A Medley of Potpourri

A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.

Search This Blog

Wednesday, August 31, 2022

Maximum entropy probability distribution

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Maximum_entropy_probability_distribution 

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class (usually defined in terms of specified properties or measures), then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

Definition of entropy and differential entropy

Further information: Entropy (information theory)

If X {\displaystyle X} X is a discrete random variable with distribution given by

Pr ⁡ ( X = x k ) = p k  for  k = 1 , 2 , … {\displaystyle \operatorname {Pr} (X=x_{k})=p_{k}\quad {\mbox{ for }}k=1,2,\ldots } \operatorname {Pr} (X=x_{k})=p_{k}\quad {\mbox{ for }}k=1,2,\ldots

then the entropy of X {\displaystyle X} X is defined as

H ( X ) = − ∑ k ≥ 1 p k log ⁡ p k . {\displaystyle H(X)=-\sum _{k\geq 1}p_{k}\log p_{k}.} H(X) = - \sum_{k\ge 1}p_k\log p_k .

If X {\displaystyle X} X is a continuous random variable with probability density p ( x ) {\displaystyle p(x)} p(x), then the differential entropy of X {\displaystyle X} X is defined as

H ( X ) = − ∫ − ∞ ∞ p ( x ) log ⁡ p ( x ) d x . {\displaystyle H(X)=-\int _{-\infty }^{\infty }p(x)\log p(x)\,dx.} {\displaystyle H(X)=-\int _{-\infty }^{\infty }p(x)\log p(x)\,dx.}

The quantity p ( x ) log ⁡ p ( x ) {\displaystyle p(x)\log p(x)} {\displaystyle p(x)\log p(x)} is understood to be zero whenever p ( x ) = 0 {\displaystyle p(x)=0} p(x) = 0.

This is a special case of more general forms described in the articles Entropy (information theory), Principle of maximum entropy, and differential entropy. In connection with maximum entropy distributions, this is the only one needed, because maximizing H ( X ) {\displaystyle H(X)} H(X) will also maximize the more general forms.

The base of the logarithm is not important as long as the same one is used consistently: change of base merely results in a rescaling of the entropy. Information theorists may prefer to use base 2 in order to express the entropy in bits; mathematicians and physicists will often prefer the natural logarithm, resulting in a unit of nats for the entropy.

The choice of the measure d x {\displaystyle dx} dx is however crucial in determining the entropy and the resulting maximum entropy distribution, even though the usual recourse to the Lebesgue measure is often defended as "natural".

Distributions with measured constants

Many statistical distributions of applicable interest are those for which the moments or other measurable quantities are constrained to be constants. The following theorem by Ludwig Boltzmann gives the form of the probability density under these constraints.

Continuous case

Suppose S is a closed subset of the real numbers R and we choose to specify n measurable functions f1,...,fn and n numbers a1,...,an. We consider the class C of all real-valued random variables which are supported on S (i.e. whose density function is zero outside of S) and which satisfy the n moment conditions:

E ⁡ ( f j ( X ) ) ≥ a j  for  j = 1 , … , n {\displaystyle \operatorname {E} (f_{j}(X))\geq a_{j}\quad {\mbox{ for }}j=1,\ldots ,n} {\displaystyle \operatorname {E} (f_{j}(X))\geq a_{j}\quad {\mbox{ for }}j=1,\ldots ,n}

If there is a member in C whose density function is positive everywhere in S, and if there exists a maximal entropy distribution for C, then its probability density p(x) has the following shape:

p ( x ) = exp ⁡ ( ∑ j = 0 n λ j f j ( x ) )  for all  x ∈ S {\displaystyle p(x)=\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x)\right)\quad {\mbox{ for all }}x\in S} {\displaystyle p(x)=\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x)\right)\quad {\mbox{ for all }}x\in S}

where we assume that f 0 ( x ) = 1 {\displaystyle f_{0}(x)=1} {\displaystyle f_{0}(x)=1}. The constant λ 0 {\displaystyle \lambda _{0}} \lambda _{0} and the n Lagrange multipliers λ = ( λ 1 , … , λ n ) {\displaystyle {\boldsymbol {\lambda }}=(\lambda _{1},\ldots ,\lambda _{n})} {\displaystyle {\boldsymbol {\lambda }}=(\lambda _{1},\ldots ,\lambda _{n})} solve the constrained optimization problem with a 0 = 1 {\displaystyle a_{0}=1} a_{0}=1 (this condition ensures that p {\displaystyle p} p integrates to unity): 

max λ 0 ; λ { ∑ j = 0 n λ j a j − ∫ exp ⁡ ( ∑ j = 0 n λ j f j ( x ) ) d x } s u b j e c t t o : λ ≥ 0 {\displaystyle \max _{\lambda _{0};{\boldsymbol {\lambda }}}\left\{\sum _{j=0}^{n}\lambda _{j}a_{j}-\int \exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x)\right)dx\right\}\quad \mathrm {subject\;to:\;\;} {\boldsymbol {\lambda }}\geq \mathbf {0} } {\displaystyle \max _{\lambda _{0};{\boldsymbol {\lambda }}}\left\{\sum _{j=0}^{n}\lambda _{j}a_{j}-\int \exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x)\right)dx\right\}\quad \mathrm {subject\;to:\;\;} {\boldsymbol {\lambda }}\geq \mathbf {0} }

Using the Karush–Kuhn–Tucker conditions, it can be shown that the optimization problem has a unique solution, because the objective function in the optimization is concave in λ {\displaystyle {\boldsymbol {\lambda }}} \boldsymbol\lambda.

Note that if the moment conditions are equalities (instead of inequalities), that is,

E ⁡ ( f j ( X ) ) = a j  for  j = 1 , … , n , {\displaystyle \operatorname {E} (f_{j}(X))=a_{j}\quad {\mbox{ for }}j=1,\ldots ,n,} {\displaystyle \operatorname {E} (f_{j}(X))=a_{j}\quad {\mbox{ for }}j=1,\ldots ,n,}

then the constraint condition λ ≥ 0 {\displaystyle {\boldsymbol {\lambda }}\geq \mathbf {0} } {\displaystyle {\boldsymbol {\lambda }}\geq \mathbf {0} } is dropped, making the optimization over the Lagrange multipliers unconstrained.

Discrete case

Suppose S = { x 1 , x 2 , . . . } {\displaystyle S=\{x_{1},x_{2},...\}} {\displaystyle S=\{x_{1},x_{2},...\}} is a (finite or infinite) discrete subset of the reals and we choose to specify n {\displaystyle n} n functions f1,...,fn and n numbers a1,...,an. We consider the class C of all discrete random variables X which are supported on S and which satisfy the n moment conditions

E ⁡ ( f j ( X ) ) ≥ a j  for  j = 1 , … , n {\displaystyle \operatorname {E} (f_{j}(X))\geq a_{j}\quad {\mbox{ for }}j=1,\ldots ,n} {\displaystyle \operatorname {E} (f_{j}(X))\geq a_{j}\quad {\mbox{ for }}j=1,\ldots ,n}

If there exists a member of C which assigns positive probability to all members of S and if there exists a maximum entropy distribution for C, then this distribution has the following shape:

Pr ⁡ ( X = x k ) = exp ⁡ ( ∑ j = 0 n λ j f j ( x k ) )  for  k = 1 , 2 , … {\displaystyle \operatorname {Pr} (X=x_{k})=\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x_{k})\right)\quad {\mbox{ for }}k=1,2,\ldots } {\displaystyle \operatorname {Pr} (X=x_{k})=\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x_{k})\right)\quad {\mbox{ for }}k=1,2,\ldots }

where we assume that f 0 = 1 {\displaystyle f_{0}=1} {\displaystyle f_{0}=1} and the constants λ 0 , λ = ( λ 1 , … , λ n ) {\displaystyle \lambda _{0},\;{\boldsymbol {\lambda }}=(\lambda _{1},\ldots ,\lambda _{n})} {\displaystyle \lambda _{0},\;{\boldsymbol {\lambda }}=(\lambda _{1},\ldots ,\lambda _{n})} solve the constrained optimization problem with a 0 = 1 {\displaystyle a_{0}=1} a_{0}=1:

max λ 0 ; λ { ∑ j = 0 n λ j a j − ∑ k ≥ 1 exp ⁡ ( ∑ j = 0 n λ j f j ( x k ) ) } s u b j e c t t o : λ ≥ 0 {\displaystyle \max _{\lambda _{0};{\boldsymbol {\lambda }}}\left\{\sum _{j=0}^{n}\lambda _{j}a_{j}-\sum _{k\geq 1}\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x_{k})\right)\right\}\quad \mathrm {subject\;to:\;\;} {\boldsymbol {\lambda }}\geq \mathbf {0} } {\displaystyle \max _{\lambda _{0};{\boldsymbol {\lambda }}}\left\{\sum _{j=0}^{n}\lambda _{j}a_{j}-\sum _{k\geq 1}\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x_{k})\right)\right\}\quad \mathrm {subject\;to:\;\;} {\boldsymbol {\lambda }}\geq \mathbf {0} }

Again, if the moment conditions are equalities (instead of inequalities), then the constraint condition λ ≥ 0 {\displaystyle {\boldsymbol {\lambda }}\geq \mathbf {0} } {\displaystyle {\boldsymbol {\lambda }}\geq \mathbf {0} } is not present in the optimization.

Proof in the case of equality constraints

In the case of equality constraints, this theorem is proved with the calculus of variations and Lagrange multipliers. The constraints can be written as

∫ − ∞ ∞ f j ( x ) p ( x ) d x = a j {\displaystyle \int _{-\infty }^{\infty }f_{j}(x)p(x)dx=a_{j}} \int _{-\infty }^{\infty }f_{j}(x)p(x)dx=a_{j}

We consider the functional

J ( p ) = ∫ − ∞ ∞ p ( x ) ln ⁡ p ( x ) d x − η 0 ( ∫ − ∞ ∞ p ( x ) d x − 1 ) − ∑ j = 1 n λ j ( ∫ − ∞ ∞ f j ( x ) p ( x ) d x − a j ) {\displaystyle J(p)=\int _{-\infty }^{\infty }p(x)\ln {p(x)}dx-\eta _{0}\left(\int _{-\infty }^{\infty }p(x)dx-1\right)-\sum _{j=1}^{n}\lambda _{j}\left(\int _{-\infty }^{\infty }f_{j}(x)p(x)dx-a_{j}\right)} {\displaystyle J(p)=\int _{-\infty }^{\infty }p(x)\ln {p(x)}dx-\eta _{0}\left(\int _{-\infty }^{\infty }p(x)dx-1\right)-\sum _{j=1}^{n}\lambda _{j}\left(\int _{-\infty }^{\infty }f_{j}(x)p(x)dx-a_{j}\right)}

where η 0 {\displaystyle \eta _{0}} \eta _{0} and λ j , j ≥ 1 {\displaystyle \lambda _{j},j\geq 1} {\displaystyle \lambda _{j},j\geq 1} are the Lagrange multipliers. The zeroth constraint ensures the second axiom of probability. The other constraints are that the measurements of the function are given constants up to order n {\displaystyle n} n. The entropy attains an extremum when the functional derivative is equal to zero:

δ J δ p ( p ) = ln ⁡ p ( x ) + 1 − η 0 − ∑ j = 1 n λ j f j ( x ) = 0 {\displaystyle {\frac {\delta J}{\delta p}}\left(p\right)=\ln {p(x)}+1-\eta _{0}-\sum _{j=1}^{n}\lambda _{j}f_{j}(x)=0} {\displaystyle {\frac {\delta J}{\delta p}}\left(p\right)=\ln {p(x)}+1-\eta _{0}-\sum _{j=1}^{n}\lambda _{j}f_{j}(x)=0}

It is an exercise for the reader that this extremum is indeed a maximum. Therefore, the maximum entropy probability distribution in this case must be of the form ( λ 0 := η 0 − 1 {\displaystyle \lambda _{0}:=\eta _{0}-1} {\displaystyle \lambda _{0}:=\eta _{0}-1})

p ( x ) = e − 1 + η 0 ⋅ e ∑ j = 1 n λ j f j ( x ) = exp ⁡ ( ∑ j = 0 n λ j f j ( x ) ) . {\displaystyle p(x)=e^{-1+\eta _{0}}\cdot e^{\sum _{j=1}^{n}\lambda _{j}f_{j}(x)}=\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x)\right)\;.} {\displaystyle p(x)=e^{-1+\eta _{0}}\cdot e^{\sum _{j=1}^{n}\lambda _{j}f_{j}(x)}=\exp \left(\sum _{j=0}^{n}\lambda _{j}f_{j}(x)\right)\;.}

The proof of the discrete version is essentially the same.

Uniqueness of the maximum

Suppose p {\displaystyle p} p, p ′ {\displaystyle p'} p' are distributions satisfying the expectation-constraints. Letting α ∈ ( 0 , 1 ) {\displaystyle \alpha \in (0,1)} \alpha \in (0,1) and considering the distribution q = α ⋅ p + ( 1 − α ) ⋅ p ′ {\displaystyle q=\alpha \cdot p+(1-\alpha )\cdot p'} {\displaystyle q=\alpha \cdot p+(1-\alpha )\cdot p'} it is clear that this distribution satisfies the expectation-constraints and furthermore has as support s u p p ( q ) = s u p p ( p ) ∪ s u p p ( p ′ ) {\displaystyle \mathrm {supp} (q)=\mathrm {supp} (p)\cup \mathrm {supp} (p')} {\displaystyle \mathrm {supp} (q)=\mathrm {supp} (p)\cup \mathrm {supp} (p')}. From basic facts about entropy, it holds that H ( q ) ≥ α H ( p ) + ( 1 − α ) H ( p ′ ) {\displaystyle {\mathcal {H}}(q)\geq \alpha {\mathcal {H}}(p)+(1-\alpha ){\mathcal {H}}(p')} {\displaystyle {\mathcal {H}}(q)\geq \alpha {\mathcal {H}}(p)+(1-\alpha ){\mathcal {H}}(p')}. Taking limits α ⟶ 1 {\displaystyle \alpha \longrightarrow 1} {\displaystyle \alpha \longrightarrow 1} and α ⟶ 0 {\displaystyle \alpha \longrightarrow 0} {\displaystyle \alpha \longrightarrow 0} respectively yields H ( q ) ≥ H ( p ) , H ( p ′ ) {\displaystyle {\mathcal {H}}(q)\geq {\mathcal {H}}(p),{\mathcal {H}}(p')} {\displaystyle {\mathcal {H}}(q)\geq {\mathcal {H}}(p),{\mathcal {H}}(p')}.

It follows that a distribution satisfying the expectation-constraints and maximising entropy must necessarily have full support — i. e. the distribution is almost everywhere positive. It follows that the maximising distribution must be an internal point in the space of distributions satisfying the expectation-constraints, that is, it must be a local extreme. Thus it suffices to show that the local extreme is unique, in order to show both that the entropy-maximising distribution is unique (and this also shows that the local extreme is the global maximum).

Suppose p , p ′ {\displaystyle p,p'} {\displaystyle p,p'} are local extremes. Reformulating the above computations these are characterised by parameters λ → , λ → ′ ∈ R n {\displaystyle {\vec {\lambda }},{\vec {\lambda }}'\in \mathbb {R} ^{n}} {\displaystyle {\vec {\lambda }},{\vec {\lambda }}'\in \mathbb {R} ^{n}} via p ( x ) = e ⟨ λ → , f → ( x ) ⟩ C ( λ → ) {\displaystyle p(x)={\frac {e^{\langle {\vec {\lambda }},{\vec {f}}(x)\rangle }}{C({\vec {\lambda }})}}} {\displaystyle p(x)={\frac {e^{\langle {\vec {\lambda }},{\vec {f}}(x)\rangle }}{C({\vec {\lambda }})}}} and similarly for p ′ {\displaystyle p'} p', where C ( λ → ) = ∫ x ∈ R e ⟨ λ → , f → ( x ) ⟩   d x {\displaystyle C({\vec {\lambda }})=\int _{x\in \mathbb {R} }e^{\langle {\vec {\lambda }},{\vec {f}}(x)\rangle }~dx} {\displaystyle C({\vec {\lambda }})=\int _{x\in \mathbb {R} }e^{\langle {\vec {\lambda }},{\vec {f}}(x)\rangle }~dx}. We now note a series of identities: Via the satisfaction of the expectation-constraints and utilising gradients/directional derivatives, one has D log ⁡ ( C ( ⋅ ) ) | λ → = D C ( ⋅ ) C ( ⋅ ) | λ → = E p [ f → ( X ) ] = a → {\displaystyle D\log(C(\cdot ))\vert _{\vec {\lambda }}=\left.{\frac {DC(\cdot )}{C(\cdot )}}\right|_{\vec {\lambda }}=\mathbb {E} _{p}[{\vec {f}}(X)]={\vec {a}}} {\displaystyle D\log(C(\cdot ))\vert _{\vec {\lambda }}=\left.{\frac {DC(\cdot )}{C(\cdot )}}\right|_{\vec {\lambda }}=\mathbb {E} _{p}[{\vec {f}}(X)]={\vec {a}}} and similarly for λ → ′ {\displaystyle {\vec {\lambda }}'} {\displaystyle {\vec {\lambda }}'}. Letting u = λ → ′ − λ → ∈ R n {\displaystyle u={\vec {\lambda }}'-{\vec {\lambda }}\in \mathbb {R} ^{n}} {\displaystyle u={\vec {\lambda }}'-{\vec {\lambda }}\in \mathbb {R} ^{n}} one obtains:

0 = ⟨ u , a → − a → ⟩ = D u log ⁡ ( C ( ⋅ ) ) | λ → ′ − D u log ⁡ ( C ( ⋅ ) ) | λ → = D u 2 log ⁡ ( C ( ⋅ ) ) | γ → {\displaystyle 0=\langle u,{\vec {a}}-{\vec {a}}\rangle =D_{u}\log(C(\cdot ))\vert _{{\vec {\lambda }}'}-D_{u}\log(C(\cdot ))\vert _{\vec {\lambda }}=D_{u}^{2}\log(C(\cdot ))\vert _{\vec {\gamma }}} {\displaystyle 0=\langle u,{\vec {a}}-{\vec {a}}\rangle =D_{u}\log(C(\cdot ))\vert _{{\vec {\lambda }}'}-D_{u}\log(C(\cdot ))\vert _{\vec {\lambda }}=D_{u}^{2}\log(C(\cdot ))\vert _{\vec {\gamma }}}

where γ → = θ λ → + ( 1 − θ ) λ → ′ {\displaystyle {\vec {\gamma }}=\theta {\vec {\lambda }}+(1-\theta ){\vec {\lambda }}'} {\displaystyle {\vec {\gamma }}=\theta {\vec {\lambda }}+(1-\theta ){\vec {\lambda }}'} for some θ ∈ ( 0 , 1 ) {\displaystyle \theta \in (0,1)} \theta \in (0,1). Computing further one has

0 = D u 2 log ⁡ ( C ( ⋅ ) ) | γ → = D u ( D u C ( ⋅ ) C ( ⋅ ) ) | γ → = D u 2 C ( ⋅ ) C ( ⋅ ) | γ → − ( D u C ( ⋅ ) ) 2 C ( ⋅ ) 2 | γ → = E q [ ( ⟨ u , f → ( X ) ⟩ ) 2 ] − ( E q [ ⟨ u , f → ( X ) ⟩ ] ) 2 = V a r q ( ⟨ u , f → ( X ) ⟩ ) {\displaystyle {\begin{array}{rcl}0&=&D_{u}^{2}\log(C(\cdot ))\vert _{\vec {\gamma }}\\&=&\left.D_{u}\left({\frac {D_{u}C(\cdot )}{C(\cdot )}}\right)\right|_{\vec {\gamma }}\\&=&\left.{\frac {D_{u}^{2}C(\cdot )}{C(\cdot )}}\right|_{\vec {\gamma }}-\left.{\frac {(D_{u}C(\cdot ))^{2}}{C(\cdot )^{2}}}\right|_{\vec {\gamma }}\\&=&\mathbb {E} _{q}[(\langle u,{\vec {f}}(X)\rangle )^{2}]-\left(\mathbb {E} _{q}[\langle u,{\vec {f}}(X)\rangle ]\right)^{2}=\mathrm {Var} _{q}(\langle u,{\vec {f}}(X)\rangle )\\\end{array}}} {\displaystyle {\begin{array}{rcl}0&=&D_{u}^{2}\log(C(\cdot ))\vert _{\vec {\gamma }}\\&=&\left.D_{u}\left({\frac {D_{u}C(\cdot )}{C(\cdot )}}\right)\right|_{\vec {\gamma }}\\&=&\left.{\frac {D_{u}^{2}C(\cdot )}{C(\cdot )}}\right|_{\vec {\gamma }}-\left.{\frac {(D_{u}C(\cdot ))^{2}}{C(\cdot )^{2}}}\right|_{\vec {\gamma }}\\&=&\mathbb {E} _{q}[(\langle u,{\vec {f}}(X)\rangle )^{2}]-\left(\mathbb {E} _{q}[\langle u,{\vec {f}}(X)\rangle ]\right)^{2}=\mathrm {Var} _{q}(\langle u,{\vec {f}}(X)\rangle )\\\end{array}}}

where q {\displaystyle q} q is similar to the distribution above, only parameterised by γ → {\displaystyle {\vec {\gamma }}} {\vec  {\gamma }}. Assuming that no non-trivial linear combination of the observables is almost everywhere (a.e.) constant, (which e.g. holds if the observables are independent and not a.e. constant), it holds that ⟨ u , f → ( X ) ⟩ {\displaystyle \langle u,{\vec {f}}(X)\rangle } {\displaystyle \langle u,{\vec {f}}(X)\rangle } has non-zero variance, unless u = 0 {\displaystyle u=0} u=0. By the above equation it is thus clear, that the latter must be the case. Hence λ → ′ − λ → = u = 0 {\displaystyle {\vec {\lambda }}'-{\vec {\lambda }}=u=0} {\displaystyle {\vec {\lambda }}'-{\vec {\lambda }}=u=0}, so the parameters characterising the local extrema p , p ′ {\displaystyle p,p'} {\displaystyle p,p'} are identical, which means that the distributions themselves are identical. Thus, the local extreme is unique and by the above discussion, the maximum is unique—provided a local extreme actually exists.

