A Medley of Potpourri

A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.

Search This Blog

Wednesday, August 17, 2022

Two-body Dirac equations

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Two-body_Dirac_equations

In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation.

In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.

Equations

For QED, each equation has the same structure as the ordinary one-body Dirac equation in the presence of an external electromagnetic field, given by the 4-potential A μ {\displaystyle A_{\mu }} A_{\mu }. For QCD, each equation has the same structure as the ordinary one-body Dirac equation in the presence of an external field similar to the electromagnetic field and an additional external field given by in terms of a Lorentz invariant scalar S {\displaystyle S} S. In natural units: those two-body equations have the form.

[ ( γ 1 ) μ ( p 1 − A ~ 1 ) μ + m 1 + S ~ 1 ] Ψ = 0 , {\displaystyle [(\gamma _{1})_{\mu }(p_{1}-{\tilde {A}}_{1})^{\mu }+m_{1}+{\tilde {S}}_{1}]\Psi =0,} [(\gamma _{1})_{\mu }(p_{1}-{\tilde {A}}_{1})^{\mu }+m_{1}+{\tilde {S}}_{1}]\Psi =0,
[ ( γ 2 ) μ ( p 2 − A ~ 2 ) μ + m 2 + S ~ 2 ] Ψ = 0. {\displaystyle [(\gamma _{2})_{\mu }(p_{2}-{\tilde {A}}_{2})^{\mu }+m_{2}+{\tilde {S}}_{2}]\Psi =0.} [(\gamma _{2})_{\mu }(p_{2}-{\tilde {A}}_{2})^{\mu }+m_{2}+{\tilde {S}}_{2}]\Psi =0.

where, in coordinate space, pμ is the 4-momentum, related to the 4-gradient by (the metric used here is η μ ν = ( − 1 , 1 , 1 , 1 ) {\displaystyle \eta _{\mu \nu }=(-1,1,1,1)} \eta _{{\mu \nu }}=(-1,1,1,1))

p μ = − i ∂ ∂ x μ {\displaystyle p^{\mu }=-i{\partial \over \partial x_{\mu }}} p^{\mu }=-i{\partial  \over \partial x_{\mu }}

and γμ are the gamma matrices. The two-body Dirac equations (TBDE) have the property that if one of the masses becomes very large, say m 2 → ∞ {\displaystyle m_{2}\rightarrow \infty } m_{{2}}\rightarrow \infty then the 16-component Dirac equation reduces to the 4-component one-body Dirac equation for particle one in an external potential.

In SI units:

[ ( γ 1 ) μ ( p 1 − A ~ 1 ) μ + m 1 c + S ~ 1 ] Ψ = 0 , {\displaystyle [(\gamma _{1})_{\mu }(p_{1}-{\tilde {A}}_{1})^{\mu }+m_{1}c+{\tilde {S}}_{1}]\Psi =0,} [(\gamma _{1})_{\mu }(p_{1}-{\tilde  {A}}_{1})^{\mu }+m_{1}c+{\tilde  {S}}_{1}]\Psi =0,
[ ( γ 2 ) μ ( p 2 − A ~ 2 ) μ + m 2 c + S ~ 2 ] Ψ = 0. {\displaystyle [(\gamma _{2})_{\mu }(p_{2}-{\tilde {A}}_{2})^{\mu }+m_{2}c+{\tilde {S}}_{2}]\Psi =0.} [(\gamma _{2})_{\mu }(p_{2}-{\tilde  {A}}_{2})^{\mu }+m_{2}c+{\tilde  {S}}_{2}]\Psi =0.

where c is the speed of light and

p μ = − i ℏ ∂ ∂ x μ {\displaystyle p^{\mu }=-i\hbar {\partial \over \partial x_{\mu }}} p^{\mu }=-i\hbar {\partial  \over \partial x_{\mu }}

Natural units will be used below. A tilde symbol is used over the two sets of potentials to indicate that they may have additional gamma matrix dependencies not present in the one-body Dirac equation. Any coupling constants such as the electron charge are embodied in the vector potentials.

