which has led to many discoveries later.

Dalton's Atomic theory

See more about this in John Dalton

John Dalton was an English chemist, physicist and meteorologist. He is best known for introducing the atomic theory into chemistry.

In 19th century, John Dalton proposed the idea of atoms as small indivisible particles which together can form compounds. Although the concept of the atom dates back to the ideas of Democritus, John Dalton formulated the first modern description of it as the fundamental building block of chemical structures. Dalton developed the law of multiple proportions (first presented in 1803) by studying and expanding upon the works of Antoine Lavoisier and Joseph Proust.

The main points of Dalton's atomic theory, as it eventually developed, are:

  1. Elements are made of extremely small particles called atoms.
  2. Atoms of a given element are identical in size, mass and other properties; atoms of different elements differ in size, mass and other properties.
  3. Atoms cannot be subdivided, created or destroyed.
  4. Atoms of different elements combine in simple whole-number ratios to form chemical compounds.
  5. In chemical reactions, atoms are combined, separated or rearranged.

Periodic Table

see more about this in detail in History of the periodic table,

Mendeleev's periodic table

In 1869, Russian chemist Dmitri Mendeleev created the framework that became the modern periodic table, leaving gaps for elements that were yet to be discovered. While arranging the elements according to their atomic weight, if he found that they did not fit into the group he would rearrange them. Mendeleev predicted the properties of some undiscovered elements and gave them names such as "eka-aluminium" for an element with properties similar to aluminium. Later eka-aluminium was discovered as gallium. Some discrepancies remained; the position of certain elements, such as iodine and tellurium, could not be explained.

Engineering and technology

Thomas Edison was an American inventor and businessman whose companies developed many devices that greatly influenced life around the world, including the phonograph, a motion picture camera, and a long-lasting, practical electric light bulb.
First motor bus in history: the Benz Omnibus, built in 1895 for the Netphener bus company

Biology and medicine

In 1859, Charles Darwin published the book The Origin of Species, which introduced the idea of evolution by natural selection.

Oscar Hertwig publishes his findings in reproductive and developmental biology. In 1875 he published his first work, being the first to correctly describe animal conception. In his later work in 1885, he described that the nucleus contained nuclein (now called nucleic acid) and that these nuclein were responsible for the transmission of hereditary characteristics.

Medicine

Social sciences

In 1871, William Stanley Jevons and Carl Menger, working independently, solved Adam Smith's paradox of value with the insight that people valued each additional unit of a good less than the previous unit. In 1874, Léon Walras independently came to a similar insight. Menger's student Friedrich von Wieser coined the term "marginal utility" to describe the new theory. Modern microeconomics is built on the insights of the Marginal Revolution.

Economics

  • 1821: Comparative advantage in business was introduced by David Ricardo.
  • 1824: The patronage of infant industries was explained by Friedrich List.
  • 1828: The economic cooperative theory was stated by Charles Fourier.
  • 1874: The law of general equilibrium was stated by Leon Walras from the Lausanne school.

Homework

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Homework A person doing geometry home...