Caveats

Note that not all classes of distributions contain a maximum entropy distribution. It is possible that a class contain distributions of arbitrarily large entropy (e.g. the class of all continuous distributions on R with mean 0 but arbitrary standard deviation), or that the entropies are bounded above but there is no distribution which attains the maximal entropy. It is also possible that the expected value restrictions for the class C force the probability distribution to be zero in certain subsets of S. In that case our theorem doesn't apply, but one can work around this by shrinking the set S.

Examples

Every probability distribution is trivially a maximum entropy probability distribution under the constraint that the distribution has its own entropy. To see this, rewrite the density as p ( x ) = exp ⁡ ( ln ⁡ p ( x ) ) {\displaystyle p(x)=\exp {(\ln {p(x)})}} p(x)=\exp {(\ln {p(x)})} and compare to the expression of the theorem above. By choosing ln ⁡ p ( x ) → f ( x ) {\displaystyle \ln {p(x)}\rightarrow f(x)} \ln {p(x)}\rightarrow f(x) to be the measurable function and

∫ exp ⁡ ( f ( x ) ) f ( x ) d x = − H {\displaystyle \int \exp {(f(x))}f(x)dx=-H} \int \exp {(f(x))}f(x)dx=-H

to be the constant, p ( x ) {\displaystyle p(x)} p(x) is the maximum entropy probability distribution under the constraint

∫ p ( x ) f ( x ) d x = − H {\displaystyle \int p(x)f(x)dx=-H} \int p(x)f(x)dx=-H.

Nontrivial examples are distributions that are subject to multiple constraints that are different from the assignment of the entropy. These are often found by starting with the same procedure ln ⁡ p ( x ) → f ( x ) {\displaystyle \ln {p(x)}\rightarrow f(x)} \ln {p(x)}\rightarrow f(x) and finding that f ( x ) {\displaystyle f(x)} f(x) can be separated into parts.

A table of examples of maximum entropy distributions is given in Lisman (1972) and Park & Bera (2009).

Uniform and piecewise uniform distributions

The uniform distribution on the interval [a,b] is the maximum entropy distribution among all continuous distributions which are supported in the interval [a, b], and thus the probability density is 0 outside of the interval. This uniform density can be related to Laplace's principle of indifference, sometimes called the principle of insufficient reason. More generally, if we are given a subdivision a=a0 < a1 < ... < ak = b of the interval [a,b] and probabilities p1,...,pk that add up to one, then we can consider the class of all continuous distributions such that

Pr ⁡ ( a j − 1 ≤ X < a j ) = p j  for  j = 1 , … , k {\displaystyle \operatorname {Pr} (a_{j-1}\leq X<a_{j})=p_{j}\quad {\mbox{ for }}j=1,\ldots ,k} \operatorname {Pr} (a_{j-1}\leq X<a_{j})=p_{j}\quad {\mbox{ for }}j=1,\ldots ,k

The density of the maximum entropy distribution for this class is constant on each of the intervals [aj-1,aj). The uniform distribution on the finite set {x1,...,xn} (which assigns a probability of 1/n to each of these values) is the maximum entropy distribution among all discrete distributions supported on this set.

Positive and specified mean: the exponential distribution

The exponential distribution, for which the density function is

p ( x | λ ) = { λ e − λ x x ≥ 0 , 0 x < 0 , {\displaystyle p(x|\lambda )={\begin{cases}\lambda e^{-\lambda x}&x\geq 0,\\0&x<0,\end{cases}}} p(x|\lambda )={\begin{cases}\lambda e^{-\lambda x}&x\geq 0,\\0&x<0,\end{cases}}

is the maximum entropy distribution among all continuous distributions supported in [0,∞) that have a specified mean of 1/λ.

Specified mean and variance: the normal distribution

The normal distribution N(μ,σ2), for which the density function is

p ( x | μ , σ ) = 1 σ 2 π e − ( x − μ ) 2 2 σ 2 , {\displaystyle p(x|\mu ,\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}},} p(x|\mu ,\sigma )={\frac {1}{\sigma {\sqrt {2\pi }}}}e^{-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}},

has maximum entropy among all real-valued distributions supported on (−∞,∞) with a specified variance σ2 (a particular moment). Therefore, the assumption of normality imposes the minimal prior structural constraint beyond this moment. (See the differential entropy article for a derivation.)

In the case of distributions supported on [0,∞), the maximum entropy distribution depends on relationships between the first and second moments. In specific cases, it may be the exponential distribution, or may be another distribution, or may be undefinable.

Discrete distributions with specified mean

Among all the discrete distributions supported on the set {x1,...,xn} with a specified mean μ, the maximum entropy distribution has the following shape:

Pr ⁡ ( X = x k ) = C r x k  for  k = 1 , … , n {\displaystyle \operatorname {Pr} (X=x_{k})=Cr^{x_{k}}\quad {\mbox{ for }}k=1,\ldots ,n} \operatorname {Pr} (X=x_{k})=Cr^{x_{k}}\quad {\mbox{ for }}k=1,\ldots ,n

where the positive constants C and r can be determined by the requirements that the sum of all the probabilities must be 1 and the expected value must be μ.

For example, if a large number N of dice are thrown, and you are told that the sum of all the shown numbers is S. Based on this information alone, what would be a reasonable assumption for the number of dice showing 1, 2, ..., 6? This is an instance of the situation considered above, with {x1,...,x6} = {1,...,6} and μ = S/N.

Finally, among all the discrete distributions supported on the infinite set { x 1 , x 2 , . . . } {\displaystyle \{x_{1},x_{2},...\}} {\displaystyle \{x_{1},x_{2},...\}} with mean μ, the maximum entropy distribution has the shape:

Pr ⁡ ( X = x k ) = C r x k  for  k = 1 , 2 , … , {\displaystyle \operatorname {Pr} (X=x_{k})=Cr^{x_{k}}\quad {\mbox{ for }}k=1,2,\ldots ,} \operatorname {Pr} (X=x_{k})=Cr^{x_{k}}\quad {\mbox{ for }}k=1,2,\ldots ,

where again the constants C and r were determined by the requirements that the sum of all the probabilities must be 1 and the expected value must be μ. For example, in the case that xk = k, this gives

C = 1 μ − 1 , r = μ − 1 μ , {\displaystyle C={\frac {1}{\mu -1}},\quad \quad r={\frac {\mu -1}{\mu }},} {\displaystyle C={\frac {1}{\mu -1}},\quad \quad r={\frac {\mu -1}{\mu }},}

such that respective maximum entropy distribution is the geometric distribution.

Circular random variables

For a continuous random variable θ i {\displaystyle \theta _{i}} \theta _{i} distributed about the unit circle, the Von Mises distribution maximizes the entropy when the real and imaginary parts of the first circular moment are specified or, equivalently, the circular mean and circular variance are specified.

When the mean and variance of the angles θ i {\displaystyle \theta _{i}} \theta _{i} modulo 2 π {\displaystyle 2\pi } 2\pi are specified, the wrapped normal distribution maximizes the entropy.

Maximizer for specified mean, variance and skew

There exists an upper bound on the entropy of continuous random variables on R {\displaystyle \mathbb {R} } \mathbb {R} with a specified mean, variance, and skew. However, there is no distribution which achieves this upper bound, because p ( x ) = c exp ⁡ ( λ 1 x + λ 2 x 2 + λ 3 x 3 ) {\displaystyle p(x)=c\exp {(\lambda _{1}x+\lambda _{2}x^{2}+\lambda _{3}x^{3})}} p(x)=c\exp {(\lambda _{1}x+\lambda _{2}x^{2}+\lambda _{3}x^{3})} is unbounded when λ 3 ≠ 0 {\displaystyle \lambda _{3}\neq 0} {\displaystyle \lambda _{3}\neq 0} (see Cover & Thomas (2006: chapter 12)).

However, the maximum entropy is ε-achievable: a distribution's entropy can be arbitrarily close to the upper bound. Start with a normal distribution of the specified mean and variance. To introduce a positive skew, perturb the normal distribution upward by a small amount at a value many σ larger than the mean. The skewness, being proportional to the third moment, will be affected more than the lower order moments.

This is a special case of the general case in which the exponential of any odd-order polynomial in x will be unbounded on R {\displaystyle \mathbb {R} } \mathbb {R} . For example, c e λ x {\displaystyle ce^{\lambda x}} {\displaystyle ce^{\lambda x}} will likewise be unbounded on R {\displaystyle \mathbb {R} } \mathbb {R} , but when the support is limited to a bounded or semi-bounded interval the upper entropy bound may be achieved (e.g. if x lies in the interval [0,∞] and λ< 0, the exponential distribution will result).

Maximizer for specified mean and deviation risk measure

Every distribution with log-concave density is a maximal entropy distribution with specified mean μ and Deviation risk measure D.

In particular, the maximal entropy distribution with specified mean E ( x ) = μ {\displaystyle E(x)=\mu } {\displaystyle E(x)=\mu } and deviation D ( x ) = d {\displaystyle D(x)=d} {\displaystyle D(x)=d} is:

  • The normal distribution N ( m , d 2 ) {\displaystyle N(m,d^{2})} {\displaystyle N(m,d^{2})}, if D ( x ) = E [ ( x − μ ) 2 ] {\displaystyle D(x)={\sqrt {E[(x-\mu )^{2}]}}} {\displaystyle D(x)={\sqrt {E[(x-\mu )^{2}]}}} is the standard deviation;
  • The Laplace distribution, if D ( x ) = E ( | x − μ | ) {\displaystyle D(x)=E(|x-\mu |)} {\displaystyle D(x)=E(|x-\mu |)} is the average absolute deviation;
  • The distribution with density of the form f ( x ) = c exp ⁡ ( a x + b [ x − μ ] − 2 ) {\displaystyle f(x)=c\exp(ax+b{[x-\mu ]_{-}}^{2})} {\displaystyle f(x)=c\exp(ax+b{[x-\mu ]_{-}}^{2})} if D ( x ) = E [ ( x − μ ) − 2 ] {\displaystyle D(x)={\sqrt {E[{(x-\mu )_{-}}^{2}]}}} {\displaystyle D(x)={\sqrt {E[{(x-\mu )_{-}}^{2}]}}} is the standard lower semi-deviation, where [ x ] − := max { 0 , − x } {\displaystyle [x]_{-}:=\max\{0,-x\}} {\displaystyle [x]_{-}:=\max\{0,-x\}}, and a,b,c are constants.

Other examples

In the table below, each listed distribution maximizes the entropy for a particular set of functional constraints listed in the third column, and the constraint that x be included in the support of the probability density, which is listed in the fourth column. Several examples (Bernoulli, geometric, exponential, Laplace, Pareto) listed are trivially true because their associated constraints are equivalent to the assignment of their entropy. They are included anyway because their constraint is related to a common or easily measured quantity. For reference, Γ ( x ) = ∫ 0 ∞ e − t t x − 1 d t {\displaystyle \Gamma (x)=\int _{0}^{\infty }e^{-t}t^{x-1}dt} \Gamma (x)=\int _{0}^{\infty }e^{-t}t^{x-1}dt is the gamma function, ψ ( x ) = d d x ln ⁡ Γ ( x ) = Γ ′ ( x ) Γ ( x ) {\displaystyle \psi (x)={\frac {d}{dx}}\ln \Gamma (x)={\frac {\Gamma '(x)}{\Gamma (x)}}} \psi (x)={\frac {d}{dx}}\ln \Gamma (x)={\frac {\Gamma '(x)}{\Gamma (x)}} is the digamma function, B ( p , q ) = Γ ( p ) Γ ( q ) Γ ( p + q ) {\displaystyle B(p,q)={\frac {\Gamma (p)\Gamma (q)}{\Gamma (p+q)}}} B(p,q)={\frac {\Gamma (p)\Gamma (q)}{\Gamma (p+q)}} is the beta function, and γE is the Euler-Mascheroni constant.

