Troposphere
From Wikipedia, the free encyclopedia
The troposphere is the lowest portion of Earth's atmosphere. It contains approximately 80% of the atmosphere's mass and 99% of its water vapour and aerosols.[2] The average depth of the troposphere is approximately 17 km (11 mi) in the middle latitudes. It is deeper in the tropics, up to 20 km (12 mi), and shallower near the polar regions, approximately 7 km (4.3 mi) in winter. The lowest part of the troposphere, where friction with the Earth's surface influences air flow, is the planetary boundary layer. This layer is typically a few hundred metres to 2 km (1.2 mi) deep depending on the landform and time of day. The border between the troposphere and stratosphere, called the tropopause, is a temperature inversion.[3]
The word troposphere derives from the Greek: tropos for "change" reflecting the fact that turbulent mixing plays an important role in the troposphere's structure and behaviour. Most of the phenomena we associate with day-to-day weather occur in the troposphere.[3]
Pressure and temperature structure
Composition
The chemical composition of the troposphere is essentially uniform, with the notable exception of water vapor. The source of water vapour is at the surface through the processes of evaporation and transpiration. Furthermore the temperature of the troposphere decreases with height, and saturation vapor pressure decreases strongly as temperature drops, so the amount of water vapor that can exist in the atmosphere decreases strongly with height. Thus the proportion of water vapour is normally greatest near the surface and decreases with height.Pressure
The pressure of the atmosphere is maximum at sea level and decreases with higher altitude. This is because the atmosphere is very nearly in hydrostatic equilibrium, so that the pressure is equal to the weight of air above a given point. The change in pressure with height, therefore can be equated to the density with this hydrostatic equation:[4]-
- gn is the standard gravity
- ρ is the density
- z is the altitude
- p is the pressure
- R is the gas constant
- T is the thermodynamic (absolute) temperature
- m is the molar mass
Temperature
The temperature of the troposphere generally decreases as altitude increases. The rate at which the temperature decreases, , is called the environmental lapse rate (ELR). The ELR is nothing more than the difference in temperature between the surface and the tropopause divided by the height. The reason for this temperature difference is that most absorption of the sun's energy occurs at the ground which then heats the lower levels of the atmosphere, and the radiation of heat occurs at the top of the atmosphere cooling the earth, this process maintaining the overall heat balance of the earth.
As parcels of air in the atmosphere rise and fall, they also undergo changes in temperature for reasons described below. The rate of change of the temperature in the parcel may be less than or more than the ELR. When a parcel of air rises, it expands, because the pressure is lower at higher altitudes. As the air parcel expands, it pushes on the air around it, doing work; but generally it does not gain heat in exchange from its environment, because its thermal conductivity is low (such a process is called adiabatic). Since the parcel does work and gains no heat, it loses energy, and so its temperature decreases. (The reverse, of course, will be true for a sinking parcel of air.) [3]
Since the heat exchanged is related to the entropy change by , the equation governing the temperature as a function of height for a thoroughly mixed atmosphere is
For dry air, which is approximately an ideal gas, we can proceed further. The adiabatic equation for an ideal gas is [5]
The environmental lapse rate (the actual rate at which temperature drops with height, ) is not usually equal to the adiabatic lapse rate (or correspondingly, ). If the upper air is warmer than predicted by the adiabatic lapse rate (), then when a parcel of air rises and expands, it will arrive at the new height at a lower temperature than its surroundings. In this case, the air parcel is denser than its surroundings, so it sinks back to its original height, and the air is stable against being lifted. If, on the contrary, the upper air is cooler than predicted by the adiabatic lapse rate, then when the air parcel rises to its new height it will have a higher temperature and a lower density than its surroundings, and will continue to accelerate upward.[3][4]
The troposphere is heated from below by latent heat, longwave radiation, and sensible heat. Surplus heating and vertical expansion of the troposphere occurs in the tropics. At middle latitudes, tropospheric temperatures decrease from an average of 15°C at sea level to about -55°C at the tropopause. At the poles, tropospheric temperature only decreases from an average of 0ºC at sea level to about -45°C at the tropopause. At the equator, tropospheric temperatures decrease from an average of 20ºC at sea level to about -70 to -75°C at the tropopause. The troposphere is thinner at the poles and thicker at the equator. The average thickness of the tropical tropopause is roughly 7 kilometers greater than the average tropopause thickness at the poles. [7]
Tropopause
The tropopause is the boundary region between the troposphere and the stratosphere.Measuring the temperature change with height through the troposphere and the stratosphere identifies the location of the tropopause. In the troposphere, temperature decreases with altitude. In the stratosphere, however, the temperature remains constant for a while and then increases with altitude. The region of the atmosphere where the lapse rate changes from positive (in the troposphere) to negative (in the stratosphere), is defined as the tropopause.[3] Thus, the tropopause is an inversion layer, and there is little mixing between the two layers of the atmosphere.
Atmospheric flow
The flow of the atmosphere generally moves in a west to east direction. This however can often become interrupted, creating a more north to south or south to north flow. These scenarios are often described in meteorology as zonal or meridional. These terms, however, tend to be used in reference to localised areas of atmosphere (at a synoptic scale). A fuller explanation of the flow of atmosphere around the Earth as a whole can be found in the three-cell model.Zonal Flow
A zonal flow regime is the meteorological term meaning that the general flow pattern is west to east along the Earth's latitude lines, with weak shortwaves embedded in the flow.[7] The use of the word "zone" refers to the flow being along the Earth's latitudinal "zones". This pattern can buckle and thus become a meridional flow.Meridional flow
When the zonal flow buckles, the atmosphere can flow in a more longitudinal (or meridional) direction, and thus the term "meridional flow" arises. Meridional flow patterns feature strong, amplified troughs and ridges, with more north-south flow in the general pattern than west-to-east flow.[8]