Constraint dynamics and the TBDE

Constraint dynamics applied to the TBDE requires a particular form of mathematical consistency: the two Dirac operators must commute with each other. This is plausible if one views the two equations as two compatible constraints on the wave function. (See the discussion below on constraint dynamics.) If the two operators did not commute, (as, e.g., with the coordinate and momentum operators x , p {\displaystyle x,p} x,p) then the constraints would not be compatible (one could not e.g., have a wave function that satisfied both x Ψ = 0 {\displaystyle x\Psi =0} x\Psi =0 and p Ψ = 0 {\displaystyle p\Psi =0} p\Psi =0). This mathematical consistency or compatibility leads to three important properties of the TBDE. The first is a condition that eliminates the dependence on the relative time in the center of momentum (c.m.) frame defined by P = p 1 + p 2 = ( w , 0 → ) {\displaystyle P=p_{1}+p_{2}=(w,{\vec {0}})} P=p_{1}+p_{2}=(w,{\vec  0}). (The variable w {\displaystyle w} w is the total energy in the c.m. frame.) Stated another way, the relative time is eliminated in a covariant way. In particular, for the two operators to commute, the scalar and four-vector potentials can depend on the relative coordinate x = x 1 − x 2 {\displaystyle x=x_{1}-x_{2}} x=x_{1}-x_{2} only through its component x ⊥ {\displaystyle x_{\perp }} x_{{\perp }} orthogonal to P {\displaystyle P} P in which

x ⊥ μ = ( η μ ν − P μ P ν / P 2 ) x ν , {\displaystyle x_{\perp }^{\mu }=(\eta ^{\mu \nu }-P^{\mu }P^{\nu }/P^{2})x_{\nu },\,} x_{\perp }^{\mu }=(\eta ^{{\mu \nu }}-P^{\mu }P^{\nu }/P^{2})x_{\nu },\,
P μ x ⊥ μ = 0. {\displaystyle P_{\mu }x_{\perp }^{\mu }=0.\,} P_{\mu }x_{\perp }^{\mu }=0.\,

This implies that in the c.m. frame x ⊥ = ( 0 , x → = x → 1 − x → 2 ) {\displaystyle x_{\perp }=(0,{\vec {x}}={\vec {x}}_{1}-{\vec {x}}_{2})} x_{\perp }=(0,{\vec  {x}}={\vec  {x}}_{1}-{\vec  {x}}_{2}), which has zero time component.

Secondly, the mathematical consistency condition also eliminates the relative energy in the c.m. frame. It does this by imposing on each Dirac operator a structure such that in a particular combination they lead to this interaction independent form, eliminating in a covariant way the relative energy.

P ⋅ p Ψ = ( − P 0 p 0 + P → ⋅ p ) Ψ = 0. {\displaystyle P\cdot p\Psi =(-P^{0}p^{0}+{\vec {P}}\cdot p)\Psi =0.\,} P\cdot p\Psi =(-P^{0}p^{0}+{\vec  P}\cdot p)\Psi =0.\,

In this expression p {\displaystyle p} p is the relative momentum having the form ( p 1 − p 2 ) / 2 {\displaystyle (p_{1}-p_{2})/2} (p_{1}-p_{2})/2 for equal masses. In the c.m. frame ( P 0 = w , P → = 0 → {\displaystyle P^{0}=w,{\vec {P}}={\vec {0}}} P^{0}=w,{\vec  P}={\vec  0}), the time component p 0 {\displaystyle p^{0}} p^0 of the relative momentum, that is the relative energy, is thus eliminated. in the sense that p 0 Ψ = 0 {\displaystyle p^{0}\Psi =0} p^{0}\Psi =0.

A third consequence of the mathematical consistency is that each of the world scalar S ~ i {\displaystyle {\tilde {S}}_{i}} {\tilde  {S}}_{i} and four vector A ~ i μ {\displaystyle {\tilde {A}}_{i}^{\mu }} {\tilde  {A}}_{{i}}^{{\mu }} potentials has a term with a fixed dependence on γ 1 {\displaystyle \gamma _{1}} \gamma _{{1}} and γ 2 {\displaystyle \gamma _{2}} \gamma _{{2}} in addition to the gamma matrix independent forms of S i {\displaystyle S_{i}} S_{i} and A i μ {\displaystyle A_{i}^{\mu }} A_{i}^{\mu } which appear in the ordinary one-body Dirac equation for scalar and vector potentials. These extra terms correspond to additional recoil spin-dependence not present in the one-body Dirac equation and vanish when one of the particles becomes very heavy (the so-called static limit).