Table of probability distributions and corresponding maximum entropy constraints
Distribution Name Probability density/mass function Maximum Entropy Constraint Support
Uniform (discrete) f ( k ) = 1 b − a + 1 {\displaystyle f(k)={\frac {1}{b-a+1}}} f(k)={\frac {1}{b-a+1}} None { a , a + 1 , . . . , b − 1 , b } {\displaystyle \{a,a+1,...,b-1,b\}\,} \{a,a+1,...,b-1,b\}\,
Uniform (continuous) f ( x ) = 1 b − a {\displaystyle f(x)={\frac {1}{b-a}}} f(x)={\frac {1}{b-a}} None [ a , b ] {\displaystyle [a,b]\,} [a,b]\,
Bernoulli f ( k ) = p k ( 1 − p ) 1 − k {\displaystyle f(k)=p^{k}(1-p)^{1-k}} f(k)=p^{k}(1-p)^{1-k} E ⁡ ( k ) = p {\displaystyle \operatorname {E} (k)=p\,} {\displaystyle \operatorname {E} (k)=p\,} { 0 , 1 } {\displaystyle \{0,1\}\,} \{0,1\}\,
Geometric f ( k ) = ( 1 − p ) k − 1 p {\displaystyle f(k)=(1-p)^{k-1}\,p} f(k)=(1-p)^{k-1}\,p E ⁡ ( k ) = 1 p {\displaystyle \operatorname {E} (k)={\frac {1}{p}}\,} {\displaystyle \operatorname {E} (k)={\frac {1}{p}}\,} N ∖ { 0 } = { 1 , 2 , 3 , . . . } {\displaystyle \mathbb {N} \setminus \left\{0\right\}=\{1,2,3,...\}} {\displaystyle \mathbb {N} \setminus \left\{0\right\}=\{1,2,3,...\}}
Exponential f ( x ) = λ exp ⁡ ( − λ x ) {\displaystyle f(x)=\lambda \exp \left(-\lambda x\right)} f(x)=\lambda \exp \left(-\lambda x\right) E ⁡ ( x ) = 1 λ {\displaystyle \operatorname {E} (x)={\frac {1}{\lambda }}\,} {\displaystyle \operatorname {E} (x)={\frac {1}{\lambda }}\,} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Laplace f ( x ) = 1 2 b exp ⁡ ( − | x − μ | b ) {\displaystyle f(x)={\frac {1}{2b}}\exp \left(-{\frac {|x-\mu |}{b}}\right)} f(x)={\frac {1}{2b}}\exp \left(-{\frac {|x-\mu |}{b}}\right) E ⁡ ( | x − μ | ) = b {\displaystyle \operatorname {E} (|x-\mu |)=b\,} {\displaystyle \operatorname {E} (|x-\mu |)=b\,} ( − ∞ , ∞ ) {\displaystyle (-\infty ,\infty )\,} (-\infty ,\infty )\,
Asymmetric Laplace f ( x ) = λ e − ( x − m ) λ s κ s κ + 1 / κ ( s = sgn ⁡ ( x − m ) ) {\displaystyle f(x)={\frac {\lambda \,e^{-(x-m)\lambda s\kappa ^{s}}}{\kappa +1/\kappa }}\,(s\!=\!\operatorname {sgn}(x\!-\!m))} {\displaystyle f(x)={\frac {\lambda \,e^{-(x-m)\lambda s\kappa ^{s}}}{\kappa +1/\kappa }}\,(s\!=\!\operatorname {sgn}(x\!-\!m))} E ⁡ ( ( x − m ) s κ s ) = 1 / λ {\displaystyle \operatorname {E} ((x-m)s\kappa ^{s})=1/\lambda \,} {\displaystyle \operatorname {E} ((x-m)s\kappa ^{s})=1/\lambda \,} ( − ∞ , ∞ ) {\displaystyle (-\infty ,\infty )\,} (-\infty ,\infty )\,
Pareto f ( x ) = α x m α x α + 1 {\displaystyle f(x)={\frac {\alpha x_{m}^{\alpha }}{x^{\alpha +1}}}} f(x)={\frac {\alpha x_{m}^{\alpha }}{x^{\alpha +1}}} E ⁡ ( ln ⁡ ( x ) ) = 1 α + ln ⁡ ( x m ) {\displaystyle \operatorname {E} (\ln(x))={\frac {1}{\alpha }}+\ln(x_{m})\,} {\displaystyle \operatorname {E} (\ln(x))={\frac {1}{\alpha }}+\ln(x_{m})\,} [ x m , ∞ ) {\displaystyle [x_{m},\infty )\,} [x_{m},\infty )\,
Normal f ( x ) = 1 2 π σ 2 exp ⁡ ( − ( x − μ ) 2 2 σ 2 ) {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\exp \left(-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)} f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2}}}}\exp \left(-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right) E ⁡ ( x ) = μ , E ⁡ ( ( x − μ ) 2 ) = σ 2 {\displaystyle \operatorname {E} (x)=\mu ,\,\operatorname {E} ((x-\mu )^{2})=\sigma ^{2}} {\displaystyle \operatorname {E} (x)=\mu ,\,\operatorname {E} ((x-\mu )^{2})=\sigma ^{2}} ( − ∞ , ∞ ) {\displaystyle (-\infty ,\infty )\,} (-\infty ,\infty )\,
Truncated normal (see article) E ⁡ ( x ) = μ T , E ⁡ ( ( x − μ T ) 2 ) = σ T 2 {\displaystyle \operatorname {E} (x)=\mu _{T},\,\operatorname {E} ((x-\mu _{T})^{2})=\sigma _{T}^{2}} {\displaystyle \operatorname {E} (x)=\mu _{T},\,\operatorname {E} ((x-\mu _{T})^{2})=\sigma _{T}^{2}} [ a , b ] {\displaystyle [a,b]} [a,b]
von Mises f ( θ ) = 1 2 π I 0 ( κ ) exp ⁡ ( κ cos ⁡ ( θ − μ ) ) {\displaystyle f(\theta )={\frac {1}{2\pi I_{0}(\kappa )}}\exp {(\kappa \cos {(\theta -\mu )})}} f(\theta )={\frac {1}{2\pi I_{0}(\kappa )}}\exp {(\kappa \cos {(\theta -\mu )})} E ⁡ ( cos ⁡ θ ) = I 1 ( κ ) I 0 ( κ ) cos ⁡ μ , E ⁡ ( sin ⁡ θ ) = I 1 ( κ ) I 0 ( κ ) sin ⁡ μ {\displaystyle \operatorname {E} (\cos \theta )={\frac {I_{1}(\kappa )}{I_{0}(\kappa )}}\cos \mu ,\,\operatorname {E} (\sin \theta )={\frac {I_{1}(\kappa )}{I_{0}(\kappa )}}\sin \mu } {\displaystyle \operatorname {E} (\cos \theta )={\frac {I_{1}(\kappa )}{I_{0}(\kappa )}}\cos \mu ,\,\operatorname {E} (\sin \theta )={\frac {I_{1}(\kappa )}{I_{0}(\kappa )}}\sin \mu } [ 0 , 2 π ) {\displaystyle [0,2\pi )\,} [0,2\pi )\,
Rayleigh f ( x ) = x σ 2 exp ⁡ ( − x 2 2 σ 2 ) {\displaystyle f(x)={\frac {x}{\sigma ^{2}}}\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right)} f(x)={\frac {x}{\sigma ^{2}}}\exp \left(-{\frac {x^{2}}{2\sigma ^{2}}}\right) E ⁡ ( x 2 ) = 2 σ 2 , E ⁡ ( ln ⁡ ( x ) ) = ln ⁡ ( 2 σ 2 ) − γ E 2 {\displaystyle \operatorname {E} (x^{2})=2\sigma ^{2},\operatorname {E} (\ln(x))={\frac {\ln(2\sigma ^{2})-\gamma _{\mathrm {E} }}{2}}\,} {\displaystyle \operatorname {E} (x^{2})=2\sigma ^{2},\operatorname {E} (\ln(x))={\frac {\ln(2\sigma ^{2})-\gamma _{\mathrm {E} }}{2}}\,} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Beta f ( x ) = x α − 1 ( 1 − x ) β − 1 B ( α , β ) {\displaystyle f(x)={\frac {x^{\alpha -1}(1-x)^{\beta -1}}{B(\alpha ,\beta )}}} f(x)={\frac {x^{\alpha -1}(1-x)^{\beta -1}}{B(\alpha ,\beta )}} for 0 ≤ x ≤ 1 {\displaystyle 0\leq x\leq 1} 0\leq x\leq 1 E ⁡ ( ln ⁡ ( x ) ) = ψ ( α ) − ψ ( α + β ) {\displaystyle \operatorname {E} (\ln(x))=\psi (\alpha )-\psi (\alpha +\beta )\,} {\displaystyle \operatorname {E} (\ln(x))=\psi (\alpha )-\psi (\alpha +\beta )\,}
E ⁡ ( ln ⁡ ( 1 − x ) ) = ψ ( β ) − ψ ( α + β ) {\displaystyle \operatorname {E} (\ln(1-x))=\psi (\beta )-\psi (\alpha +\beta )\,} {\displaystyle \operatorname {E} (\ln(1-x))=\psi (\beta )-\psi (\alpha +\beta )\,}
[ 0 , 1 ] {\displaystyle [0,1]\,} [0,1]\,
Cauchy f ( x ) = 1 π ( 1 + x 2 ) {\displaystyle f(x)={\frac {1}{\pi (1+x^{2})}}} f(x)={\frac {1}{\pi (1+x^{2})}} E ⁡ ( ln ⁡ ( 1 + x 2 ) ) = 2 ln ⁡ 2 {\displaystyle \operatorname {E} (\ln(1+x^{2}))=2\ln 2} {\displaystyle \operatorname {E} (\ln(1+x^{2}))=2\ln 2} ( − ∞ , ∞ ) {\displaystyle (-\infty ,\infty )\,} (-\infty ,\infty )\,
Chi f ( x ) = 2 2 k / 2 Γ ( k / 2 ) x k − 1 exp ⁡ ( − x 2 2 ) {\displaystyle f(x)={\frac {2}{2^{k/2}\Gamma (k/2)}}x^{k-1}\exp \left(-{\frac {x^{2}}{2}}\right)} f(x)={\frac {2}{2^{k/2}\Gamma (k/2)}}x^{k-1}\exp \left(-{\frac {x^{2}}{2}}\right) E ⁡ ( x 2 ) = k , E ⁡ ( ln ⁡ ( x ) ) = 1 2 [ ψ ( k 2 ) + ln ⁡ ( 2 ) ] {\displaystyle \operatorname {E} (x^{2})=k,\,\operatorname {E} (\ln(x))={\frac {1}{2}}\left[\psi \left({\frac {k}{2}}\right)\!+\!\ln(2)\right]} {\displaystyle \operatorname {E} (x^{2})=k,\,\operatorname {E} (\ln(x))={\frac {1}{2}}\left[\psi \left({\frac {k}{2}}\right)\!+\!\ln(2)\right]} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Chi-squared f ( x ) = 1 2 k / 2 Γ ( k / 2 ) x k 2 − 1 exp ⁡ ( − x 2 ) {\displaystyle f(x)={\frac {1}{2^{k/2}\Gamma (k/2)}}x^{{\frac {k}{2}}\!-\!1}\exp \left(-{\frac {x}{2}}\right)} f(x)={\frac {1}{2^{k/2}\Gamma (k/2)}}x^{{\frac {k}{2}}\!-\!1}\exp \left(-{\frac {x}{2}}\right) E ⁡ ( x ) = k , E ⁡ ( ln ⁡ ( x ) ) = ψ ( k 2 ) + ln ⁡ ( 2 ) {\displaystyle \operatorname {E} (x)=k,\,\operatorname {E} (\ln(x))=\psi \left({\frac {k}{2}}\right)+\ln(2)} {\displaystyle \operatorname {E} (x)=k,\,\operatorname {E} (\ln(x))=\psi \left({\frac {k}{2}}\right)+\ln(2)} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Erlang f ( x ) = λ k ( k − 1 ) ! x k − 1 exp ⁡ ( − λ x ) {\displaystyle f(x)={\frac {\lambda ^{k}}{(k-1)!}}x^{k-1}\exp(-\lambda x)} f(x)={\frac {\lambda ^{k}}{(k-1)!}}x^{k-1}\exp(-\lambda x) E ⁡ ( x ) = k / λ , E ⁡ ( ln ⁡ ( x ) ) = ψ ( k ) − ln ⁡ ( λ ) {\displaystyle \operatorname {E} (x)=k/\lambda ,\,\operatorname {E} (\ln(x))=\psi (k)-\ln(\lambda )} {\displaystyle \operatorname {E} (x)=k/\lambda ,\,\operatorname {E} (\ln(x))=\psi (k)-\ln(\lambda )} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Gamma f ( x ) = x k − 1 exp ⁡ ( − x θ ) θ k Γ ( k ) {\displaystyle f(x)={\frac {x^{k-1}\exp(-{\frac {x}{\theta }})}{\theta ^{k}\Gamma (k)}}} f(x)={\frac {x^{k-1}\exp(-{\frac {x}{\theta }})}{\theta ^{k}\Gamma (k)}} E ⁡ ( x ) = k θ , E ⁡ ( ln ⁡ ( x ) ) = ψ ( k ) + ln ⁡ ( θ ) {\displaystyle \operatorname {E} (x)=k\theta ,\,\operatorname {E} (\ln(x))=\psi (k)+\ln(\theta )} {\displaystyle \operatorname {E} (x)=k\theta ,\,\operatorname {E} (\ln(x))=\psi (k)+\ln(\theta )} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Lognormal f ( x ) = 1 σ x 2 π exp ⁡ ( − ( ln ⁡ x − μ ) 2 2 σ 2 ) {\displaystyle f(x)={\frac {1}{\sigma x{\sqrt {2\pi }}}}\exp \left(-{\frac {(\ln x-\mu )^{2}}{2\sigma ^{2}}}\right)} f(x)={\frac {1}{\sigma x{\sqrt {2\pi }}}}\exp \left(-{\frac {(\ln x-\mu )^{2}}{2\sigma ^{2}}}\right) E ⁡ ( ln ⁡ ( x ) ) = μ , E ⁡ ( ( ln ⁡ ( x ) − μ ) 2 ) = σ 2 {\displaystyle \operatorname {E} (\ln(x))=\mu ,\operatorname {E} ((\ln(x)-\mu )^{2})=\sigma ^{2}\,} {\displaystyle \operatorname {E} (\ln(x))=\mu ,\operatorname {E} ((\ln(x)-\mu )^{2})=\sigma ^{2}\,} ( 0 , ∞ ) {\displaystyle (0,\infty )\,} {\displaystyle (0,\infty )\,}
Maxwell–Boltzmann f ( x ) = 1 a 3 2 π x 2 exp ⁡ ( − x 2 2 a 2 ) {\displaystyle f(x)={\frac {1}{a^{3}}}{\sqrt {\frac {2}{\pi }}}\,x^{2}\exp \left(-{\frac {x^{2}}{2a^{2}}}\right)} f(x)={\frac {1}{a^{3}}}{\sqrt {\frac {2}{\pi }}}\,x^{2}\exp \left(-{\frac {x^{2}}{2a^{2}}}\right) E ⁡ ( x 2 ) = 3 a 2 , E ⁡ ( ln ⁡ ( x ) ) = 1 + ln ⁡ ( a 2 ) − γ E 2 {\displaystyle \operatorname {E} (x^{2})=3a^{2},\,\operatorname {E} (\ln(x))\!=\!1\!+\!\ln \left({\frac {a}{\sqrt {2}}}\right)\!-\!{\frac {\gamma _{\mathrm {E} }}{2}}} {\displaystyle \operatorname {E} (x^{2})=3a^{2},\,\operatorname {E} (\ln(x))\!=\!1\!+\!\ln \left({\frac {a}{\sqrt {2}}}\right)\!-\!{\frac {\gamma _{\mathrm {E} }}{2}}} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Weibull f ( x ) = k λ k x k − 1 exp ⁡ ( − x k λ k ) {\displaystyle f(x)={\frac {k}{\lambda ^{k}}}x^{k-1}\exp \left(-{\frac {x^{k}}{\lambda ^{k}}}\right)} f(x)={\frac {k}{\lambda ^{k}}}x^{k-1}\exp \left(-{\frac {x^{k}}{\lambda ^{k}}}\right) E ⁡ ( x k ) = λ k , E ⁡ ( ln ⁡ ( x ) ) = ln ⁡ ( λ ) − γ E k {\displaystyle \operatorname {E} (x^{k})=\lambda ^{k},\operatorname {E} (\ln(x))=\ln(\lambda )-{\frac {\gamma _{\mathrm {E} }}{k}}\,} {\displaystyle \operatorname {E} (x^{k})=\lambda ^{k},\operatorname {E} (\ln(x))=\ln(\lambda )-{\frac {\gamma _{\mathrm {E} }}{k}}\,} [ 0 , ∞ ) {\displaystyle [0,\infty )\,} [0,\infty )\,
Multivariate normal f X ( x → ) = {\displaystyle f_{X}({\vec {x}})=} f_{X}({\vec {x}})=
exp ⁡ ( − 1 2 ( x → − μ → ) ⊤ Σ − 1 ⋅ ( x → − μ → ) ) ( 2 π ) N / 2 | Σ | 1 / 2 {\displaystyle {\frac {\exp \left(-{\frac {1}{2}}({\vec {x}}-{\vec {\mu }})^{\top }\Sigma ^{-1}\cdot ({\vec {x}}-{\vec {\mu }})\right)}{(2\pi )^{N/2}\left|\Sigma \right|^{1/2}}}} {\frac {\exp \left(-{\frac {1}{2}}({\vec {x}}-{\vec {\mu }})^{\top }\Sigma ^{-1}\cdot ({\vec {x}}-{\vec {\mu }})\right)}{(2\pi )^{N/2}\left|\Sigma \right|^{1/2}}}
E ⁡ ( x → ) = μ → , E ⁡ ( ( x → − μ → ) ( x → − μ → ) T ) = Σ {\displaystyle \operatorname {E} ({\vec {x}})={\vec {\mu }},\,\operatorname {E} (({\vec {x}}-{\vec {\mu }})({\vec {x}}-{\vec {\mu }})^{T})=\Sigma \,} {\displaystyle \operatorname {E} ({\vec {x}})={\vec {\mu }},\,\operatorname {E} (({\vec {x}}-{\vec {\mu }})({\vec {x}}-{\vec {\mu }})^{T})=\Sigma \,} R n {\displaystyle \mathbb {R} ^{n}} \mathbb {R} ^{n}
Binomial f ( k ) = ( n k ) p k ( 1 − p ) n − k {\displaystyle f(k)={n \choose k}p^{k}(1-p)^{n-k}} f(k)={n \choose k}p^{k}(1-p)^{n-k} E ⁡ ( x ) = μ , f ∈ n-generalized binomial distribution {\displaystyle \operatorname {E} (x)=\mu ,f\in {\text{n-generalized binomial distribution}}} {\displaystyle \operatorname {E} (x)=\mu ,f\in {\text{n-generalized binomial distribution}}} { 0 , … , n } {\displaystyle \left\{0,{\ldots },n\right\}} {\displaystyle \left\{0,{\ldots },n\right\}}
Poisson f ( k ) = λ k exp ⁡ ( − λ ) k ! {\displaystyle f(k)={\frac {\lambda ^{k}\exp(-\lambda )}{k!}}} {\displaystyle f(k)={\frac {\lambda ^{k}\exp(-\lambda )}{k!}}} E ⁡ ( x ) = λ , f ∈ ∞ -generalized binomial distribution {\displaystyle \operatorname {E} (x)=\lambda ,f\in {\infty }{\text{-generalized binomial distribution}}} {\displaystyle \operatorname {E} (x)=\lambda ,f\in {\infty }{\text{-generalized binomial distribution}}} N = { 0 , 1 , … } {\displaystyle \mathbb {N} =\left\{0,1,{\ldots }\right\}} {\displaystyle \mathbb {N} =\left\{0,1,{\ldots }\right\}}
Logistic f ( x ) = e − x ( 1 + e − x ) 2 {\displaystyle f(x)={\frac {e^{-x}}{(1+e^{-x})^{2}}}} {\displaystyle f(x)={\frac {e^{-x}}{(1+e^{-x})^{2}}}} E ⁡ ( x ) = 0 , E ⁡ ( ln ⁡ ( 1 + e − x ) ) = 1 {\displaystyle \operatorname {E} (x)=0,\operatorname {E} (\ln(1+e^{-x}))=1} {\displaystyle \operatorname {E} (x)=0,\operatorname {E} (\ln(1+e^{-x}))=1} { − ∞ , ∞ } {\displaystyle \left\{-\infty ,\infty \right\}} {\displaystyle \left\{-\infty ,\infty \right\}}

The maximum entropy principle can be used to upper bound the entropy of statistical mixtures.

at August 31, 2022
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Post Older Post Home

Catalytic converter

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Catalytic_converter   ...

  • Islamic State and the Levant
    From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام   ( ...
  • Heart Sutra
    From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...
  • Environmental impact of fracking
    From Wikipedia, the free encyclopedia Fracking Shale gas drilling rig near Alvarado, Texas The environme...

