Search This Blog

Wednesday, March 18, 2015

Scientists develop cool process to make better graphene

Original link:  http://phys.org/news/2015-03-scientists-cool-graphene.html

Caltech scientists develop cool process to make better graphene
 
 
 
 
 
 
 
 
 
 
 
 
 
Schematic of the Caltech growth process for graphene. Credit: D. Boyd and N. Yeh labs/Caltech
A new technique invented at Caltech to produce graphene—a material made up of an atom-thick layer of carbon—at room temperature could help pave the way for commercially feasible graphene-based solar cells and light-emitting diodes, large-panel displays, and flexible electronics.
--> -->
"With this , we can grow large sheets of electronic-grade graphene in much less time and at much lower temperatures," says Caltech staff scientist David Boyd, who developed the method.

Boyd is the first author of a new study, published in the March 18 issue of the journal Nature Communications, detailing the new manufacturing process and the novel properties of the graphene it produces.

Graphene could revolutionize a variety of engineering and scientific fields due to its unique properties, which include a tensile strength 200 times stronger than steel and an electrical mobility that is two to three orders of magnitude better than silicon. The electrical mobility of a material is a measure of how easily electrons can travel across its surface.

However, achieving these properties on an industrially relevant scale has proven to be complicated. Existing techniques require temperatures that are much too hot—1,800 degrees Fahrenheit, or 1,000 degrees Celsius—for incorporating graphene fabrication with current electronic manufacturing. Additionally, high-temperature growth of graphene tends to induce large, uncontrollably distributed strain—deformation—in the material, which severely compromises its intrinsic properties.

"Previously, people were only able to grow a few square millimeters of high-mobility graphene at a time, and it required very high temperatures, long periods of time, and many steps," says Caltech physics professor Nai-Chang Yeh, the Fletcher Jones Foundation Co-Director of the Kavli Nanoscience Institute and the corresponding author of the new study. "Our new method can consistently produce high-mobility and nearly strain-free graphene in a single step in just a few minutes without high temperature. We have created sample sizes of a few square centimeters, and since we think that our method is scalable, we believe that we can grow sheets that are up to several square inches or larger, paving the way to realistic large-scale applications."

The new manufacturing process might not have been discovered at all if not for a fortunate turn of events. In 2012, Boyd, then working in the lab of the late David Goodwin, at that time a Caltech professor of mechanical engineering and applied physics, was trying to reproduce a graphene-manufacturing process he had read about in a scientific journal. In this process, heated copper is used to catalyze graphene growth. "I was playing around with it on my lunch hour," says Boyd, who now works with Yeh's research group. "But the recipe wasn't working. It seemed like a very simple process. I even had better equipment than what was used in the original experiment, so it should have been easier for me."

X Window System

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/X_Window_System ...