More on constraint dynamics: generalized mass shell constraints

Constraint dynamics arose from the work of Dirac and Bergmann. This section shows how the elimination of relative time and energy takes place in the c.m. system for the simple system of two relativistic spinless particles. Constraint dynamics was first applied to the classical relativistic two particle system by Todorov, Kalb and Van Alstine, Komar, and Droz–Vincent. With constraint dynamics, these authors found a consistent and covariant approach to relativistic canonical Hamiltonian mechanics that also evades the Currie–Jordan–Sudarshan "No Interaction" theorem. That theorem states that without fields, one cannot have a relativistic Hamiltonian dynamics. Thus, the same covariant three-dimensional approach which allows the quantized version of constraint dynamics to remove quantum ghosts simultaneously circumvents at the classical level the C.J.S. theorem. Consider a constraint on the otherwise independent coordinate and momentum four vectors, written in the form ϕ i ( p , x ) ≈ 0 {\displaystyle \phi _{i}(p,x)\approx 0} \phi _{{i}}(p,x)\approx 0. The symbol ≈ 0 {\displaystyle \approx 0} \approx 0 is called a weak equality and implies that the constraint is to be imposed only after any needed Poisson brackets are performed. In the presence of such constraints, the total Hamiltonian H {\displaystyle {\mathcal {H}}} {\mathcal {H}} is obtained from the Lagrangian L {\displaystyle {\mathcal {L}}}  \mathcal{L} by adding to the Legendre Hamiltonian ( p x ˙ − L ) {\displaystyle (p{\dot {x}}-{\mathcal {L}})} (p{\dot  {x}}-{\mathcal  {L}}) the sum of the constraints times an appropriate set of Lagrange multipliers ( λ i ) {\displaystyle (\lambda _{i})} (\lambda _{{i}}).

H = p x ˙ − L + λ i ϕ i {\displaystyle {\mathcal {H}}=p{\dot {x}}-{\mathcal {L}}+\lambda _{i}\phi _{i}} {\mathcal  {H}}=p{\dot  {x}}-{\mathcal  {L}}+\lambda _{{i}}\phi _{{i}},

This total Hamiltonian is traditionally called the Dirac Hamiltonian. Constraints arise naturally from parameter invariant actions of the form

I = ∫ d τ L ( τ ) = ∫ d τ ′ d τ d τ ′ L ( τ ) = ∫ d τ ′ L ( τ ′ ) . {\displaystyle I=\int d\tau {\mathcal {L(\tau )=}}\int d\tau ^{\prime }{\frac {d\tau }{d\tau ^{\prime }}}{\mathcal {L(\tau )=}}\int d\tau ^{\prime }{\mathcal {L(\tau }}^{\prime }{\mathcal {)}}.} I=\int d\tau {\mathcal  {L(\tau )=}}\int d\tau ^{{\prime }}{\frac  {d\tau }{d\tau ^{{\prime }}}}{\mathcal  {L(\tau )=}}\int d\tau ^{{\prime }}{\mathcal  {L(\tau }}^{{\prime }}{\mathcal  {)}}.

In the case of four vector and Lorentz scalar interactions for a single particle the Lagrangian is

L ( τ ) = − ( m + S ( x ) ) − x ˙ 2 + x ˙ ⋅ A ( x ) {\displaystyle {\mathcal {L(\tau )}}=-(m+S(x)){\sqrt {-{\dot {x}}^{2}}}+{\dot {x}}\cdot A(x)\,} {\mathcal  {L(\tau )}}=-(m+S(x)){\sqrt  {-{\dot  {x}}^{{2}}}}+{\dot  {x}}\cdot A(x)\,

The canonical momentum is

p = ∂ L ∂ x ˙ = ( m + S ( x ) ) x ˙ − x ˙ 2 + A ( x ) {\displaystyle p={\frac {\partial {\mathcal {L}}}{\partial {\dot {x}}}}={\frac {{\mathcal {(}}m+S(x)){\dot {x}}}{\sqrt {-{\dot {x}}^{2}}}}+A(x)} p={\frac  {\partial {\mathcal  {L}}}{\partial {\dot  {x}}}}={\frac  {{\mathcal  {(}}m+S(x)){\dot  {x}}}{{\sqrt  {-{\dot  {x}}^{{2}}}}}}+A(x)

and by squaring leads to the generalized mass shell condition or generalized mass shell constraint

( p − A ) 2 + ( m + S ) 2 = 0. {\displaystyle (p-A)^{2}+(m+S)^{2}=0.\,} (p-A)^{2}+(m+S)^{2}=0.\,

Since, in this case, the Legendre Hamiltonian vanishes

p ⋅ x ˙ − L = 0 , {\displaystyle p\cdot {\dot {x}}-{\mathcal {L}}=0,\,} p\cdot {\dot  {x}}-{\mathcal  {L}}=0,\,

the Dirac Hamiltonian is simply the generalized mass constraint (with no interactions it would simply be the ordinary mass shell constraint)

H = λ [ ( p − A ) 2 + ( m + S ) 2 ] ≡ λ ( p 2 + m 2 + Φ ( x , p ) ) . {\displaystyle {\mathcal {H=\lambda }}\left[\left(p-A\right)^{2}+(m+S)^{2}\right]\equiv \lambda (p^{2}+m^{2}+\Phi (x,p)).} {\mathcal  {H=\lambda }}\left[\left(p-A\right)^{2}+(m+S)^{2}\right]\equiv \lambda (p^{{2}}+m^{{2}}+\Phi (x,p)).