Search This Blog

  • Home

About Me

My photo
David J Strumfels
View my complete profile

Blog Archive

  • ►  2025 (806)
    • ►  May (53)
      • ►  May 08 (7)
      • ►  May 07 (3)
      • ►  May 06 (8)
      • ►  May 05 (9)
      • ►  May 04 (5)
      • ►  May 03 (6)
      • ►  May 02 (5)
      • ►  May 01 (10)
    • ►  April (193)
      • ►  Apr 30 (8)
      • ►  Apr 29 (6)
      • ►  Apr 28 (5)
      • ►  Apr 27 (10)
      • ►  Apr 26 (9)
      • ►  Apr 25 (4)
      • ►  Apr 24 (11)
      • ►  Apr 23 (3)
      • ►  Apr 22 (8)
      • ►  Apr 21 (10)
      • ►  Apr 20 (14)
      • ►  Apr 19 (6)
      • ►  Apr 18 (13)
      • ►  Apr 17 (10)
      • ►  Apr 16 (8)
      • ►  Apr 15 (4)
      • ►  Apr 14 (6)
      • ►  Apr 13 (7)
      • ►  Apr 12 (7)
      • ►  Apr 11 (9)
      • ►  Apr 10 (1)
      • ►  Apr 09 (5)
      • ►  Apr 08 (4)
      • ►  Apr 07 (5)
      • ►  Apr 06 (4)
      • ►  Apr 05 (4)
      • ►  Apr 04 (2)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (6)
    • ►  March (182)
      • ►  Mar 31 (5)
      • ►  Mar 30 (10)
      • ►  Mar 29 (12)
      • ►  Mar 28 (5)
      • ►  Mar 27 (7)
      • ►  Mar 26 (5)
      • ►  Mar 25 (7)
      • ►  Mar 24 (8)
      • ►  Mar 23 (6)
      • ►  Mar 22 (5)
      • ►  Mar 21 (5)
      • ►  Mar 20 (5)
      • ►  Mar 19 (6)
      • ►  Mar 18 (4)
      • ►  Mar 17 (7)
      • ►  Mar 16 (5)
      • ►  Mar 15 (7)
      • ►  Mar 14 (5)
      • ►  Mar 13 (2)
      • ►  Mar 12 (1)
      • ►  Mar 11 (1)
      • ►  Mar 10 (6)
      • ►  Mar 09 (8)
      • ►  Mar 08 (7)
      • ►  Mar 07 (6)
      • ►  Mar 06 (11)
      • ►  Mar 05 (6)
      • ►  Mar 04 (8)
      • ►  Mar 03 (4)
      • ►  Mar 02 (5)
      • ►  Mar 01 (3)
    • ►  February (115)
      • ►  Feb 28 (5)
      • ►  Feb 27 (5)
      • ►  Feb 26 (1)
      • ►  Feb 25 (2)
      • ►  Feb 24 (5)
      • ►  Feb 22 (2)
      • ►  Feb 21 (2)
      • ►  Feb 20 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (4)
      • ►  Feb 17 (6)
      • ►  Feb 16 (2)
      • ►  Feb 15 (4)
      • ►  Feb 14 (4)
      • ►  Feb 13 (1)
      • ►  Feb 12 (3)
      • ►  Feb 11 (2)
      • ►  Feb 10 (7)
      • ►  Feb 09 (5)
      • ►  Feb 08 (4)
      • ►  Feb 07 (4)
      • ►  Feb 06 (5)
      • ►  Feb 05 (7)
      • ►  Feb 04 (6)
      • ►  Feb 03 (7)
      • ►  Feb 02 (7)
      • ►  Feb 01 (8)
    • ►  January (263)
      • ►  Jan 31 (7)
      • ►  Jan 30 (8)
      • ►  Jan 29 (8)
      • ►  Jan 28 (6)
      • ►  Jan 27 (7)
      • ►  Jan 26 (15)
      • ►  Jan 25 (11)
      • ►  Jan 24 (18)
      • ►  Jan 23 (10)
      • ►  Jan 22 (13)
      • ►  Jan 21 (5)
      • ►  Jan 20 (9)
      • ►  Jan 19 (2)
      • ►  Jan 18 (6)
      • ►  Jan 17 (4)
      • ►  Jan 16 (5)
      • ►  Jan 15 (7)
      • ►  Jan 14 (7)
      • ►  Jan 13 (11)
      • ►  Jan 12 (4)
      • ►  Jan 11 (16)
      • ►  Jan 10 (11)
      • ►  Jan 09 (6)
      • ►  Jan 08 (5)
      • ►  Jan 07 (9)
      • ►  Jan 06 (6)
      • ►  Jan 05 (10)
      • ►  Jan 04 (14)
      • ►  Jan 03 (4)
      • ►  Jan 02 (14)
      • ►  Jan 01 (5)
  • ►  2024 (3069)
    • ►  December (227)
      • ►  Dec 31 (6)
      • ►  Dec 30 (4)
      • ►  Dec 29 (5)
      • ►  Dec 28 (4)
      • ►  Dec 27 (4)
      • ►  Dec 26 (5)
      • ►  Dec 25 (3)
      • ►  Dec 24 (5)
      • ►  Dec 23 (6)
      • ►  Dec 22 (8)
      • ►  Dec 21 (9)
      • ►  Dec 20 (15)
      • ►  Dec 19 (4)
      • ►  Dec 18 (13)
      • ►  Dec 17 (9)
      • ►  Dec 16 (14)
      • ►  Dec 15 (14)
      • ►  Dec 14 (12)
      • ►  Dec 13 (6)
      • ►  Dec 12 (10)
      • ►  Dec 11 (11)
      • ►  Dec 10 (7)
      • ►  Dec 09 (7)
      • ►  Dec 08 (6)
      • ►  Dec 07 (13)
      • ►  Dec 06 (4)
      • ►  Dec 05 (8)
      • ►  Dec 04 (3)
      • ►  Dec 03 (2)
      • ►  Dec 02 (6)
      • ►  Dec 01 (4)
    • ►  November (223)
      • ►  Nov 30 (6)
      • ►  Nov 29 (6)
      • ►  Nov 28 (6)
      • ►  Nov 27 (4)
      • ►  Nov 26 (5)
      • ►  Nov 25 (12)
      • ►  Nov 24 (9)
      • ►  Nov 23 (9)
      • ►  Nov 22 (7)
      • ►  Nov 21 (8)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (8)
      • ►  Nov 17 (7)
      • ►  Nov 16 (7)
      • ►  Nov 15 (8)
      • ►  Nov 14 (8)
      • ►  Nov 13 (5)
      • ►  Nov 12 (3)
      • ►  Nov 11 (7)
      • ►  Nov 10 (12)
      • ►  Nov 09 (6)
      • ►  Nov 08 (10)
      • ►  Nov 07 (8)
      • ►  Nov 06 (4)
      • ►  Nov 05 (2)
      • ►  Nov 04 (7)
      • ►  Nov 03 (19)
      • ►  Nov 02 (7)
      • ►  Nov 01 (12)
    • ►  October (231)
      • ►  Oct 31 (5)
      • ►  Oct 30 (9)
      • ►  Oct 29 (13)
      • ►  Oct 28 (11)
      • ►  Oct 27 (13)
      • ►  Oct 26 (11)
      • ►  Oct 25 (11)
      • ►  Oct 24 (8)
      • ►  Oct 23 (8)
      • ►  Oct 22 (1)
      • ►  Oct 21 (8)
      • ►  Oct 20 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (8)
      • ►  Oct 15 (14)
      • ►  Oct 14 (15)
      • ►  Oct 13 (11)
      • ►  Oct 12 (7)
      • ►  Oct 11 (8)
      • ►  Oct 10 (4)
      • ►  Oct 09 (11)
      • ►  Oct 08 (3)
      • ►  Oct 07 (6)
      • ►  Oct 06 (3)
      • ►  Oct 05 (2)
      • ►  Oct 04 (5)
      • ►  Oct 03 (9)
      • ►  Oct 02 (8)
      • ►  Oct 01 (12)
    • ►  September (257)
      • ►  Sep 30 (3)
      • ►  Sep 29 (12)
      • ►  Sep 28 (16)
      • ►  Sep 27 (6)
      • ►  Sep 26 (2)
      • ►  Sep 25 (1)
      • ►  Sep 24 (3)
      • ►  Sep 23 (2)
      • ►  Sep 22 (6)
      • ►  Sep 21 (18)
      • ►  Sep 20 (5)
      • ►  Sep 19 (5)
      • ►  Sep 18 (2)
      • ►  Sep 17 (1)
      • ►  Sep 16 (4)
      • ►  Sep 15 (12)
      • ►  Sep 14 (4)
      • ►  Sep 13 (12)
      • ►  Sep 12 (6)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (9)
      • ►  Sep 08 (12)
      • ►  Sep 07 (17)
      • ►  Sep 06 (13)
      • ►  Sep 05 (10)
      • ►  Sep 04 (10)
      • ►  Sep 03 (18)
      • ►  Sep 02 (20)
      • ►  Sep 01 (19)
    • ►  August (338)
      • ►  Aug 31 (16)
      • ►  Aug 30 (17)
      • ►  Aug 29 (11)
      • ►  Aug 28 (15)
      • ►  Aug 27 (16)
      • ►  Aug 26 (7)
      • ►  Aug 25 (7)
      • ►  Aug 24 (11)
      • ►  Aug 23 (9)
      • ►  Aug 22 (11)
      • ►  Aug 21 (8)
      • ►  Aug 20 (14)
      • ►  Aug 19 (9)
      • ►  Aug 18 (7)
      • ►  Aug 17 (3)
      • ►  Aug 16 (13)
      • ►  Aug 15 (7)
      • ►  Aug 14 (12)
      • ►  Aug 13 (12)
      • ►  Aug 12 (15)
      • ►  Aug 11 (13)
      • ►  Aug 10 (12)
      • ►  Aug 09 (17)
      • ►  Aug 08 (13)
      • ►  Aug 07 (8)
      • ►  Aug 06 (8)
      • ►  Aug 05 (17)
      • ►  Aug 04 (4)
      • ►  Aug 03 (7)
      • ►  Aug 02 (13)
      • ►  Aug 01 (6)
    • ►  July (305)
      • ►  Jul 31 (7)
      • ►  Jul 30 (14)
      • ►  Jul 29 (11)
      • ►  Jul 28 (17)
      • ►  Jul 27 (12)
      • ►  Jul 26 (13)
      • ►  Jul 25 (12)
      • ►  Jul 24 (4)
      • ►  Jul 23 (15)
      • ►  Jul 22 (8)
      • ►  Jul 21 (8)
      • ►  Jul 20 (11)
      • ►  Jul 19 (13)
      • ►  Jul 18 (5)
      • ►  Jul 17 (4)
      • ►  Jul 16 (7)
      • ►  Jul 15 (12)
      • ►  Jul 14 (12)
      • ►  Jul 13 (4)
      • ►  Jul 12 (11)
      • ►  Jul 11 (14)
      • ►  Jul 10 (10)
      • ►  Jul 09 (14)
      • ►  Jul 08 (10)
      • ►  Jul 07 (3)
      • ►  Jul 06 (9)
      • ►  Jul 05 (13)
      • ►  Jul 04 (9)
      • ►  Jul 03 (8)
      • ►  Jul 02 (8)
      • ►  Jul 01 (7)
    • ►  June (217)
      • ►  Jun 30 (5)
      • ►  Jun 29 (7)
      • ►  Jun 28 (6)
      • ►  Jun 27 (4)
      • ►  Jun 26 (4)
      • ►  Jun 25 (8)
      • ►  Jun 24 (9)
      • ►  Jun 23 (5)
      • ►  Jun 22 (5)
      • ►  Jun 21 (4)
      • ►  Jun 20 (4)
      • ►  Jun 19 (7)
      • ►  Jun 18 (10)
      • ►  Jun 17 (4)
      • ►  Jun 16 (10)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (9)
      • ►  Jun 08 (14)
      • ►  Jun 07 (2)
      • ►  Jun 06 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (11)
      • ►  Jun 03 (3)
      • ►  Jun 02 (15)
      • ►  Jun 01 (10)
    • ►  May (166)
      • ►  May 31 (3)
      • ►  May 30 (2)
      • ►  May 29 (6)
      • ►  May 28 (5)
      • ►  May 27 (9)
      • ►  May 26 (6)
      • ►  May 25 (3)
      • ►  May 24 (6)
      • ►  May 23 (6)
      • ►  May 22 (6)
      • ►  May 21 (8)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (6)
      • ►  May 14 (4)
      • ►  May 13 (4)
      • ►  May 12 (9)
      • ►  May 11 (12)
      • ►  May 10 (4)
      • ►  May 09 (7)
      • ►  May 08 (5)
      • ►  May 07 (8)
      • ►  May 06 (10)
      • ►  May 05 (2)
      • ►  May 04 (4)
      • ►  May 03 (2)
      • ►  May 02 (6)
      • ►  May 01 (3)
    • ►  April (275)
      • ►  Apr 29 (2)
      • ►  Apr 28 (8)
      • ►  Apr 27 (10)
      • ►  Apr 26 (11)
      • ►  Apr 25 (9)
      • ►  Apr 24 (7)
      • ►  Apr 23 (5)
      • ►  Apr 22 (8)
      • ►  Apr 21 (9)
      • ►  Apr 20 (8)
      • ►  Apr 19 (4)
      • ►  Apr 18 (9)
      • ►  Apr 17 (11)
      • ►  Apr 16 (15)
      • ►  Apr 15 (12)
      • ►  Apr 14 (15)
      • ►  Apr 13 (14)
      • ►  Apr 12 (15)
      • ►  Apr 11 (12)
      • ►  Apr 10 (14)
      • ►  Apr 09 (6)
      • ►  Apr 08 (16)
      • ►  Apr 07 (4)
      • ►  Apr 06 (9)
      • ►  Apr 05 (13)
      • ►  Apr 04 (8)
      • ►  Apr 03 (12)
      • ►  Apr 02 (5)
      • ►  Apr 01 (4)
    • ►  March (200)
      • ►  Mar 31 (6)
      • ►  Mar 30 (12)
      • ►  Mar 29 (9)
      • ►  Mar 28 (11)
      • ►  Mar 27 (13)
      • ►  Mar 26 (8)
      • ►  Mar 25 (9)
      • ►  Mar 24 (3)
      • ►  Mar 23 (7)
      • ►  Mar 22 (3)
      • ►  Mar 21 (16)
      • ►  Mar 20 (2)
      • ►  Mar 19 (7)
      • ►  Mar 18 (6)
      • ►  Mar 17 (12)
      • ►  Mar 16 (9)
      • ►  Mar 15 (10)
      • ►  Mar 14 (2)
      • ►  Mar 13 (8)
      • ►  Mar 12 (1)
      • ►  Mar 10 (4)
      • ►  Mar 09 (2)
      • ►  Mar 08 (1)
      • ►  Mar 07 (4)
      • ►  Mar 06 (6)
      • ►  Mar 05 (11)
      • ►  Mar 04 (9)
      • ►  Mar 02 (8)
      • ►  Mar 01 (1)
    • ►  February (220)
      • ►  Feb 29 (6)
      • ►  Feb 28 (1)
      • ►  Feb 27 (4)
      • ►  Feb 26 (6)
      • ►  Feb 25 (7)
      • ►  Feb 24 (4)
      • ►  Feb 23 (5)
      • ►  Feb 22 (7)
      • ►  Feb 20 (15)
      • ►  Feb 19 (4)
      • ►  Feb 18 (13)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (10)
      • ►  Feb 14 (9)
      • ►  Feb 13 (17)
      • ►  Feb 12 (9)
      • ►  Feb 11 (10)
      • ►  Feb 10 (18)
      • ►  Feb 09 (5)
      • ►  Feb 08 (9)
      • ►  Feb 07 (11)
      • ►  Feb 06 (6)
      • ►  Feb 05 (10)
      • ►  Feb 04 (4)
      • ►  Feb 03 (5)
      • ►  Feb 02 (8)
      • ►  Feb 01 (8)
    • ►  January (410)
      • ►  Jan 31 (13)
      • ►  Jan 30 (11)
      • ►  Jan 29 (14)
      • ►  Jan 28 (11)
      • ►  Jan 27 (20)
      • ►  Jan 26 (22)
      • ►  Jan 25 (16)
      • ►  Jan 24 (14)
      • ►  Jan 23 (18)
      • ►  Jan 22 (15)
      • ►  Jan 21 (11)
      • ►  Jan 20 (16)
      • ►  Jan 19 (5)
      • ►  Jan 18 (11)
      • ►  Jan 17 (11)
      • ►  Jan 16 (8)
      • ►  Jan 15 (27)
      • ►  Jan 14 (12)
      • ►  Jan 13 (16)
      • ►  Jan 12 (4)
      • ►  Jan 11 (8)
      • ►  Jan 10 (7)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (10)
      • ►  Jan 06 (13)
      • ►  Jan 05 (18)
      • ►  Jan 04 (9)
      • ►  Jan 03 (20)
      • ►  Jan 02 (14)
      • ►  Jan 01 (17)
  • ►  2023 (4333)
    • ►  December (314)
      • ►  Dec 31 (10)
      • ►  Dec 30 (18)
      • ►  Dec 29 (17)
      • ►  Dec 28 (8)
      • ►  Dec 27 (1)
      • ►  Dec 26 (14)
      • ►  Dec 25 (19)
      • ►  Dec 24 (20)
      • ►  Dec 23 (12)
      • ►  Dec 22 (12)
      • ►  Dec 21 (4)
      • ►  Dec 20 (18)
      • ►  Dec 19 (9)
      • ►  Dec 18 (5)
      • ►  Dec 17 (6)
      • ►  Dec 16 (17)
      • ►  Dec 15 (5)
      • ►  Dec 14 (16)
      • ►  Dec 13 (10)
      • ►  Dec 12 (7)
      • ►  Dec 11 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (3)
      • ►  Dec 08 (5)
      • ►  Dec 07 (5)
      • ►  Dec 06 (16)
      • ►  Dec 05 (13)
      • ►  Dec 04 (11)
      • ►  Dec 03 (8)
      • ►  Dec 02 (7)
      • ►  Dec 01 (9)
    • ►  November (353)
      • ►  Nov 30 (10)
      • ►  Nov 29 (8)
      • ►  Nov 28 (7)
      • ►  Nov 27 (13)
      • ►  Nov 26 (7)
      • ►  Nov 25 (4)
      • ►  Nov 23 (11)
      • ►  Nov 22 (6)
      • ►  Nov 21 (7)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (13)
      • ►  Nov 17 (10)
      • ►  Nov 16 (2)
      • ►  Nov 15 (16)
      • ►  Nov 14 (21)
      • ►  Nov 13 (14)
      • ►  Nov 12 (12)
      • ►  Nov 11 (19)
      • ►  Nov 10 (11)
      • ►  Nov 09 (24)
      • ►  Nov 08 (8)
      • ►  Nov 07 (11)
      • ►  Nov 06 (13)
      • ►  Nov 05 (18)
      • ►  Nov 04 (9)
      • ►  Nov 03 (21)
      • ►  Nov 02 (25)
      • ►  Nov 01 (22)
    • ►  October (549)
      • ►  Oct 31 (23)
      • ►  Oct 30 (19)
      • ►  Oct 29 (22)
      • ►  Oct 28 (30)
      • ►  Oct 27 (24)
      • ►  Oct 26 (28)
      • ►  Oct 25 (24)
      • ►  Oct 24 (20)
      • ►  Oct 23 (4)
      • ►  Oct 22 (24)
      • ►  Oct 21 (20)
      • ►  Oct 20 (17)
      • ►  Oct 19 (14)
      • ►  Oct 18 (14)
      • ►  Oct 17 (19)
      • ►  Oct 16 (12)
      • ►  Oct 15 (4)
      • ►  Oct 14 (23)
      • ►  Oct 13 (21)
      • ►  Oct 12 (22)
      • ►  Oct 11 (22)
      • ►  Oct 10 (11)
      • ►  Oct 09 (12)
      • ►  Oct 08 (19)
      • ►  Oct 07 (16)
      • ►  Oct 06 (19)
      • ►  Oct 05 (20)
      • ►  Oct 04 (11)
      • ►  Oct 03 (15)
      • ►  Oct 02 (11)
      • ►  Oct 01 (9)
    • ►  September (478)
      • ►  Sep 30 (25)
      • ►  Sep 29 (19)
      • ►  Sep 28 (28)