One then postulates that for two bodies the Dirac Hamiltonian is the sum of two such mass shell constraints,

H i = p i 2 + m i 2 + Φ i ( x 1 , x 2 , p 1 , p 2 ) ≈ 0 , {\displaystyle {\mathcal {H}}_{i}=p_{i}^{2}+m_{i}^{2}+\Phi _{i}(x_{1},x_{2},p_{1},p_{2})\approx 0,\,} {\mathcal  {H}}_{i}=p_{i}^{2}+m_{i}^{2}+\Phi _{i}(x_{1},x_{2},p_{1},p_{2})\approx 0,\,

that is

H = λ 1 [ p 1 2 + m 1 2 + Φ 1 ( x 1 , x 2 , p 1 , p 2 ) ] + λ 2 [ p 2 2 + m 2 2 + Φ 2 ( x 1 , x 2 , p 1 , p 2 ) ] {\displaystyle {\mathcal {H}}=\lambda _{1}[p_{1}^{2}+m_{1}^{2}+\Phi _{1}(x_{1},x_{2},p_{1},p_{2})]+\lambda _{2}[p_{2}^{2}+m_{2}^{2}+\Phi _{2}(x_{1},x_{2},p_{1},p_{2})]} {\mathcal  {H}}=\lambda _{1}[p_{1}^{2}+m_{1}^{2}+\Phi _{1}(x_{1},x_{2},p_{1},p_{2})]+\lambda _{2}[p_{2}^{2}+m_{2}^{2}+\Phi _{2}(x_{1},x_{2},p_{1},p_{2})]
= λ 1 H 1 + λ 2 H 2 , {\displaystyle =\lambda _{1}{\mathcal {H}}_{1}+\lambda _{2}{\mathcal {H}}_{2},\,} =\lambda _{1}{\mathcal  {H}}_{1}+\lambda _{2}{\mathcal  {H}}_{2},\,

and that each constraint H i {\displaystyle {\mathcal {H}}_{i}} {\mathcal  {H}}_{i} be constant in the proper time associated with H {\displaystyle {\mathcal {H}}} {\mathcal {H}}

H ˙ i = { H i , H } ≈ 0 {\displaystyle {\mathcal {\dot {H}}}_{i}=\{{\mathcal {H}}_{i},{\mathcal {H\}\approx }}0\,} {\mathcal  {{\dot  {H}}}}_{i}=\{{\mathcal  {H}}_{i},{\mathcal  {H\}\approx }}0\,

Here the weak equality means that the Poisson bracket could result in terms proportional one of the constraints, the classical Poisson brackets for the relativistic two-body system being defined by

{ O 1 , O 2 } = ∂ O 1 ∂ x 1 μ ∂ O 2 ∂ p 1 μ − ∂ O 1 ∂ p 1 μ ∂ O 2 ∂ x 1 μ + ∂ O 1 ∂ x 2 μ ∂ O 2 ∂ p 2 μ − ∂ O 1 ∂ p 2 μ ∂ O 2 ∂ x 2 μ . {\displaystyle \{O_{1},O_{2}\}={\frac {\partial O_{1}}{\partial x_{1}^{\mu }}}{\frac {\partial O_{2}}{\partial p_{1\mu }}}-{\frac {\partial O_{1}}{\partial p_{1}^{\mu }}}{\frac {\partial O_{2}}{\partial x_{1\mu }}}+{\frac {\partial O_{1}}{\partial x_{2}^{\mu }}}{\frac {\partial O_{2}}{\partial p_{2\mu }}}-{\frac {\partial O_{1}}{\partial p_{2}^{\mu }}}{\frac {\partial O_{2}}{\partial x_{2\mu }}}.} \{O_{1},O_{2}\}={\frac  {\partial O_{1}}{\partial x_{1}^{\mu }}}{\frac  {\partial O_{2}}{\partial p_{{1\mu }}}}-{\frac  {\partial O_{1}}{\partial p_{1}^{\mu }}}{\frac  {\partial O_{2}}{\partial x_{{1\mu }}}}+{\frac  {\partial O_{1}}{\partial x_{2}^{\mu }}}{\frac  {\partial O_{2}}{\partial p_{{2\mu }}}}-{\frac  {\partial O_{1}}{\partial p_{2}^{\mu }}}{\frac  {\partial O_{2}}{\partial x_{{2\mu }}}}.