      • ►  Sep 27 (17)
      • ►  Sep 26 (21)
      • ►  Sep 25 (21)
      • ►  Sep 24 (6)
      • ►  Sep 23 (13)
      • ►  Sep 22 (6)
      • ►  Sep 21 (11)
      • ►  Sep 20 (9)
      • ►  Sep 19 (4)
      • ►  Sep 18 (6)
      • ►  Sep 17 (4)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (22)
      • ►  Sep 13 (9)
      • ►  Sep 12 (11)
      • ►  Sep 11 (13)
      • ►  Sep 10 (25)
      • ►  Sep 09 (26)
      • ►  Sep 08 (23)
      • ►  Sep 07 (20)
      • ►  Sep 06 (27)
      • ►  Sep 05 (20)
      • ►  Sep 04 (18)
      • ►  Sep 03 (11)
      • ►  Sep 02 (24)
      • ►  Sep 01 (15)
    • ►  August (464)
      • ►  Aug 31 (20)
      • ►  Aug 30 (24)
      • ►  Aug 29 (10)
      • ►  Aug 28 (17)
      • ►  Aug 27 (15)
      • ►  Aug 26 (20)
      • ►  Aug 25 (12)
      • ►  Aug 24 (8)
      • ►  Aug 23 (16)
      • ►  Aug 22 (12)
      • ►  Aug 21 (21)
      • ►  Aug 20 (18)
      • ►  Aug 19 (10)
      • ►  Aug 18 (19)
      • ►  Aug 17 (14)
      • ►  Aug 16 (15)
      • ►  Aug 15 (22)
      • ►  Aug 14 (22)
      • ►  Aug 13 (11)
      • ►  Aug 12 (18)
      • ►  Aug 11 (15)
      • ►  Aug 10 (15)
      • ►  Aug 09 (22)
      • ►  Aug 08 (19)
      • ►  Aug 07 (24)
      • ►  Aug 06 (17)
      • ►  Aug 05 (3)
      • ►  Aug 04 (7)
      • ►  Aug 03 (2)
      • ►  Aug 02 (6)
      • ►  Aug 01 (10)
    • ►  July (359)
      • ►  Jul 31 (21)
      • ►  Jul 30 (5)
      • ►  Jul 29 (15)
      • ►  Jul 28 (10)
      • ►  Jul 27 (12)
      • ►  Jul 26 (12)
      • ►  Jul 25 (2)
      • ►  Jul 23 (17)
      • ►  Jul 22 (5)
      • ►  Jul 21 (15)
      • ►  Jul 20 (9)
      • ►  Jul 19 (11)
      • ►  Jul 18 (24)
      • ►  Jul 17 (10)
      • ►  Jul 16 (12)
      • ►  Jul 15 (6)
      • ►  Jul 14 (10)
      • ►  Jul 13 (7)
      • ►  Jul 12 (14)
      • ►  Jul 11 (14)
      • ►  Jul 10 (8)
      • ►  Jul 09 (8)
      • ►  Jul 08 (10)
      • ►  Jul 07 (12)
      • ►  Jul 06 (18)
      • ►  Jul 05 (19)
      • ►  Jul 04 (8)
      • ►  Jul 03 (17)
      • ►  Jul 02 (9)
      • ►  Jul 01 (19)
    • ►  June (397)
      • ►  Jun 30 (17)
      • ►  Jun 29 (15)
      • ►  Jun 28 (6)
      • ►  Jun 27 (8)
      • ►  Jun 26 (15)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (23)
      • ►  Jun 22 (30)
      • ►  Jun 21 (20)
      • ►  Jun 20 (18)
      • ►  Jun 19 (18)
      • ►  Jun 18 (20)
      • ►  Jun 17 (16)
      • ►  Jun 16 (13)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (7)
      • ►  Jun 12 (5)
      • ►  Jun 11 (4)
      • ►  Jun 10 (4)
      • ►  Jun 09 (4)
      • ►  Jun 08 (5)
      • ►  Jun 07 (3)
      • ►  Jun 06 (3)
      • ►  Jun 05 (21)
      • ►  Jun 04 (24)
      • ►  Jun 03 (12)
      • ►  Jun 02 (18)
      • ►  Jun 01 (20)
    • ►  May (395)
      • ►  May 31 (15)
      • ►  May 30 (25)
      • ►  May 29 (24)
      • ►  May 28 (26)
      • ►  May 27 (21)
      • ►  May 26 (23)
      • ►  May 25 (14)
      • ►  May 24 (7)
      • ►  May 23 (6)
      • ►  May 22 (4)
      • ►  May 21 (6)
      • ►  May 20 (2)
      • ►  May 19 (9)
      • ►  May 18 (8)
      • ►  May 17 (11)
      • ►  May 16 (8)
      • ►  May 15 (14)
      • ►  May 14 (15)
      • ►  May 13 (12)
      • ►  May 12 (10)
      • ►  May 11 (16)
      • ►  May 10 (10)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (6)
      • ►  May 06 (8)
      • ►  May 05 (13)
      • ►  May 04 (14)
      • ►  May 03 (17)
      • ►  May 02 (12)
      • ►  May 01 (12)
    • ►  April (292)
      • ►  Apr 30 (13)
      • ►  Apr 29 (12)
      • ►  Apr 28 (19)
      • ►  Apr 27 (15)
      • ►  Apr 26 (18)
      • ►  Apr 25 (14)
      • ►  Apr 24 (24)
      • ►  Apr 23 (7)
      • ►  Apr 22 (21)
      • ►  Apr 21 (14)
      • ►  Apr 20 (10)
      • ►  Apr 19 (10)
      • ►  Apr 18 (12)
      • ►  Apr 17 (7)
      • ►  Apr 16 (8)
      • ►  Apr 15 (11)
      • ►  Apr 14 (9)
      • ►  Apr 13 (11)
      • ►  Apr 12 (12)
      • ►  Apr 11 (10)
      • ►  Apr 10 (13)
      • ►  Apr 09 (7)
      • ►  Apr 08 (10)
      • ►  Apr 07 (2)
      • ►  Apr 02 (1)
      • ►  Apr 01 (2)
    • ►  March (306)
      • ►  Mar 28 (1)
      • ►  Mar 27 (2)
      • ►  Mar 26 (3)
      • ►  Mar 25 (3)
      • ►  Mar 24 (5)
      • ►  Mar 22 (3)
      • ►  Mar 21 (3)
      • ►  Mar 20 (6)
      • ►  Mar 19 (17)
      • ►  Mar 18 (7)
      • ►  Mar 17 (23)
      • ►  Mar 16 (24)
      • ►  Mar 15 (18)
      • ►  Mar 14 (30)
      • ►  Mar 13 (24)
      • ►  Mar 12 (26)
      • ►  Mar 11 (13)
      • ►  Mar 10 (24)
      • ►  Mar 09 (22)
      • ►  Mar 08 (18)
      • ►  Mar 06 (9)
      • ►  Mar 05 (6)
      • ►  Mar 04 (7)
      • ►  Mar 03 (7)
      • ►  Mar 02 (3)
      • ►  Mar 01 (2)
    • ►  February (210)
      • ►  Feb 27 (1)
      • ►  Feb 26 (4)
      • ►  Feb 24 (12)
      • ►  Feb 23 (9)
      • ►  Feb 22 (9)
      • ►  Feb 21 (9)
      • ►  Feb 19 (4)
      • ►  Feb 16 (9)
      • ►  Feb 15 (2)
      • ►  Feb 14 (5)
      • ►  Feb 13 (1)
      • ►  Feb 12 (1)
      • ►  Feb 11 (13)
      • ►  Feb 10 (8)
      • ►  Feb 09 (12)
      • ►  Feb 08 (10)
      • ►  Feb 07 (19)
      • ►  Feb 06 (9)
      • ►  Feb 05 (18)
      • ►  Feb 04 (10)
      • ►  Feb 03 (13)
      • ►  Feb 02 (12)
      • ►  Feb 01 (20)
    • ►  January (216)
      • ►  Jan 31 (8)
      • ►  Jan 30 (11)
      • ►  Jan 29 (13)
      • ►  Jan 28 (7)
      • ►  Jan 27 (13)
      • ►  Jan 26 (13)
      • ►  Jan 25 (4)
      • ►  Jan 24 (2)
      • ►  Jan 23 (6)
      • ►  Jan 22 (7)
      • ►  Jan 21 (4)
      • ►  Jan 20 (5)
      • ►  Jan 19 (1)
      • ►  Jan 18 (3)
      • ►  Jan 17 (2)
      • ►  Jan 15 (1)
      • ►  Jan 14 (2)
      • ►  Jan 13 (13)
      • ►  Jan 12 (25)
      • ►  Jan 11 (13)
      • ►  Jan 10 (18)
      • ►  Jan 09 (18)
      • ►  Jan 07 (9)
      • ►  Jan 06 (2)
      • ►  Jan 05 (11)
      • ►  Jan 04 (3)
      • ►  Jan 03 (2)
  • ▼  2022 (2401)
    • ►  December (115)
      • ►  Dec 31 (1)
      • ►  Dec 30 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (8)
      • ►  Dec 08 (8)
      • ►  Dec 07 (12)
      • ►  Dec 06 (16)
      • ►  Dec 05 (11)
      • ►  Dec 04 (15)
      • ►  Dec 03 (15)
      • ►  Dec 02 (8)
      • ►  Dec 01 (12)
    • ►  November (498)
      • ►  Nov 30 (2)
      • ►  Nov 29 (11)
      • ►  Nov 28 (13)
      • ►  Nov 27 (1)
      • ►  Nov 26 (9)
      • ►  Nov 25 (13)
      • ►  Nov 24 (16)
      • ►  Nov 23 (8)
      • ►  Nov 22 (16)
      • ►  Nov 21 (21)
      • ►  Nov 20 (13)
      • ►  Nov 19 (24)
      • ►  Nov 18 (23)
      • ►  Nov 17 (28)
      • ►  Nov 16 (15)
      • ►  Nov 15 (22)
      • ►  Nov 14 (32)
      • ►  Nov 13 (20)
      • ►  Nov 12 (22)
      • ►  Nov 11 (30)
      • ►  Nov 10 (4)
      • ►  Nov 09 (21)
      • ►  Nov 08 (21)
      • ►  Nov 07 (21)
      • ►  Nov 06 (14)
      • ►  Nov 05 (19)
      • ►  Nov 04 (17)
      • ►  Nov 03 (14)
      • ►  Nov 02 (12)
      • ►  Nov 01 (16)
    • ►  October (272)
      • ►  Oct 31 (14)
      • ►  Oct 30 (12)
      • ►  Oct 29 (13)
      • ►  Oct 28 (9)
      • ►  Oct 27 (10)
      • ►  Oct 26 (6)
      • ►  Oct 25 (15)
      • ►  Oct 24 (11)
      • ►  Oct 23 (12)
      • ►  Oct 22 (9)
      • ►  Oct 21 (5)
      • ►  Oct 19 (5)
      • ►  Oct 18 (8)
      • ►  Oct 17 (4)
      • ►  Oct 16 (4)
      • ►  Oct 15 (10)
      • ►  Oct 14 (6)
      • ►  Oct 13 (8)
      • ►  Oct 12 (9)
      • ►  Oct 11 (14)
      • ►  Oct 10 (15)
      • ►  Oct 09 (9)
      • ►  Oct 08 (12)
      • ►  Oct 07 (14)
      • ►  Oct 06 (7)
      • ►  Oct 05 (13)
      • ►  Oct 04 (8)
      • ►  Oct 03 (10)
    • ►  September (149)
      • ►  Sep 30 (4)
      • ►  Sep 29 (6)
      • ►  Sep 28 (4)
      • ►  Sep 27 (3)
      • ►  Sep 26 (6)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (6)
      • ►  Sep 22 (1)
      • ►  Sep 21 (6)
      • ►  Sep 20 (5)
      • ►  Sep 19 (6)
      • ►  Sep 17 (5)
      • ►  Sep 16 (2)
      • ►  Sep 15 (4)
      • ►  Sep 14 (6)
      • ►  Sep 13 (3)
      • ►  Sep 12 (5)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (11)
      • ►  Sep 08 (6)
      • ►  Sep 07 (7)
      • ►  Sep 06 (6)
      • ►  Sep 05 (8)
      • ►  Sep 04 (5)
      • ►  Sep 03 (12)
      • ►  Sep 02 (2)
      • ►  Sep 01 (9)
    • ▼  August (231)
      • ▼  Aug 31 (7)
        • Rational number
        • Augustin-Jean Fresnel
        • Total fertility rate
        • Anthropogenic hazard
        • Screening (medicine)
        • Mathematics education
        • Maximum entropy probability distribution
      • ►  Aug 30 (9)
      • ►  Aug 29 (8)
      • ►  Aug 28 (10)
      • ►  Aug 27 (6)
      • ►  Aug 26 (10)
      • ►  Aug 25 (9)
      • ►  Aug 24 (8)
      • ►  Aug 23 (12)
      • ►  Aug 22 (6)
      • ►  Aug 21 (4)
      • ►  Aug 20 (10)
      • ►  Aug 19 (12)
      • ►  Aug 18 (7)
      • ►  Aug 17 (10)
      • ►  Aug 16 (9)
      • ►  Aug 15 (10)
      • ►  Aug 14 (7)
      • ►  Aug 13 (9)
      • ►  Aug 12 (7)
      • ►  Aug 11 (8)
      • ►  Aug 10 (5)
      • ►  Aug 09 (7)
      • ►  Aug 08 (8)
      • ►  Aug 07 (9)
      • ►  Aug 06 (10)
      • ►  Aug 05 (10)
      • ►  Aug 04 (4)
    • ►  July (258)
      • ►  Jul 31 (1)
      • ►  Jul 30 (3)
      • ►  Jul 29 (3)
      • ►  Jul 28 (1)
      • ►  Jul 27 (5)
      • ►  Jul 26 (5)
      • ►  Jul 25 (4)
      • ►  Jul 24 (4)
      • ►  Jul 23 (6)
      • ►  Jul 22 (5)
      • ►  Jul 21 (2)
      • ►  Jul 20 (10)
      • ►  Jul 19 (5)
      • ►  Jul 18 (8)
      • ►  Jul 17 (1)
      • ►  Jul 15 (6)
      • ►  Jul 14 (11)
      • ►  Jul 13 (9)
      • ►  Jul 12 (8)
      • ►  Jul 11 (17)
      • ►  Jul 10 (16)
      • ►  Jul 09 (14)
      • ►  Jul 08 (18)
      • ►  Jul 07 (12)
      • ►  Jul 06 (12)
      • ►  Jul 05 (17)
      • ►  Jul 04 (13)
      • ►  Jul 03 (15)
      • ►  Jul 02 (12)
      • ►  Jul 01 (15)
    • ►  June (133)
      • ►  Jun 30 (10)
      • ►  Jun 29 (9)
      • ►  Jun 28 (9)
      • ►  Jun 27 (9)
      • ►  Jun 26 (11)
      • ►  Jun 25 (12)
      • ►  Jun 24 (12)
      • ►  Jun 23 (10)
      • ►  Jun 22 (10)
      • ►  Jun 21 (4)
      • ►  Jun 20 (3)
      • ►  Jun 19 (8)
      • ►  Jun 18 (2)
      • ►  Jun 17 (2)
      • ►  Jun 15 (3)
      • ►  Jun 14 (1)
      • ►  Jun 13 (1)
      • ►  Jun 07 (1)
      • ►  Jun 04 (5)
      • ►  Jun 03 (2)
      • ►  Jun 02 (7)
      • ►  Jun 01 (2)
    • ►  May (168)
      • ►  May 31 (1)
      • ►  May 30 (2)
      • ►  May 29 (1)
      • ►  May 28 (1)
      • ►  May 26 (4)
      • ►  May 24 (1)
      • ►  May 23 (1)
      • ►  May 21 (3)
      • ►  May 20 (3)
      • ►  May 19 (2)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (11)
      • ►  May 14 (7)
      • ►  May 13 (8)
      • ►  May 12 (8)
      • ►  May 11 (7)
      • ►  May 10 (10)
      • ►  May 09 (11)
      • ►  May 08 (14)
      • ►  May 07 (7)
      • ►  May 06 (9)
      • ►  May 05 (6)
      • ►  May 04 (12)
      • ►  May 03 (10)
      • ►  May 02 (7)
      • ►  May 01 (9)
    • ►  April (59)
      • ►  Apr 30 (8)
      • ►  Apr 29 (11)
      • ►  Apr 28 (3)
      • ►  Apr 27 (5)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (1)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (2)
      • ►  Apr 13 (1)
      • ►  Apr 11 (2)
      • ►  Apr 09 (1)
      • ►  Apr 08 (4)
      • ►  Apr 07 (1)
      • ►  Apr 06 (4)
      • ►  Apr 05 (7)
      • ►  Apr 04 (1)
    • ►  March (114)
      • ►  Mar 27 (1)
      • ►  Mar 26 (8)
      • ►  Mar 25 (1)
      • ►  Mar 23 (4)
      • ►  Mar 22 (4)
      • ►  Mar 21 (2)
      • ►  Mar 20 (8)
      • ►  Mar 17 (4)
      • ►  Mar 16 (1)
      • ►  Mar 15 (8)
      • ►  Mar 14 (1)
      • ►  Mar 13 (4)
      • ►  Mar 12 (6)
      • ►  Mar 11 (4)
      • ►  Mar 10 (6)
      • ►  Mar 09 (6)
      • ►  Mar 08 (12)
      • ►  Mar 07 (5)
      • ►  Mar 06 (3)
      • ►  Mar 05 (4)
      • ►  Mar 04 (2)
      • ►  Mar 03 (6)
      • ►  Mar 02 (6)
      • ►  Mar 01 (8)
    • ►  February (136)
      • ►  Feb 28 (3)
      • ►  Feb 27 (3)
      • ►  Feb 26 (4)
      • ►  Feb 25 (1)
      • ►  Feb 24 (1)
      • ►  Feb 23 (4)
      • ►  Feb 22 (6)
      • ►  Feb 21 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (2)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (7)
      • ►  Feb 14 (5)
      • ►  Feb 13 (6)
      • ►  Feb 12 (3)
      • ►  Feb 11 (7)
      • ►  Feb 10 (5)
      • ►  Feb 09 (4)
      • ►  Feb 08 (3)
      • ►  Feb 07 (2)
      • ►  Feb 06 (5)
      • ►  Feb 05 (6)
      • ►  Feb 04 (4)
      • ►  Feb 03 (11)
      • ►  Feb 02 (13)
      • ►  Feb 01 (15)
    • ►  January (268)
      • ►  Jan 31 (16)
      • ►  Jan 30 (21)
      • ►  Jan 29 (11)
      • ►  Jan 28 (14)
      • ►  Jan 27 (11)
      • ►  Jan 26 (14)
      • ►  Jan 25 (5)
      • ►  Jan 23 (1)
      • ►  Jan 22 (2)
      • ►  Jan 19 (2)
      • ►  Jan 17 (9)
      • ►  Jan 16 (3)
      • ►  Jan 14 (14)
      • ►  Jan 13 (5)
      • ►  Jan 12 (6)
      • ►  Jan 11 (8)
      • ►  Jan 10 (13)
      • ►  Jan 09 (4)
      • ►  Jan 08 (14)
      • ►  Jan 07 (9)
      • ►  Jan 06 (10)
      • ►  Jan 05 (15)
      • ►  Jan 04 (13)
      • ►  Jan 03 (14)
      • ►  Jan 02 (19)
      • ►  Jan 01 (15)
  • ►  2021 (3238)
    • ►  December (507)
      • ►  Dec 31 (10)
      • ►  Dec 30 (9)
      • ►  Dec 29 (14)
      • ►  Dec 28 (11)
      • ►  Dec 27 (18)
      • ►  Dec 26 (12)
      • ►  Dec 25 (18)
      • ►  Dec 24 (13)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (6)
      • ►  Dec 20 (15)
      • ►  Dec 19 (12)
      • ►  Dec 18 (11)
      • ►  Dec 17 (19)
      • ►  Dec 16 (13)
      • ►  Dec 15 (22)
      • ►  Dec 14 (25)
      • ►  Dec 13 (23)
      • ►  Dec 12 (21)
      • ►  Dec 11 (21)
      • ►  Dec 10 (22)
      • ►  Dec 09 (18)
      • ►  Dec 08 (23)
      • ►  Dec 07 (25)
      • ►  Dec 06 (19)
      • ►  Dec 05 (11)
      • ►  Dec 04 (20)
      • ►  Dec 03 (19)
      • ►  Dec 02 (25)
      • ►  Dec 01 (10)
    • ►  November (305)
      • ►  Nov 30 (16)
      • ►  Nov 29 (20)
      • ►  Nov 28 (11)
      • ►  Nov 27 (16)
      • ►  Nov 26 (17)
      • ►  Nov 25 (20)
      • ►  Nov 24 (14)
      • ►  Nov 23 (15)
      • ►  Nov 22 (16)
      • ►  Nov 21 (16)
      • ►  Nov 20 (16)
      • ►  Nov 19 (11)
      • ►  Nov 18 (12)
      • ►  Nov 17 (10)
      • ►  Nov 16 (13)
      • ►  Nov 15 (9)
      • ►  Nov 14 (6)
      • ►  Nov 13 (5)
      • ►  Nov 12 (10)
      • ►  Nov 11 (3)
      • ►  Nov 10 (6)
      • ►  Nov 09 (7)
      • ►  Nov 08 (2)
      • ►  Nov 07 (1)
      • ►  Nov 06 (5)
      • ►  Nov 05 (4)
      • ►  Nov 04 (2)
      • ►  Nov 03 (5)
      • ►  Nov 02 (3)
      • ►  Nov 01 (14)
    • ►  October (238)
      • ►  Oct 31 (16)
      • ►  Oct 30 (6)
      • ►  Oct 29 (13)
      • ►  Oct 28 (16)
      • ►  Oct 27 (10)
      • ►  Oct 26 (8)
      • ►  Oct 25 (8)
      • ►  Oct 24 (5)
      • ►  Oct 23 (11)
      • ►  Oct 22 (5)
      • ►  Oct 21 (12)
      • ►  Oct 20 (4)
      • ►  Oct 19 (2)
      • ►  Oct 18 (2)
      • ►  Oct 17 (2)
      • ►  Oct 16 (1)
      • ►  Oct 15 (4)
      • ►  Oct 12 (2)
      • ►  Oct 11 (4)
      • ►  Oct 10 (9)
      • ►  Oct 09 (13)
      • ►  Oct 08 (4)
      • ►  Oct 07 (6)
      • ►  Oct 06 (6)
      • ►  Oct 05 (9)
      • ►  Oct 04 (12)
      • ►  Oct 03 (12)
      • ►  Oct 02 (20)
      • ►  Oct 01 (16)
    • ►  September (358)
      • ►  Sep 30 (16)
      • ►  Sep 29 (18)
      • ►  Sep 28 (10)
      • ►  Sep 27 (17)
      • ►  Sep 26 (11)
      • ►  Sep 25 (15)
      • ►  Sep 24 (11)
      • ►  Sep 23 (12)
      • ►  Sep 22 (7)
      • ►  Sep 21 (8)
      • ►  Sep 20 (19)
      • ►  Sep 19 (14)
      • ►  Sep 18 (16)
      • ►  Sep 17 (17)
      • ►  Sep 16 (20)
      • ►  Sep 15 (17)
      • ►  Sep 14 (8)
      • ►  Sep 13 (19)
      • ►  Sep 12 (13)
      • ►  Sep 11 (11)
      • ►  Sep 10 (10)
      • ►  Sep 09 (13)
      • ►  Sep 08 (8)
      • ►  Sep 07 (9)
      • ►  Sep 06 (6)
      • ►  Sep 05 (10)
      • ►  Sep 04 (8)
      • ►  Sep 03 (6)
      • ►  Sep 02 (4)
      • ►  Sep 01 (5)
    • ►  August (213)
      • ►  Aug 31 (6)
      • ►  Aug 30 (10)
      • ►  Aug 29 (4)
      • ►  Aug 26 (3)
      • ►  Aug 25 (2)
      • ►  Aug 23 (4)
      • ►  Aug 22 (2)
      • ►  Aug 21 (10)
      • ►  Aug 20 (12)
      • ►  Aug 19 (10)
      • ►  Aug 18 (13)
      • ►  Aug 17 (8)
      • ►  Aug 16 (12)
      • ►  Aug 15 (15)
      • ►  Aug 14 (12)
      • ►  Aug 13 (10)
      • ►  Aug 12 (3)
      • ►  Aug 11 (7)
      • ►  Aug 10 (7)
      • ►  Aug 09 (5)
      • ►  Aug 08 (7)
      • ►  Aug 07 (9)
      • ►  Aug 06 (9)
      • ►  Aug 05 (6)
      • ►  Aug 04 (5)
      • ►  Aug 03 (4)
      • ►  Aug 02 (6)
      • ►  Aug 01 (12)
    • ►  July (213)
      • ►  Jul 31 (18)
      • ►  Jul 30 (7)
      • ►  Jul 29 (17)
      • ►  Jul 28 (16)
      • ►  Jul 27 (6)
      • ►  Jul 25 (1)
      • ►  Jul 24 (7)
      • ►  Jul 23 (5)
      • ►  Jul 22 (13)
      • ►  Jul 21 (3)
      • ►  Jul 20 (8)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (6)
      • ►  Jul 16 (16)
      • ►  Jul 15 (7)
      • ►  Jul 14 (8)
      • ►  Jul 13 (8)
      • ►  Jul 12 (5)
      • ►  Jul 11 (1)
      • ►  Jul 09 (4)
      • ►  Jul 08 (3)
      • ►  Jul 07 (1)
      • ►  Jul 05 (1)
      • ►  Jul 04 (2)
      • ►  Jul 03 (8)
      • ►  Jul 02 (5)
      • ►  Jul 01 (17)
    • ►  June (292)
      • ►  Jun 30 (13)
      • ►  Jun 29 (19)
      • ►  Jun 28 (17)
      • ►  Jun 27 (12)
      • ►  Jun 26 (27)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (12)
      • ►  Jun 22 (11)
      • ►  Jun 21 (16)
      • ►  Jun 20 (7)
      • ►  Jun 19 (9)
      • ►  Jun 18 (14)
      • ►  Jun 17 (7)
      • ►  Jun 16 (11)
      • ►  Jun 15 (9)
      • ►  Jun 14 (12)
      • ►  Jun 13 (2)
      • ►  Jun 12 (4)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (2)
      • ►  Jun 08 (5)
      • ►  Jun 07 (4)
      • ►  Jun 06 (3)
      • ►  Jun 05 (4)
      • ►  Jun 04 (4)
      • ►  Jun 03 (8)
      • ►  Jun 02 (6)
      • ►  Jun 01 (11)
    • ►  May (302)
      • ►  May 31 (14)
      • ►  May 30 (21)
      • ►  May 29 (11)
      • ►  May 28 (21)
      • ►  May 27 (8)
      • ►  May 26 (5)
      • ►  May 25 (11)
      • ►  May 24 (13)
      • ►  May 23 (5)
      • ►  May 22 (13)
      • ►  May 21 (8)
      • ►  May 20 (8)
      • ►  May 19 (8)
      • ►  May 18 (11)
      • ►  May 17 (12)
      • ►  May 16 (17)
      • ►  May 15 (13)
      • ►  May 14 (10)
      • ►  May 13 (8)
      • ►  May 12 (16)
      • ►  May 11 (11)
      • ►  May 10 (16)
      • ►  May 09 (9)
      • ►  May 08 (7)
      • ►  May 07 (5)
      • ►  May 06 (7)
      • ►  May 05 (1)
      • ►  May 04 (1)
      • ►  May 03 (3)
      • ►  May 02 (1)
      • ►  May 01 (8)
    • ►  April (398)
      • ►  Apr 30 (7)
      • ►  Apr 29 (6)
      • ►  Apr 28 (11)
      • ►  Apr 27 (5)
      • ►  Apr 26 (21)
      • ►  Apr 25 (18)
      • ►  Apr 24 (16)
      • ►  Apr 23 (21)
      • ►  Apr 22 (19)
      • ►  Apr 21 (14)
      • ►  Apr 20 (16)
      • ►  Apr 19 (25)
      • ►  Apr 18 (11)
      • ►  Apr 17 (3)
      • ►  Apr 16 (9)
      • ►  Apr 15 (8)
      • ►  Apr 14 (11)
      • ►  Apr 13 (19)
      • ►  Apr 12 (9)
      • ►  Apr 11 (15)
      • ►  Apr 10 (11)
      • ►  Apr 09 (14)
      • ►  Apr 08 (15)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (12)
      • ►  Apr 04 (14)
      • ►  Apr 03 (17)
      • ►  Apr 02 (16)
      • ►  Apr 01 (7)
    • ►  March (330)
      • ►  Mar 31 (7)
      • ►  Mar 30 (8)
      • ►  Mar 29 (11)
      • ►  Mar 28 (16)
      • ►  Mar 27 (10)
      • ►  Mar 26 (12)
      • ►  Mar 25 (19)
      • ►  Mar 24 (14)
      • ►  Mar 23 (14)
      • ►  Mar 22 (11)
      • ►  Mar 21 (12)
      • ►  Mar 20 (14)
      • ►  Mar 19 (15)
      • ►  Mar 18 (17)
      • ►  Mar 17 (4)
      • ►  Mar 16 (12)
      • ►  Mar 15 (18)
      • ►  Mar 14 (9)
      • ►  Mar 13 (12)
      • ►  Mar 12 (12)
      • ►  Mar 11 (14)
      • ►  Mar 10 (7)
      • ►  Mar 09 (7)
      • ►  Mar 08 (11)
      • ►  Mar 07 (9)
      • ►  Mar 06 (7)
      • ►  Mar 05 (9)
      • ►  Mar 04 (4)
      • ►  Mar 03 (5)
      • ►  Mar 02 (5)
      • ►  Mar 01 (5)
    • ►  February (76)
      • ►  Feb 28 (8)
      • ►  Feb 27 (11)
      • ►  Feb 26 (4)
      • ►  Feb 25 (4)
      • ►  Feb 24 (1)
      • ►  Feb 23 (3)
      • ►  Feb 22 (2)
      • ►  Feb 21 (1)
      • ►  Feb 20 (3)
      • ►  Feb 19 (3)
      • ►  Feb 18 (4)
      • ►  Feb 17 (8)
      • ►  Feb 16 (2)
      • ►  Feb 15 (6)
      • ►  Feb 14 (1)
      • ►  Feb 13 (3)
      • ►  Feb 12 (5)
      • ►  Feb 10 (2)
      • ►  Feb 08 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (2)
      • ►  Feb 02 (1)
    • ►  January (6)
      • ►  Jan 31 (1)
      • ►  Jan 24 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (3)
  • ►  2020 (2688)
    • ►  December (67)
      • ►  Dec 29 (1)
      • ►  Dec 28 (3)
      • ►  Dec 27 (1)
      • ►  Dec 23 (5)
      • ►  Dec 21 (4)
      • ►  Dec 19 (1)
      • ►  Dec 18 (2)
      • ►  Dec 11 (1)
      • ►  Dec 10 (6)
      • ►  Dec 09 (15)
      • ►  Dec 08 (8)
      • ►  Dec 07 (10)
      • ►  Dec 06 (5)
      • ►  Dec 05 (5)
    • ►  November (141)
      • ►  Nov 30 (5)
      • ►  Nov 29 (5)
      • ►  Nov 28 (1)
      • ►  Nov 27 (8)
      • ►  Nov 26 (20)
      • ►  Nov 25 (9)
      • ►  Nov 24 (11)
      • ►  Nov 23 (9)
      • ►  Nov 22 (11)
      • ►  Nov 21 (12)
      • ►  Nov 20 (3)
      • ►  Nov 19 (10)
      • ►  Nov 18 (7)
      • ►  Nov 17 (8)
      • ►  Nov 16 (2)
      • ►  Nov 15 (4)
      • ►  Nov 14 (8)
      • ►  Nov 13 (4)
      • ►  Nov 12 (2)
      • ►  Nov 10 (1)
      • ►  Nov 02 (1)
    • ►  October (190)
      • ►  Oct 26 (1)
      • ►  Oct 25 (4)
      • ►  Oct 24 (19)
      • ►  Oct 23 (16)
      • ►  Oct 22 (2)
      • ►  Oct 21 (1)
      • ►  Oct 20 (1)
      • ►  Oct 16 (2)
      • ►  Oct 11 (11)
      • ►  Oct 10 (8)
      • ►  Oct 09 (14)
      • ►  Oct 08 (18)
      • ►  Oct 07 (9)
      • ►  Oct 06 (17)
      • ►  Oct 05 (17)
      • ►  Oct 04 (4)
      • ►  Oct 03 (14)
      • ►  Oct 02 (13)
      • ►  Oct 01 (19)
    • ►  September (371)
      • ►  Sep 30 (12)
      • ►  Sep 29 (11)
      • ►  Sep 28 (14)
      • ►  Sep 27 (14)
      • ►  Sep 26 (13)
      • ►  Sep 25 (25)
      • ►  Sep 24 (30)
      • ►  Sep 23 (16)
      • ►  Sep 22 (11)
      • ►  Sep 21 (18)
      • ►  Sep 20 (16)
      • ►  Sep 19 (23)
      • ►  Sep 18 (22)
      • ►  Sep 17 (15)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (9)
      • ►  Sep 13 (11)
      • ►  Sep 12 (9)
      • ►  Sep 11 (6)
      • ►  Sep 10 (1)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (7)
      • ►  Sep 06 (13)
      • ►  Sep 05 (8)
      • ►  Sep 04 (6)
      • ►  Sep 03 (1)
      • ►  Sep 02 (3)
      • ►  Sep 01 (10)
    • ►  August (112)
      • ►  Aug 31 (12)
      • ►  Aug 30 (2)
      • ►  Aug 29 (7)
      • ►  Aug 28 (2)
      • ►  Aug 27 (1)
      • ►  Aug 26 (1)
      • ►  Aug 24 (2)
      • ►  Aug 23 (2)
      • ►  Aug 21 (3)
      • ►  Aug 20 (4)
      • ►  Aug 19 (8)
      • ►  Aug 18 (5)
      • ►  Aug 17 (4)
      • ►  Aug 16 (6)
      • ►  Aug 15 (4)
      • ►  Aug 14 (1)
      • ►  Aug 13 (2)
      • ►  Aug 12 (4)
      • ►  Aug 11 (5)
      • ►  Aug 10 (7)
      • ►  Aug 09 (8)
      • ►  Aug 08 (4)
      • ►  Aug 07 (1)
      • ►  Aug 06 (5)
      • ►  Aug 05 (2)
      • ►  Aug 04 (1)
      • ►  Aug 03 (4)
      • ►  Aug 02 (1)
      • ►  Aug 01 (4)
    • ►  July (227)
      • ►  Jul 30 (3)
      • ►  Jul 29 (6)
      • ►  Jul 28 (2)
      • ►  Jul 27 (1)
      • ►  Jul 26 (7)
      • ►  Jul 25 (3)
      • ►  Jul 24 (3)
      • ►  Jul 23 (14)
      • ►  Jul 22 (1)
      • ►  Jul 21 (12)
      • ►  Jul 20 (8)
      • ►  Jul 19 (10)
      • ►  Jul 18 (12)
      • ►  Jul 17 (4)
      • ►  Jul 16 (12)
      • ►  Jul 15 (12)
      • ►  Jul 14 (8)
      • ►  Jul 13 (13)
      • ►  Jul 12 (8)
      • ►  Jul 11 (14)
      • ►  Jul 10 (7)
      • ►  Jul 09 (9)
      • ►  Jul 08 (7)
      • ►  Jul 07 (10)
      • ►  Jul 06 (8)
      • ►  Jul 05 (8)
      • ►  Jul 04 (8)
      • ►  Jul 03 (6)
      • ►  Jul 02 (4)
      • ►  Jul 01 (7)
    • ►  June (243)
      • ►  Jun 30 (5)
      • ►  Jun 29 (3)
      • ►  Jun 28 (4)
      • ►  Jun 27 (6)
      • ►  Jun 26 (4)
      • ►  Jun 25 (2)
      • ►  Jun 24 (3)
      • ►  Jun 23 (5)
      • ►  Jun 22 (6)
      • ►  Jun 20 (5)
      • ►  Jun 19 (6)
      • ►  Jun 18 (5)
      • ►  Jun 17 (16)
      • ►  Jun 16 (17)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (8)
      • ►  Jun 12 (11)
      • ►  Jun 11 (6)
      • ►  Jun 10 (15)
      • ►  Jun 09 (6)
      • ►  Jun 08 (20)
      • ►  Jun 07 (10)
      • ►  Jun 06 (11)
      • ►  Jun 05 (13)
      • ►  Jun 04 (12)
      • ►  Jun 03 (11)
      • ►  Jun 02 (6)
      • ►  Jun 01 (8)
    • ►  May (405)
      • ►  May 31 (8)
      • ►  May 30 (6)
      • ►  May 29 (16)
      • ►  May 28 (10)
      • ►  May 27 (15)
      • ►  May 26 (18)
      • ►  May 25 (14)
      • ►  May 24 (23)
      • ►  May 23 (15)
      • ►  May 22 (21)
      • ►  May 21 (13)
      • ►  May 20 (22)
      • ►  May 19 (25)
      • ►  May 18 (17)
      • ►  May 17 (21)
      • ►  May 16 (10)
      • ►  May 15 (12)
      • ►  May 14 (22)
      • ►  May 13 (13)
      • ►  May 12 (14)
      • ►  May 11 (10)
      • ►  May 10 (8)
      • ►  May 09 (15)
      • ►  May 08 (17)
      • ►  May 07 (1)
      • ►  May 06 (3)
      • ►  May 05 (11)
      • ►  May 04 (11)
      • ►  May 03 (7)
      • ►  May 02 (2)
      • ►  May 01 (5)
    • ►  April (183)
      • ►  Apr 30 (10)
      • ►  Apr 29 (6)
      • ►  Apr 28 (7)
      • ►  Apr 27 (9)
      • ►  Apr 26 (8)
      • ►  Apr 25 (10)
      • ►  Apr 24 (8)
      • ►  Apr 23 (10)
      • ►  Apr 22 (4)
      • ►  Apr 21 (10)
      • ►  Apr 20 (9)
      • ►  Apr 19 (10)
      • ►  Apr 18 (22)
      • ►  Apr 17 (8)
      • ►  Apr 16 (8)
      • ►  Apr 15 (5)
      • ►  Apr 14 (2)
      • ►  Apr 13 (4)
      • ►  Apr 12 (1)
      • ►  Apr 11 (7)
      • ►  Apr 10 (8)
      • ►  Apr 09 (1)
      • ►  Apr 07 (3)
      • ►  Apr 06 (1)
      • ►  Apr 03 (3)
      • ►  Apr 02 (3)
      • ►  Apr 01 (6)
    • ►  March (208)
      • ►  Mar 31 (10)
      • ►  Mar 30 (9)
      • ►  Mar 29 (4)
      • ►  Mar 28 (3)
      • ►  Mar 27 (11)
      • ►  Mar 26 (5)
      • ►  Mar 25 (5)
      • ►  Mar 24 (7)
      • ►  Mar 23 (5)
      • ►  Mar 22 (7)
      • ►  Mar 21 (7)
      • ►  Mar 20 (9)
      • ►  Mar 19 (8)
      • ►  Mar 18 (3)
      • ►  Mar 17 (1)
      • ►  Mar 16 (1)
      • ►  Mar 14 (5)
      • ►  Mar 13 (8)
      • ►  Mar 12 (11)
      • ►  Mar 11 (9)
      • ►  Mar 10 (6)
      • ►  Mar 09 (10)
      • ►  Mar 08 (8)
      • ►  Mar 07 (10)
      • ►  Mar 06 (7)
      • ►  Mar 05 (11)
      • ►  Mar 04 (15)
      • ►  Mar 03 (9)
      • ►  Mar 02 (4)
    • ►  February (255)
      • ►  Feb 28 (6)
      • ►  Feb 27 (7)
      • ►  Feb 26 (6)
      • ►  Feb 25 (5)
      • ►  Feb 24 (12)
      • ►  Feb 22 (9)
      • ►  Feb 21 (11)
      • ►  Feb 20 (9)
      • ►  Feb 19 (9)
      • ►  Feb 18 (4)
      • ►  Feb 17 (9)
      • ►  Feb 16 (9)
      • ►  Feb 15 (12)
      • ►  Feb 14 (15)
      • ►  Feb 13 (13)