To see the consequences of having each constraint be a constant of the motion, take, for example

H ˙ 1 = { H 1 , H } = λ 1 { H 1 , H 1 } + { H 1 , λ 1 } H 2 + λ 2 { H 2 , H 1 } + { λ 2 , H 1 } H 2 . {\displaystyle {\mathcal {\dot {H}}}_{1}=\{{\mathcal {H}}_{1},{\mathcal {H\}=}}\lambda _{1}\{{\mathcal {H}}_{1},{\mathcal {H}}_{1}{\mathcal {\}+}}\{{\mathcal {H}}_{1},\lambda _{1}{\mathcal {\}{\mathcal {H}}}}_{2}{\mathcal {+\lambda }}_{2}\{{\mathcal {H}}_{2},{\mathcal {H}}_{1}{\mathcal {\}+}}\{{\mathcal {\lambda }}_{2},{\mathcal {H}}_{1}{\mathcal {\}H}}_{2}.} {\mathcal  {{\dot  {H}}}}_{1}=\{{\mathcal  {H}}_{1},{\mathcal  {H\}=}}\lambda _{1}\{{\mathcal  {H}}_{1},{\mathcal  {H}}_{1}{\mathcal  {\}+}}\{{\mathcal  {H}}_{1},\lambda _{1}{\mathcal  {\}{\mathcal  {H}}}}_{2}{\mathcal  {+\lambda }}_{2}\{{\mathcal  {H}}_{2},{\mathcal  {H}}_{1}{\mathcal  {\}+}}\{{\mathcal  {\lambda }}_{2},{\mathcal  {H}}_{1}{\mathcal  {\}H}}_{2}.

Since { H 1 , H 1 } = 0 {\displaystyle \{{\mathcal {H}}_{1},{\mathcal {H}}_{1}\}=0} \{{\mathcal  {H}}_{1},{\mathcal  {H}}_{1}\}=0 and H 1 ≈ 0 {\displaystyle {\mathcal {H}}_{1}\approx 0} {\mathcal  {H}}_{{1}}\approx 0 and H 2 ≈ 0 {\displaystyle {\mathcal {H}}_{2}\approx 0} {\mathcal  {H}}_{2}\approx 0 one has

H ˙ 1 ≈ λ 2 { H 2 , H 1 } ≈ 0. {\displaystyle {\mathcal {\dot {H}}}_{1}\approx {\mathcal {\lambda }}_{2}\{{\mathcal {H}}_{2},{\mathcal {H}}_{1}\}\approx 0.\,} {\mathcal  {{\dot  {H}}}}_{{1}}\approx {\mathcal  {\lambda }}_{{2}}\{{\mathcal  {H}}_{{2}},{\mathcal  {H}}_{{1}}\}\approx 0.\,

The simplest solution to this is

Φ 1 = Φ 2 ≡ Φ ( x ⊥ ) {\displaystyle \Phi _{1}=\Phi _{2}\equiv \Phi (x_{\perp })} \Phi _{1}=\Phi _{2}\equiv \Phi (x_{\perp })

which leads to (note the equality in this case is not a weak one in that no constraint need be imposed after the Poisson bracket is worked out)

{ H 2 , H 1 } = 0 {\displaystyle \{{\mathcal {H}}_{2},{\mathcal {H}}_{1}\}=0\,} \{{\mathcal  {H}}_{2},{\mathcal  {H}}_{1}\}=0\,

(see Todorov, and Wong and Crater) with the same x ⊥ {\displaystyle x_{\perp }} x_{\perp } defined above.

Quantization

In addition to replacing classical dynamical variables by their quantum counterparts, quantization of the constraint mechanics takes place by replacing the constraint on the dynamical variables with a restriction on the wave function

H i ≈ 0 → H i Ψ = 0 {\displaystyle {\mathcal {H}}_{i}\approx 0\rightarrow {\mathcal {H}}_{i}\Psi =0} {\mathcal  {H}}_{{i}}\approx 0\rightarrow {\mathcal  {H}}_{{i}}\Psi =0,
H ≈ 0 → H Ψ = 0 {\displaystyle {\mathcal {H}}\approx 0\rightarrow {\mathcal {H}}\Psi =0} {\mathcal  {H}}\approx 0\rightarrow {\mathcal  {H}}\Psi =0.

The first set of equations for i = 1, 2 play the role for spinless particles that the two Dirac equations play for spin-one-half particles. The classical Poisson brackets are replaced by commutators

{ O 1 , O 2 } → 1 i [ O 1 , O 2 ] . {\displaystyle \{O_{1},O_{2}\}\rightarrow {\frac {1}{i}}[O_{1},O_{2}].\,} \{O_{1},O_{2}\}\rightarrow {\frac  {1}{i}}[O_{1},O_{2}].\,

Thus

[ H 2 , H 1 ] = 0 , {\displaystyle [{\mathcal {H}}_{2},{\mathcal {H}}_{1}]=0,\,} [{\mathcal  {H}}_{2},{\mathcal  {H}}_{{1}}]=0,\,

and we see in this case that the constraint formalism leads to the vanishing commutator of the wave operators for the two particles. This is the analogue of the claim stated earlier that the two Dirac operators commute with one another.