      • ►  Feb 12 (10)
      • ►  Feb 11 (12)
      • ►  Feb 10 (14)
      • ►  Feb 09 (7)
      • ►  Feb 08 (8)
      • ►  Feb 07 (11)
      • ►  Feb 06 (8)
      • ►  Feb 05 (14)
      • ►  Feb 04 (7)
      • ►  Feb 03 (12)
      • ►  Feb 02 (12)
      • ►  Feb 01 (4)
    • ►  January (286)
      • ►  Jan 31 (10)
      • ►  Jan 30 (12)
      • ►  Jan 29 (10)
      • ►  Jan 28 (6)
      • ►  Jan 27 (11)
      • ►  Jan 26 (11)
      • ►  Jan 25 (11)
      • ►  Jan 24 (13)
      • ►  Jan 23 (17)
      • ►  Jan 22 (6)
      • ►  Jan 21 (10)
      • ►  Jan 20 (9)
      • ►  Jan 19 (12)
      • ►  Jan 18 (6)
      • ►  Jan 17 (11)
      • ►  Jan 16 (6)
      • ►  Jan 15 (7)
      • ►  Jan 14 (8)
      • ►  Jan 13 (10)
      • ►  Jan 12 (9)
      • ►  Jan 11 (1)
      • ►  Jan 10 (11)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (13)
      • ►  Jan 06 (5)
      • ►  Jan 05 (11)
      • ►  Jan 04 (8)
      • ►  Jan 03 (6)
      • ►  Jan 02 (11)
      • ►  Jan 01 (6)
  • ►  2019 (3306)
    • ►  December (344)
      • ►  Dec 31 (13)
      • ►  Dec 30 (9)
      • ►  Dec 29 (10)
      • ►  Dec 28 (15)
      • ►  Dec 27 (10)
      • ►  Dec 26 (6)
      • ►  Dec 25 (13)
      • ►  Dec 24 (10)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (13)
      • ►  Dec 20 (14)
      • ►  Dec 19 (10)
      • ►  Dec 18 (12)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (11)
      • ►  Dec 14 (19)
      • ►  Dec 13 (10)
      • ►  Dec 12 (15)
      • ►  Dec 11 (10)
      • ►  Dec 10 (9)
      • ►  Dec 09 (12)
      • ►  Dec 08 (9)
      • ►  Dec 07 (10)
      • ►  Dec 06 (7)
      • ►  Dec 05 (10)
      • ►  Dec 04 (8)
      • ►  Dec 03 (11)
      • ►  Dec 02 (10)
      • ►  Dec 01 (7)
    • ►  November (197)
      • ►  Nov 30 (13)
      • ►  Nov 29 (14)
      • ►  Nov 28 (11)
      • ►  Nov 27 (9)
      • ►  Nov 26 (5)
      • ►  Nov 25 (3)
      • ►  Nov 24 (11)
      • ►  Nov 23 (2)
      • ►  Nov 22 (7)
      • ►  Nov 21 (4)
      • ►  Nov 20 (4)
      • ►  Nov 19 (2)
      • ►  Nov 18 (7)
      • ►  Nov 17 (3)
      • ►  Nov 16 (9)
      • ►  Nov 15 (1)
      • ►  Nov 14 (3)
      • ►  Nov 13 (14)
      • ►  Nov 12 (2)
      • ►  Nov 11 (5)
      • ►  Nov 10 (5)
      • ►  Nov 09 (4)
      • ►  Nov 08 (11)
      • ►  Nov 07 (3)
      • ►  Nov 06 (9)
      • ►  Nov 05 (7)
      • ►  Nov 04 (2)
      • ►  Nov 03 (7)
      • ►  Nov 02 (10)
      • ►  Nov 01 (10)
    • ►  October (154)
      • ►  Oct 31 (7)
      • ►  Oct 30 (8)
      • ►  Oct 29 (5)
      • ►  Oct 28 (12)
      • ►  Oct 27 (5)
      • ►  Oct 26 (12)
      • ►  Oct 25 (7)
      • ►  Oct 24 (7)
      • ►  Oct 23 (5)
      • ►  Oct 22 (14)
      • ►  Oct 21 (9)
      • ►  Oct 20 (8)
      • ►  Oct 19 (4)
      • ►  Oct 18 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (3)
      • ►  Oct 15 (9)
      • ►  Oct 14 (7)
      • ►  Oct 13 (4)
      • ►  Oct 12 (5)
      • ►  Oct 10 (2)
      • ►  Oct 09 (10)
      • ►  Oct 07 (2)
      • ►  Oct 05 (1)
      • ►  Oct 02 (1)
    • ►  September (67)
      • ►  Sep 30 (3)
      • ►  Sep 29 (1)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (4)
      • ►  Sep 25 (3)
      • ►  Sep 22 (3)
      • ►  Sep 21 (6)
      • ►  Sep 19 (1)
      • ►  Sep 18 (3)
      • ►  Sep 16 (3)
      • ►  Sep 15 (2)
      • ►  Sep 14 (4)
      • ►  Sep 13 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (4)
      • ►  Sep 08 (4)
      • ►  Sep 07 (1)
      • ►  Sep 06 (6)
      • ►  Sep 04 (3)
      • ►  Sep 03 (6)
      • ►  Sep 01 (4)
    • ►  August (84)
      • ►  Aug 26 (2)
      • ►  Aug 25 (2)
      • ►  Aug 24 (2)
      • ►  Aug 23 (1)
      • ►  Aug 22 (3)
      • ►  Aug 21 (2)
      • ►  Aug 19 (1)
      • ►  Aug 18 (2)
      • ►  Aug 17 (1)
      • ►  Aug 14 (1)
      • ►  Aug 13 (1)
      • ►  Aug 12 (5)
      • ►  Aug 11 (4)
      • ►  Aug 10 (7)
      • ►  Aug 09 (2)
      • ►  Aug 08 (2)
      • ►  Aug 07 (5)
      • ►  Aug 06 (6)
      • ►  Aug 05 (3)
      • ►  Aug 04 (5)
      • ►  Aug 03 (9)
      • ►  Aug 02 (8)
      • ►  Aug 01 (10)
    • ►  July (217)
      • ►  Jul 31 (6)
      • ►  Jul 29 (10)
      • ►  Jul 28 (5)
      • ►  Jul 27 (10)
      • ►  Jul 25 (7)
      • ►  Jul 24 (11)
      • ►  Jul 23 (8)
      • ►  Jul 22 (4)
      • ►  Jul 21 (17)
      • ►  Jul 20 (7)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (7)
      • ►  Jul 16 (10)
      • ►  Jul 15 (6)
      • ►  Jul 14 (6)
      • ►  Jul 13 (15)
      • ►  Jul 12 (12)
      • ►  Jul 11 (3)
      • ►  Jul 10 (7)
      • ►  Jul 09 (2)
      • ►  Jul 08 (2)
      • ►  Jul 07 (7)
      • ►  Jul 06 (9)
      • ►  Jul 04 (11)
      • ►  Jul 03 (2)
      • ►  Jul 02 (4)
      • ►  Jul 01 (9)
    • ►  June (260)
      • ►  Jun 30 (7)
      • ►  Jun 29 (15)
      • ►  Jun 28 (4)
      • ►  Jun 27 (2)
      • ►  Jun 26 (6)
      • ►  Jun 25 (2)
      • ►  Jun 24 (10)
      • ►  Jun 23 (10)
      • ►  Jun 22 (8)
      • ►  Jun 21 (12)
      • ►  Jun 20 (8)
      • ►  Jun 19 (8)
      • ►  Jun 18 (12)
      • ►  Jun 17 (7)
      • ►  Jun 16 (7)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (1)
      • ►  Jun 11 (2)
      • ►  Jun 10 (13)
      • ►  Jun 09 (16)
      • ►  Jun 08 (10)
      • ►  Jun 07 (16)
      • ►  Jun 06 (11)
      • ►  Jun 05 (17)
      • ►  Jun 04 (6)
      • ►  Jun 03 (13)
      • ►  Jun 02 (4)
      • ►  Jun 01 (12)
    • ►  May (426)
      • ►  May 31 (22)
      • ►  May 30 (14)
      • ►  May 29 (7)
      • ►  May 28 (16)
      • ►  May 27 (8)
      • ►  May 26 (9)
      • ►  May 25 (25)
      • ►  May 24 (10)
      • ►  May 23 (10)
      • ►  May 22 (13)
      • ►  May 21 (11)
      • ►  May 20 (16)
      • ►  May 19 (26)
      • ►  May 18 (8)
      • ►  May 17 (17)
      • ►  May 16 (11)
      • ►  May 15 (3)
      • ►  May 14 (17)
      • ►  May 13 (17)
      • ►  May 12 (14)
      • ►  May 11 (13)
      • ►  May 10 (18)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (8)
      • ►  May 06 (12)
      • ►  May 05 (12)
      • ►  May 04 (13)
      • ►  May 03 (13)
      • ►  May 02 (16)
      • ►  May 01 (20)
    • ►  April (356)
      • ►  Apr 30 (9)
      • ►  Apr 29 (10)
      • ►  Apr 28 (11)
      • ►  Apr 27 (11)
      • ►  Apr 26 (15)
      • ►  Apr 25 (9)
      • ►  Apr 24 (12)
      • ►  Apr 23 (15)
      • ►  Apr 22 (12)
      • ►  Apr 21 (15)
      • ►  Apr 20 (13)
      • ►  Apr 19 (9)
      • ►  Apr 18 (14)
      • ►  Apr 17 (11)
      • ►  Apr 16 (8)
      • ►  Apr 15 (15)
      • ►  Apr 14 (6)
      • ►  Apr 13 (8)
      • ►  Apr 12 (10)
      • ►  Apr 11 (17)
      • ►  Apr 10 (12)
      • ►  Apr 09 (8)
      • ►  Apr 08 (13)
      • ►  Apr 07 (18)
      • ►  Apr 06 (11)
      • ►  Apr 05 (12)
      • ►  Apr 04 (16)
      • ►  Apr 03 (12)
      • ►  Apr 02 (12)
      • ►  Apr 01 (12)
    • ►  March (419)
      • ►  Mar 31 (13)
      • ►  Mar 30 (17)
      • ►  Mar 29 (13)
      • ►  Mar 28 (14)
      • ►  Mar 27 (17)
      • ►  Mar 26 (12)
      • ►  Mar 25 (9)
      • ►  Mar 24 (13)
      • ►  Mar 23 (13)
      • ►  Mar 22 (12)
      • ►  Mar 21 (12)
      • ►  Mar 20 (12)
      • ►  Mar 19 (12)
      • ►  Mar 18 (12)
      • ►  Mar 17 (12)
      • ►  Mar 16 (17)
      • ►  Mar 15 (13)
      • ►  Mar 14 (16)
      • ►  Mar 13 (8)
      • ►  Mar 12 (12)
      • ►  Mar 11 (11)
      • ►  Mar 10 (12)
      • ►  Mar 09 (15)
      • ►  Mar 08 (11)
      • ►  Mar 07 (19)
      • ►  Mar 06 (26)
      • ►  Mar 05 (14)
      • ►  Mar 04 (14)
      • ►  Mar 03 (12)
      • ►  Mar 02 (12)
      • ►  Mar 01 (14)
    • ►  February (375)
      • ►  Feb 28 (11)
      • ►  Feb 27 (10)
      • ►  Feb 26 (8)
      • ►  Feb 25 (11)
      • ►  Feb 24 (11)
      • ►  Feb 23 (5)
      • ►  Feb 22 (14)
      • ►  Feb 21 (13)
      • ►  Feb 20 (17)
      • ►  Feb 19 (14)
      • ►  Feb 18 (15)
      • ►  Feb 17 (12)
      • ►  Feb 16 (14)
      • ►  Feb 15 (14)
      • ►  Feb 14 (15)
      • ►  Feb 13 (20)
      • ►  Feb 12 (11)
      • ►  Feb 11 (21)
      • ►  Feb 10 (12)
      • ►  Feb 09 (18)
      • ►  Feb 08 (20)
      • ►  Feb 07 (13)
      • ►  Feb 06 (12)
      • ►  Feb 05 (14)
      • ►  Feb 04 (17)
      • ►  Feb 03 (8)
      • ►  Feb 02 (11)
      • ►  Feb 01 (14)
    • ►  January (407)
      • ►  Jan 31 (15)
      • ►  Jan 30 (11)
      • ►  Jan 29 (5)
      • ►  Jan 28 (19)
      • ►  Jan 27 (15)
      • ►  Jan 26 (13)
      • ►  Jan 25 (15)
      • ►  Jan 24 (13)
      • ►  Jan 23 (15)
      • ►  Jan 22 (10)
      • ►  Jan 21 (10)
      • ►  Jan 20 (18)
      • ►  Jan 19 (18)
      • ►  Jan 18 (7)
      • ►  Jan 17 (14)
      • ►  Jan 16 (17)
      • ►  Jan 15 (12)
      • ►  Jan 14 (14)
      • ►  Jan 13 (19)
      • ►  Jan 12 (8)
      • ►  Jan 11 (15)
      • ►  Jan 10 (9)
      • ►  Jan 09 (13)
      • ►  Jan 08 (12)
      • ►  Jan 07 (12)
      • ►  Jan 06 (15)
      • ►  Jan 05 (25)
      • ►  Jan 04 (11)
      • ►  Jan 03 (7)
      • ►  Jan 02 (12)
      • ►  Jan 01 (8)
  • ►  2018 (2910)
    • ►  December (343)
      • ►  Dec 31 (10)
      • ►  Dec 30 (14)
      • ►  Dec 29 (10)
      • ►  Dec 28 (7)
      • ►  Dec 27 (6)
      • ►  Dec 26 (16)
      • ►  Dec 25 (15)
      • ►  Dec 24 (11)
      • ►  Dec 23 (14)
      • ►  Dec 22 (7)
      • ►  Dec 21 (11)
      • ►  Dec 20 (9)
      • ►  Dec 19 (12)
      • ►  Dec 18 (8)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (14)
      • ►  Dec 14 (9)
      • ►  Dec 13 (12)
      • ►  Dec 12 (11)
      • ►  Dec 11 (7)
      • ►  Dec 10 (8)
      • ►  Dec 09 (8)
      • ►  Dec 08 (14)
      • ►  Dec 07 (16)
      • ►  Dec 06 (12)
      • ►  Dec 05 (14)
      • ►  Dec 04 (8)
      • ►  Dec 03 (10)
      • ►  Dec 02 (3)
      • ►  Dec 01 (18)
    • ►  November (319)
      • ►  Nov 30 (11)
      • ►  Nov 29 (14)
      • ►  Nov 28 (9)
      • ►  Nov 27 (4)
      • ►  Nov 26 (10)
      • ►  Nov 25 (18)
      • ►  Nov 24 (14)
      • ►  Nov 23 (9)
      • ►  Nov 22 (15)
      • ►  Nov 21 (4)
      • ►  Nov 20 (6)
      • ►  Nov 19 (9)
      • ►  Nov 18 (3)
      • ►  Nov 17 (10)
      • ►  Nov 16 (5)
      • ►  Nov 15 (13)
      • ►  Nov 14 (11)
      • ►  Nov 13 (11)
      • ►  Nov 12 (16)
      • ►  Nov 11 (8)
      • ►  Nov 10 (14)
      • ►  Nov 09 (6)
      • ►  Nov 08 (6)
      • ►  Nov 07 (6)
      • ►  Nov 06 (14)
      • ►  Nov 05 (6)
      • ►  Nov 04 (18)
      • ►  Nov 03 (22)
      • ►  Nov 02 (7)
      • ►  Nov 01 (20)
    • ►  October (304)
      • ►  Oct 31 (6)
      • ►  Oct 30 (10)
      • ►  Oct 29 (17)
      • ►  Oct 28 (10)
      • ►  Oct 27 (11)
      • ►  Oct 26 (11)
      • ►  Oct 25 (12)
      • ►  Oct 24 (13)
      • ►  Oct 23 (13)
      • ►  Oct 22 (10)
      • ►  Oct 21 (9)
      • ►  Oct 20 (11)
      • ►  Oct 19 (7)
      • ►  Oct 18 (7)
      • ►  Oct 17 (14)
      • ►  Oct 16 (5)
      • ►  Oct 15 (13)
      • ►  Oct 14 (8)
      • ►  Oct 13 (13)
      • ►  Oct 12 (6)
      • ►  Oct 11 (17)
      • ►  Oct 10 (17)
      • ►  Oct 09 (1)
      • ►  Oct 08 (10)
      • ►  Oct 07 (2)
      • ►  Oct 06 (11)
      • ►  Oct 05 (16)
      • ►  Oct 04 (6)
      • ►  Oct 03 (9)
      • ►  Oct 02 (6)
      • ►  Oct 01 (3)
    • ►  September (324)
      • ►  Sep 30 (5)
      • ►  Sep 29 (8)
      • ►  Sep 28 (9)
      • ►  Sep 27 (9)
      • ►  Sep 26 (11)
      • ►  Sep 25 (13)
      • ►  Sep 24 (16)
      • ►  Sep 23 (7)
      • ►  Sep 22 (18)
      • ►  Sep 21 (8)
      • ►  Sep 20 (8)
      • ►  Sep 19 (8)
      • ►  Sep 18 (11)
      • ►  Sep 17 (6)
      • ►  Sep 16 (9)
      • ►  Sep 15 (13)
      • ►  Sep 14 (7)
      • ►  Sep 13 (13)
      • ►  Sep 12 (4)
      • ►  Sep 11 (14)
      • ►  Sep 10 (12)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (11)
      • ►  Sep 06 (13)
      • ►  Sep 05 (17)
      • ►  Sep 04 (12)
      • ►  Sep 03 (17)
      • ►  Sep 02 (10)
      • ►  Sep 01 (12)
    • ►  August (453)
      • ►  Aug 31 (6)
      • ►  Aug 30 (12)
      • ►  Aug 29 (13)
      • ►  Aug 28 (7)
      • ►  Aug 27 (6)
      • ►  Aug 26 (9)
      • ►  Aug 25 (11)
      • ►  Aug 24 (6)
      • ►  Aug 23 (10)
      • ►  Aug 22 (18)
      • ►  Aug 21 (8)
      • ►  Aug 20 (18)
      • ►  Aug 19 (5)
      • ►  Aug 18 (8)
      • ►  Aug 17 (16)
      • ►  Aug 16 (18)
      • ►  Aug 15 (7)
      • ►  Aug 14 (8)
      • ►  Aug 13 (17)
      • ►  Aug 12 (18)
      • ►  Aug 11 (21)
      • ►  Aug 10 (10)
      • ►  Aug 09 (14)
      • ►  Aug 08 (25)
      • ►  Aug 07 (25)
      • ►  Aug 06 (22)
      • ►  Aug 05 (32)
      • ►  Aug 04 (24)
      • ►  Aug 03 (15)
      • ►  Aug 02 (26)
      • ►  Aug 01 (18)
    • ►  July (443)
      • ►  Jul 31 (28)
      • ►  Jul 30 (13)
      • ►  Jul 29 (20)
      • ►  Jul 28 (16)
      • ►  Jul 27 (30)
      • ►  Jul 26 (14)
      • ►  Jul 25 (16)
      • ►  Jul 24 (26)
      • ►  Jul 23 (14)
      • ►  Jul 22 (15)
      • ►  Jul 21 (21)
      • ►  Jul 20 (10)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (12)
      • ►  Jul 16 (10)
      • ►  Jul 15 (10)
      • ►  Jul 14 (11)
      • ►  Jul 13 (12)
      • ►  Jul 12 (7)
      • ►  Jul 11 (12)
      • ►  Jul 10 (8)
      • ►  Jul 09 (16)
      • ►  Jul 08 (7)
      • ►  Jul 07 (11)
      • ►  Jul 06 (8)
      • ►  Jul 05 (22)
      • ►  Jul 04 (15)
      • ►  Jul 03 (15)
      • ►  Jul 02 (13)
      • ►  Jul 01 (11)
    • ►  June (335)
      • ►  Jun 30 (18)
      • ►  Jun 29 (16)
      • ►  Jun 28 (27)
      • ►  Jun 27 (8)
      • ►  Jun 26 (9)
      • ►  Jun 25 (15)
      • ►  Jun 24 (6)
      • ►  Jun 23 (12)
      • ►  Jun 22 (8)
      • ►  Jun 21 (6)
      • ►  Jun 20 (8)
      • ►  Jun 19 (15)