Covariant elimination of the relative energy

The vanishing of the above commutator ensures that the dynamics is independent of the relative time in the c.m. frame. In order to covariantly eliminate the relative energy, introduce the relative momentum p {\displaystyle p} p defined by

p 1 = p 1 ⋅ P P 2 P + p , {\displaystyle p_{1}={\frac {p_{1}\cdot P}{P^{2}}}P+p\,,} p_{{1}}={\frac  {p_{{1}}\cdot P}{P^{{2}}}}P+p\,,

 

 

 

 

(1)

p 2 = p 2 ⋅ P P 2 P − p , {\displaystyle p_{2}={\frac {p_{2}\cdot P}{P^{2}}}P-p\,,} p_{{2}}={\frac  {p_{{2}}\cdot P}{P^{{2}}}}P-p\,,

 

 

 

 

(2)

The above definition of the relative momentum forces the orthogonality of the total momentum and the relative momentum,

P ⋅ p = 0 {\displaystyle P\cdot p=0} P\cdot p=0,

which follows from taking the scalar product of either equation with P {\displaystyle P} P. From Eqs.(1) and (2), this relative momentum can be written in terms of p 1 {\displaystyle p_{1}} p_{{1}} and p 2 {\displaystyle p_{2}} p_{{2}} as

p = ε 2 − P 2 p 1 − ε 1 − P 2 p 2 {\displaystyle p={\frac {\varepsilon _{2}}{\sqrt {-P^{2}}}}p_{1}-{\frac {\varepsilon _{1}}{\sqrt {-P^{2}}}}p_{2}} p={\frac  {\varepsilon _{{2}}}{{\sqrt  {-P^{{2}}}}}}p_{{1}}-{\frac  {\varepsilon _{{1}}}{{\sqrt  {-P^{{2}}}}}}p_{{2}}

where

ε 1 = − p 1 ⋅ P − P 2 = − P 2 + p 1 2 − p 2 2 2 − P 2 {\displaystyle \varepsilon _{1}=-{\frac {p_{1}\cdot P}{\sqrt {-P^{2}}}}=-{\frac {P^{2}+p_{1}^{2}-p_{2}^{2}}{2{\sqrt {-P^{2}}}}}} \varepsilon _{{1}}=-{\frac  {p_{{1}}\cdot P}{{\sqrt  {-P^{{2}}}}}}=-{\frac  {P^{{2}}+p_{{1}}^{{2}}-p_{{2}}^{{2}}}{2{\sqrt  {-P^{{2}}}}}}
ε 2 = − p 2 ⋅ P − P 2 = − P 2 + p 2 2 − p 1 2 2 − P 2 {\displaystyle \varepsilon _{2}=-{\frac {p_{2}\cdot P}{\sqrt {-P^{2}}}}=-{\frac {P^{2}+p_{2}^{2}-p_{1}^{2}}{2{\sqrt {-P^{2}}}}}} \varepsilon _{{2}}=-{\frac  {p_{{2}}\cdot P}{{\sqrt  {-P^{{2}}}}}}=-{\frac  {P^{{2}}+p_{{2}}^{{2}}-p_{{1}}^{{2}}}{2{\sqrt  {-P^{{2}}}}}}

are the projections of the momenta p 1 {\displaystyle p_{1}} p_{{1}} and p 2 {\displaystyle p_{2}} p_{{2}} along the direction of the total momentum P {\displaystyle P} P. Subtracting the two constraints H 1 Ψ = 0 {\displaystyle {\mathcal {H}}_{1}\Psi =0} {\mathcal  {H}}_{{1}}\Psi =0 and H 2 Ψ = 0 {\displaystyle {\mathcal {H}}_{2}\Psi =0} {\mathcal  {H}}_{{2}}\Psi =0, gives

( p 1 2 − p 2 2 ) Ψ = − ( m 1 2 − m 2 2 ) Ψ {\displaystyle (p_{1}^{2}-p_{2}^{2})\Psi =-(m_{1}^{2}-m_{2}^{2})\Psi } (p_{{1}}^{{2}}-p_{{2}}^{{2}})\Psi =-(m_{{1}}^{{2}}-m_{{2}}^{{2}})\Psi

 

 

 

 

(3)

Thus on these states Ψ {\displaystyle \Psi } \Psi

ε 1 Ψ = − P 2 + m 1 2 − m 2 2 2 − P 2 Ψ {\displaystyle \varepsilon _{1}\Psi ={\frac {-P^{2}+m_{1}^{2}-m_{2}^{2}}{2{\sqrt {-P^{2}}}}}\Psi } \varepsilon _{{1}}\Psi ={\frac  {-P^{{2}}+m_{{1}}^{{2}}-m_{{2}}^{{2}}}{2{\sqrt  {-P^{{2}}}}}}\Psi
ε 2 Ψ = − P 2 + m 2 2 − m 1 2 2 − P 2 Ψ {\displaystyle \varepsilon _{2}\Psi ={\frac {-P^{2}+m_{2}^{2}-m_{1}^{2}}{2{\sqrt {-P^{2}}}}}\Psi } \varepsilon _{{2}}\Psi ={\frac  {-P^{{2}}+m_{{2}}^{{2}}-m_{{1}}^{{2}}}{2{\sqrt  {-P^{{2}}}}}}\Psi .

The equation H Ψ = 0 {\displaystyle {\mathcal {H}}\Psi =0} {\mathcal  {H}}\Psi =0 describes both the c.m. motion and the internal relative motion. To characterize the former motion, observe that since the potential Φ {\displaystyle \Phi } \Phi depends only on the difference of the two coordinates

[ P , H ] Ψ = 0 {\displaystyle [P,{\mathcal {H}}]\Psi =0} [P,{\mathcal  {H}}]\Psi =0.

(This does not require that [ P , λ i ] = 0 {\displaystyle [P,\lambda _{i}]=0} [P,\lambda _{{i}}]=0 since the H i Ψ = 0 {\displaystyle {\mathcal {H}}_{i}\Psi =0} {\mathcal  {H}}_{{i}}\Psi =0.) Thus, the total momentum P {\displaystyle P} P is a constant of motion and Ψ {\displaystyle \Psi } \Psi is an eigenstate state characterized by a total momentum P ′ {\displaystyle P^{\prime }} P^{{\prime }}. In the c.m. system P ′ = ( w , 0 → ) , {\displaystyle P^{\prime }=(w,{\vec {0}}),} P^{{\prime }}=(w,{\vec  {0}}), with w {\displaystyle w} w the invariant center of momentum (c.m.) energy. Thus

( P 2 + w 2 ) Ψ = 0 , {\displaystyle (P^{2}+w^{2})\Psi =0\,,} (P^{{2}}+w^{{2}})\Psi =0\,,

 

 

 

 

(4)

and so Ψ {\displaystyle \Psi } \Psi is also an eigenstate of c.m. energy operators for each of the two particles,

ε 1 Ψ = w 2 + m 1 2 − m 2 2 2 w Ψ {\displaystyle \varepsilon _{1}\Psi ={\frac {w^{2}+m_{1}^{2}-m_{2}^{2}}{2w}}\Psi } \varepsilon _{{1}}\Psi ={\frac  {w^{{2}}+m_{{1}}^{{2}}-m_{{2}}^{{2}}}{2w}}\Psi
ε 2 Ψ = w 2 + m 2 2 − m 1 2 2 w Ψ {\displaystyle \varepsilon _{2}\Psi ={\frac {w^{2}+m_{2}^{2}-m_{1}^{2}}{2w}}\Psi } \varepsilon _{{2}}\Psi ={\frac  {w^{{2}}+m_{{2}}^{{2}}-m_{{1}}^{{2}}}{2w}}\Psi .

The relative momentum then satisfies

p Ψ = ε 2 p 1 − ε 1 p 2 w Ψ {\displaystyle p\Psi ={\frac {\varepsilon _{2}p_{1}-\varepsilon _{1}p_{2}}{w}}\Psi } p\Psi ={\frac  {\varepsilon _{{2}}p_{{1}}-\varepsilon _{{1}}p_{{2}}}{w}}\Psi ,

so that

p 1 Ψ = ( ε 1 w P + p ) Ψ {\displaystyle p_{1}\Psi =\left({\frac {\varepsilon _{1}}{w}}P+p\right)\Psi } p_{{1}}\Psi =\left({\frac  {\varepsilon _{{1}}}{w}}P+p\right)\Psi ,
p 2 Ψ = ( ε 2 w P − p ) Ψ {\displaystyle p_{2}\Psi =\left({\frac {\varepsilon _{2}}{w}}P-p\right)\Psi } p_{{2}}\Psi =\left({\frac  {\varepsilon _{{2}}}{w}}P-p\right)\Psi ,

The above set of equations follow from the constraints H i Ψ = 0 {\displaystyle {\mathcal {H}}_{i}\Psi =0} {\mathcal  {H}}_{{i}}\Psi =0 and the definition of the relative momenta given in Eqs.(1) and (2). If instead one chooses to define (for a more general choice see Horwitz), 