      • ►  Jun 18 (7)
      • ►  Jun 17 (7)
      • ►  Jun 16 (16)
      • ►  Jun 15 (9)
      • ►  Jun 14 (10)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (20)
      • ►  Jun 10 (16)
      • ►  Jun 09 (10)
      • ►  Jun 08 (9)
      • ►  Jun 07 (9)
      • ►  Jun 06 (6)
      • ►  Jun 05 (9)
      • ►  Jun 04 (9)
      • ►  Jun 03 (6)
      • ►  Jun 02 (9)
      • ►  Jun 01 (12)
    • ►  May (298)
      • ►  May 31 (15)
      • ►  May 30 (10)
      • ►  May 29 (12)
      • ►  May 28 (13)
      • ►  May 27 (12)
      • ►  May 26 (23)
      • ►  May 25 (13)
      • ►  May 24 (7)
      • ►  May 23 (4)
      • ►  May 22 (10)
      • ►  May 21 (7)
      • ►  May 20 (13)
      • ►  May 19 (10)
      • ►  May 18 (10)
      • ►  May 17 (8)
      • ►  May 16 (8)
      • ►  May 15 (12)
      • ►  May 14 (10)
      • ►  May 13 (19)
      • ►  May 12 (7)
      • ►  May 11 (6)
      • ►  May 10 (11)
      • ►  May 09 (7)
      • ►  May 08 (4)
      • ►  May 07 (4)
      • ►  May 06 (12)
      • ►  May 05 (6)
      • ►  May 04 (3)
      • ►  May 03 (7)
      • ►  May 02 (13)
      • ►  May 01 (2)
    • ►  April (36)
      • ►  Apr 30 (3)
      • ►  Apr 29 (11)
      • ►  Apr 28 (2)
      • ►  Apr 27 (2)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (3)
      • ►  Apr 21 (1)
      • ►  Apr 20 (4)
      • ►  Apr 16 (1)
      • ►  Apr 14 (1)
      • ►  Apr 08 (1)
      • ►  Apr 07 (2)
    • ►  March (24)
      • ►  Mar 30 (3)
      • ►  Mar 25 (1)
      • ►  Mar 24 (1)
      • ►  Mar 23 (1)
      • ►  Mar 22 (1)
      • ►  Mar 17 (1)
      • ►  Mar 15 (2)
      • ►  Mar 13 (1)
      • ►  Mar 12 (2)
      • ►  Mar 11 (2)
      • ►  Mar 10 (1)
      • ►  Mar 09 (1)
      • ►  Mar 06 (1)
      • ►  Mar 05 (2)
      • ►  Mar 03 (1)
      • ►  Mar 02 (2)
      • ►  Mar 01 (1)
    • ►  February (19)
      • ►  Feb 28 (4)
      • ►  Feb 26 (1)
      • ►  Feb 23 (1)
      • ►  Feb 21 (1)
      • ►  Feb 20 (1)
      • ►  Feb 19 (1)
      • ►  Feb 18 (2)
      • ►  Feb 17 (1)
      • ►  Feb 16 (1)
      • ►  Feb 15 (3)
      • ►  Feb 07 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (1)
    • ►  January (12)
      • ►  Jan 28 (3)
      • ►  Jan 26 (5)
      • ►  Jan 24 (2)
      • ►  Jan 07 (1)
      • ►  Jan 05 (1)
  • ►  2017 (105)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 27 (2)
      • ►  Dec 24 (1)
      • ►  Dec 15 (1)
      • ►  Dec 02 (4)
    • ►  November (8)
      • ►  Nov 24 (1)
      • ►  Nov 23 (1)
      • ►  Nov 17 (1)
      • ►  Nov 16 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (2)
    • ►  October (1)
      • ►  Oct 09 (1)
    • ►  August (2)
      • ►  Aug 12 (1)
      • ►  Aug 04 (1)
    • ►  July (18)
      • ►  Jul 28 (1)
      • ►  Jul 27 (1)
      • ►  Jul 26 (4)
      • ►  Jul 19 (1)
      • ►  Jul 17 (1)
      • ►  Jul 15 (2)
      • ►  Jul 14 (2)
      • ►  Jul 13 (1)
      • ►  Jul 12 (2)
      • ►  Jul 02 (3)
    • ►  June (9)
      • ►  Jun 25 (1)
      • ►  Jun 18 (1)
      • ►  Jun 16 (1)
      • ►  Jun 14 (2)
      • ►  Jun 08 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (1)
    • ►  May (22)
      • ►  May 29 (1)
      • ►  May 20 (2)
      • ►  May 19 (1)
      • ►  May 18 (1)
      • ►  May 17 (1)
      • ►  May 14 (3)
      • ►  May 13 (1)
      • ►  May 09 (1)
      • ►  May 07 (3)
      • ►  May 06 (2)
      • ►  May 05 (1)
      • ►  May 04 (2)
      • ►  May 03 (1)
      • ►  May 02 (1)
      • ►  May 01 (1)
    • ►  April (25)
      • ►  Apr 30 (1)
      • ►  Apr 29 (1)
      • ►  Apr 27 (1)
      • ►  Apr 24 (2)
      • ►  Apr 23 (1)
      • ►  Apr 18 (1)
      • ►  Apr 17 (2)
      • ►  Apr 16 (1)
      • ►  Apr 14 (2)
      • ►  Apr 12 (2)
      • ►  Apr 11 (1)
      • ►  Apr 08 (1)
      • ►  Apr 06 (1)
      • ►  Apr 05 (1)
      • ►  Apr 04 (1)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (2)
    • ►  March (11)
      • ►  Mar 31 (2)
      • ►  Mar 30 (2)
      • ►  Mar 28 (1)
      • ►  Mar 27 (3)
      • ►  Mar 25 (2)
      • ►  Mar 11 (1)
  • ►  2016 (31)
    • ►  August (1)
      • ►  Aug 10 (1)
    • ►  March (3)
      • ►  Mar 17 (1)
      • ►  Mar 12 (1)
      • ►  Mar 04 (1)
    • ►  February (11)
      • ►  Feb 29 (1)
      • ►  Feb 24 (1)
      • ►  Feb 22 (1)
      • ►  Feb 21 (2)
      • ►  Feb 11 (1)
      • ►  Feb 09 (2)
      • ►  Feb 03 (1)
      • ►  Feb 02 (1)
      • ►  Feb 01 (1)
    • ►  January (16)
      • ►  Jan 26 (2)
      • ►  Jan 24 (1)
      • ►  Jan 22 (2)
      • ►  Jan 21 (1)
      • ►  Jan 20 (1)
      • ►  Jan 19 (2)
      • ►  Jan 16 (1)
      • ►  Jan 14 (3)
      • ►  Jan 13 (1)
      • ►  Jan 12 (1)
      • ►  Jan 07 (1)
  • ►  2015 (1803)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 26 (1)
      • ►  Dec 25 (1)
      • ►  Dec 23 (1)
      • ►  Dec 22 (2)
      • ►  Dec 19 (1)
      • ►  Dec 01 (2)
    • ►  November (11)
      • ►  Nov 28 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (1)
      • ►  Nov 09 (3)
      • ►  Nov 07 (1)
      • ►  Nov 05 (1)
      • ►  Nov 03 (1)
      • ►  Nov 02 (1)
    • ►  October (31)
      • ►  Oct 31 (1)
      • ►  Oct 30 (2)
      • ►  Oct 29 (1)
      • ►  Oct 28 (3)
      • ►  Oct 26 (1)
      • ►  Oct 24 (1)
      • ►  Oct 22 (1)
      • ►  Oct 21 (1)
      • ►  Oct 19 (1)
      • ►  Oct 17 (1)
      • ►  Oct 16 (1)
      • ►  Oct 15 (1)
      • ►  Oct 14 (1)
      • ►  Oct 11 (2)
      • ►  Oct 09 (4)
      • ►  Oct 08 (1)
      • ►  Oct 07 (6)
      • ►  Oct 06 (1)
      • ►  Oct 02 (1)
    • ►  September (34)
      • ►  Sep 29 (4)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (3)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (2)
      • ►  Sep 22 (4)
      • ►  Sep 21 (6)
      • ►  Sep 14 (1)
      • ►  Sep 13 (1)
      • ►  Sep 12 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (2)
      • ►  Sep 08 (1)
      • ►  Sep 05 (1)
      • ►  Sep 04 (1)
    • ►  August (6)
      • ►  Aug 22 (1)
      • ►  Aug 20 (1)
      • ►  Aug 08 (1)
      • ►  Aug 07 (2)
      • ►  Aug 06 (1)
    • ►  July (29)
      • ►  Jul 21 (1)
      • ►  Jul 18 (1)
      • ►  Jul 15 (1)
      • ►  Jul 14 (3)
      • ►  Jul 13 (1)
      • ►  Jul 12 (1)
      • ►  Jul 10 (2)
      • ►  Jul 09 (1)
      • ►  Jul 08 (1)
      • ►  Jul 06 (4)
      • ►  Jul 05 (3)
      • ►  Jul 04 (1)
      • ►  Jul 03 (6)
      • ►  Jul 02 (1)
      • ►  Jul 01 (2)
    • ►  June (9)
      • ►  Jun 28 (2)
      • ►  Jun 24 (2)
      • ►  Jun 22 (1)
      • ►  Jun 18 (1)
      • ►  Jun 17 (1)
      • ►  Jun 02 (2)
    • ►  May (141)
      • ►  May 31 (3)
      • ►  May 30 (7)
      • ►  May 29 (8)
      • ►  May 28 (4)
      • ►  May 27 (4)
      • ►  May 26 (5)
      • ►  May 25 (1)
      • ►  May 24 (4)
      • ►  May 23 (8)
      • ►  May 22 (6)
      • ►  May 21 (4)
      • ►  May 20 (4)
      • ►  May 19 (7)
      • ►  May 18 (3)
      • ►  May 17 (2)
      • ►  May 16 (7)
      • ►  May 15 (10)
      • ►  May 14 (7)
      • ►  May 13 (5)
      • ►  May 12 (2)
      • ►  May 11 (2)
      • ►  May 10 (4)
      • ►  May 09 (3)
      • ►  May 08 (3)
      • ►  May 07 (5)
      • ►  May 06 (4)
      • ►  May 05 (4)
      • ►  May 04 (2)
      • ►  May 03 (3)
      • ►  May 02 (4)
      • ►  May 01 (6)
    • ►  April (150)
      • ►  Apr 29 (4)
      • ►  Apr 28 (5)
      • ►  Apr 24 (3)
      • ►  Apr 22 (1)
      • ►  Apr 19 (3)
      • ►  Apr 17 (2)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (1)
      • ►  Apr 12 (3)
      • ►  Apr 10 (13)
      • ►  Apr 09 (18)
      • ►  Apr 08 (8)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (17)
      • ►  Apr 04 (9)
      • ►  Apr 03 (4)
      • ►  Apr 02 (14)
      • ►  Apr 01 (14)
    • ►  March (609)
      • ►  Mar 31 (29)
      • ►  Mar 30 (24)
      • ►  Mar 29 (18)
      • ►  Mar 28 (15)
      • ►  Mar 27 (7)
      • ►  Mar 26 (14)
      • ►  Mar 25 (6)
      • ►  Mar 23 (11)
      • ►  Mar 22 (22)
      • ►  Mar 21 (29)
      • ►  Mar 20 (41)
      • ►  Mar 19 (34)
      • ►  Mar 18 (34)
      • ►  Mar 17 (41)
      • ►  Mar 16 (31)
      • ►  Mar 15 (1)
      • ►  Mar 14 (3)
      • ►  Mar 13 (17)
      • ►  Mar 12 (12)
      • ►  Mar 11 (12)
      • ►  Mar 10 (19)
      • ►  Mar 09 (25)
      • ►  Mar 08 (20)
      • ►  Mar 07 (17)
      • ►  Mar 06 (20)
      • ►  Mar 05 (19)
      • ►  Mar 04 (30)
      • ►  Mar 03 (5)
      • ►  Mar 02 (18)
      • ►  Mar 01 (35)
    • ►  February (652)
      • ►  Feb 28 (19)
      • ►  Feb 27 (19)
      • ►  Feb 26 (28)
      • ►  Feb 25 (18)
      • ►  Feb 24 (8)
      • ►  Feb 23 (26)
      • ►  Feb 22 (15)
      • ►  Feb 21 (40)
      • ►  Feb 20 (24)
      • ►  Feb 19 (40)
      • ►  Feb 18 (38)
      • ►  Feb 17 (39)
      • ►  Feb 16 (53)
      • ►  Feb 15 (28)
      • ►  Feb 14 (31)
      • ►  Feb 13 (14)
      • ►  Feb 12 (26)
      • ►  Feb 11 (18)
      • ►  Feb 10 (32)
      • ►  Feb 09 (15)
      • ►  Feb 08 (7)
      • ►  Feb 07 (24)
      • ►  Feb 06 (15)
      • ►  Feb 05 (16)
      • ►  Feb 04 (21)
      • ►  Feb 03 (9)
      • ►  Feb 02 (23)
      • ►  Feb 01 (6)
    • ►  January (122)
      • ►  Jan 31 (10)
      • ►  Jan 30 (21)
      • ►  Jan 29 (4)
      • ►  Jan 28 (5)
      • ►  Jan 27 (9)
      • ►  Jan 26 (3)
      • ►  Jan 25 (6)
      • ►  Jan 24 (9)
      • ►  Jan 23 (5)
      • ►  Jan 22 (4)
      • ►  Jan 21 (3)
      • ►  Jan 20 (1)
      • ►  Jan 17 (1)
      • ►  Jan 16 (2)
      • ►  Jan 15 (2)
      • ►  Jan 14 (2)
      • ►  Jan 13 (8)
      • ►  Jan 12 (4)
      • ►  Jan 11 (4)
      • ►  Jan 10 (2)
      • ►  Jan 09 (6)
      • ►  Jan 08 (6)
      • ►  Jan 07 (5)
  • ►  2014 (1062)
    • ►  November (6)
      • ►  Nov 26 (2)
      • ►  Nov 25 (3)
      • ►  Nov 24 (1)
    • ►  October (10)
      • ►  Oct 23 (2)
      • ►  Oct 16 (3)
      • ►  Oct 12 (4)
      • ►  Oct 06 (1)
    • ►  September (270)
      • ►  Sep 21 (34)
      • ►  Sep 20 (15)
      • ►  Sep 17 (9)
      • ►  Sep 13 (10)
      • ►  Sep 12 (33)
      • ►  Sep 11 (30)
      • ►  Sep 10 (1)
      • ►  Sep 09 (14)
      • ►  Sep 08 (23)
      • ►  Sep 07 (5)
      • ►  Sep 06 (19)
      • ►  Sep 05 (18)
      • ►  Sep 04 (24)
      • ►  Sep 03 (18)
      • ►  Sep 02 (10)
      • ►  Sep 01 (7)
    • ►  August (497)
      • ►  Aug 31 (15)
      • ►  Aug 30 (20)
      • ►  Aug 28 (1)
      • ►  Aug 25 (10)
      • ►  Aug 24 (26)
      • ►  Aug 23 (23)
      • ►  Aug 22 (14)
      • ►  Aug 21 (22)
      • ►  Aug 20 (21)
      • ►  Aug 19 (18)
      • ►  Aug 18 (66)
      • ►  Aug 17 (21)
      • ►  Aug 16 (16)
      • ►  Aug 15 (34)
      • ►  Aug 14 (25)
      • ►  Aug 13 (12)
      • ►  Aug 11 (7)
      • ►  Aug 10 (18)
      • ►  Aug 09 (13)
      • ►  Aug 08 (13)
      • ►  Aug 07 (26)
      • ►  Aug 06 (21)
      • ►  Aug 05 (7)
      • ►  Aug 04 (15)
      • ►  Aug 03 (20)
      • ►  Aug 02 (5)
      • ►  Aug 01 (8)
    • ►  July (85)
      • ►  Jul 31 (5)
      • ►  Jul 30 (26)
      • ►  Jul 29 (21)
      • ►  Jul 28 (33)
    • ►  March (3)
      • ►  Mar 25 (1)
      • ►  Mar 12 (1)
      • ►  Mar 09 (1)
    • ►  February (23)
      • ►  Feb 14 (1)
      • ►  Feb 06 (2)
      • ►  Feb 04 (4)
      • ►  Feb 03 (1)
      • ►  Feb 02 (6)
      • ►  Feb 01 (9)
    • ►  January (168)
      • ►  Jan 31 (10)
      • ►  Jan 30 (6)
      • ►  Jan 29 (4)
      • ►  Jan 27 (6)
      • ►  Jan 26 (1)
      • ►  Jan 25 (7)
      • ►  Jan 24 (13)
      • ►  Jan 23 (11)
      • ►  Jan 22 (3)
      • ►  Jan 21 (6)
      • ►  Jan 20 (3)
      • ►  Jan 19 (8)
      • ►  Jan 18 (7)
      • ►  Jan 17 (7)
      • ►  Jan 16 (13)
      • ►  Jan 15 (1)
      • ►  Jan 12 (1)
      • ►  Jan 11 (1)
      • ►  Jan 09 (3)
      • ►  Jan 08 (6)
      • ►  Jan 07 (7)
      • ►  Jan 06 (14)
      • ►  Jan 05 (10)
      • ►  Jan 04 (2)
      • ►  Jan 02 (6)
      • ►  Jan 01 (12)
  • ►  2013 (210)
    • ►  December (199)
      • ►  Dec 30 (5)
      • ►  Dec 29 (8)
      • ►  Dec 28 (6)
      • ►  Dec 27 (11)
      • ►  Dec 26 (9)
      • ►  Dec 25 (7)
      • ►  Dec 24 (15)
      • ►  Dec 23 (13)
      • ►  Dec 22 (3)
      • ►  Dec 21 (9)
      • ►  Dec 20 (10)
      • ►  Dec 19 (7)
      • ►  Dec 18 (4)
      • ►  Dec 17 (7)
      • ►  Dec 16 (6)
      • ►  Dec 15 (5)
      • ►  Dec 14 (3)
      • ►  Dec 13 (5)
      • ►  Dec 12 (2)
      • ►  Dec 11 (4)
      • ►  Dec 10 (9)
      • ►  Dec 09 (11)
      • ►  Dec 08 (11)
      • ►  Dec 07 (14)
      • ►  Dec 06 (3)
      • ►  Dec 05 (3)
      • ►  Dec 04 (6)
      • ►  Dec 03 (1)
      • ►  Dec 02 (2)
    • ►  September (2)
      • ►  Sep 25 (2)
    • ►  April (1)
      • ►  Apr 30 (1)
    • ►  January (8)
      • ►  Jan 22 (1)
      • ►  Jan 20 (4)
      • ►  Jan 16 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (1)
  • ►  2012 (2)
    • ►  December (1)
      • ►  Dec 21 (1)
    • ►  January (1)
      • ►  Jan 11 (1)
  • ►  2011 (26)
    • ►  December (25)
      • ►  Dec 22 (1)
      • ►  Dec 17 (3)
      • ►  Dec 16 (2)
      • ►  Dec 15 (1)
      • ►  Dec 14 (1)
      • ►  Dec 13 (2)
      • ►  Dec 12 (1)
      • ►  Dec 11 (1)
      • ►  Dec 10 (1)
      • ►  Dec 07 (4)
      • ►  Dec 06 (2)
      • ►  Dec 04 (1)
      • ►  Dec 03 (2)
      • ►  Dec 02 (3)
    • ►  November (1)
      • ►  Nov 19 (1)
  • ►  2010 (2)
    • ►  September (1)
      • ►  Sep 11 (1)
    • ►  January (1)
      • ►  Jan 16 (1)
  • ►  2008 (1)
    • ►  April (1)
      • ►  Apr 05 (1)

Labels

  • Estradiol

Report Abuse

Followers

Total Pageviews

5,261,021

Translate

Simple theme. Theme images by merrymoonmary. Powered by Blogger.