ε 1 = w 2 + m 1 2 − m 2 2 2 w , {\displaystyle \varepsilon _{1}={\frac {w^{2}+m_{1}^{2}-m_{2}^{2}}{2w}},} \varepsilon _{{1}}={\frac  {w^{{2}}+m_{{1}}^{{2}}-m_{{2}}^{{2}}}{2w}},
ε 2 = w 2 + m 2 2 − m 1 2 2 w , {\displaystyle \varepsilon _{2}={\frac {w^{2}+m_{2}^{2}-m_{1}^{2}}{2w}},} \varepsilon _{{2}}={\frac  {w^{{2}}+m_{{2}}^{{2}}-m_{{1}}^{{2}}}{2w}},
p = ε 2 p 1 − ε 1 p 2 w , {\displaystyle p={\frac {\varepsilon _{2}p_{1}-\varepsilon _{1}p_{2}}{w}},} p={\frac  {\varepsilon _{{2}}p_{{1}}-\varepsilon _{{1}}p_{{2}}}{w}},

independent of the wave function, then

p 1 = ε 1 w P + p , {\displaystyle p_{1}={\frac {\varepsilon _{1}}{w}}P+p,} {\displaystyle p_{1}={\frac {\varepsilon _{1}}{w}}P+p,}

 

 

 

 

(5)

p 2 = ε 2 w P − p , {\displaystyle p_{2}={\frac {\varepsilon _{2}}{w}}P-p,} {\displaystyle p_{2}={\frac {\varepsilon _{2}}{w}}P-p,}

 

 

 

 

(6)

and it is straight forward to show that the constraint Eq.(3) leads directly to:

P ⋅ p Ψ = 0 , {\displaystyle P\cdot p\Psi =0,} P\cdot p\Psi =0,

 

 

 

 

(7)

in place of P ⋅ p = 0 {\displaystyle P\cdot p=0} P\cdot p=0. This conforms with the earlier claim on the vanishing of the relative energy in the c.m. frame made in conjunction with the TBDE. In the second choice the c.m. value of the relative energy is not defined as zero but comes from the original generalized mass shell constraints. The above equations for the relative and constituent four-momentum are the relativistic analogues of the non-relativistic equations

p → = m 2 p → 1 − m 1 p → 2 M {\displaystyle {\vec {p}}={\frac {m_{2}{\vec {p}}_{1}-m_{1}{\vec {p}}_{2}}{M}}} {\vec  {p}}={\frac  {m_{{2}}{\vec  {p}}_{{1}}-m_{{1}}{\vec  {p}}_{{2}}}{M}},
p → 1 = m 1 M P → + p → {\displaystyle {\vec {p}}_{1}={\frac {m_{1}}{M}}{\vec {P}}+{\vec {p}}} {\vec  {p}}_{{1}}={\frac  {m_{{1}}}{M}}{\vec  {P}}+{\vec  {p}},
p → 2 = m 2 M P → + p → {\displaystyle {\vec {p}}_{2}={\frac {m_{2}}{M}}{\vec {P}}+{\vec {p}}} {\vec  {p}}_{{2}}={\frac  {m_{{2}}}{M}}{\vec  {P}}+{\vec  {p}}.

Covariant eigenvalue equation for internal motion

Using Eqs.(5),(6),(7), one can write H {\displaystyle {\mathcal {H}}} {\mathcal {H}} in terms of P {\displaystyle P} P and p {\displaystyle p} p

H Ψ = { λ 1 [ − ε 1 2 + m 1 2 + p 2 + Φ ( x ⊥ ) ] + λ 2 [ − ε 2 2 + m 2 2 + p 2 + Φ ( x ⊥ ) ] } Ψ {\displaystyle {\mathcal {H}}\Psi =\{\lambda _{1}[-\varepsilon _{1}^{2}+m_{1}^{2}+p^{2}+\Phi (x_{\perp })]+\lambda _{2}[-\varepsilon _{2}^{2}+m_{2}^{2}+p^{2}+\Phi (x_{\perp })]\}\Psi } {\mathcal  {H}}\Psi =\{\lambda _{{1}}[-\varepsilon _{{1}}^{{2}}+m_{{1}}^{{2}}+p^{{2}}+\Phi (x_{{\perp }})]+\lambda _{{2}}[-\varepsilon _{{2}}^{{2}}+m_{{2}}^{{2}}+p^{{2}}+\Phi (x_{{\perp }})]\}\Psi
= ( λ 1 + λ 2 ) [ − b 2 ( − P 2 ; m 1 2 , m 2 2 ) + p 2 + Φ ( x ⊥ ) ] Ψ = 0 , {\displaystyle =(\lambda _{1}+\lambda _{2})[-b^{2}(-P^{2};m_{1}^{2},m_{2}^{2})+p^{2}+\Phi (x_{\perp })]\Psi =0\,,} =(\lambda _{{1}}+\lambda _{{2}})[-b^{{2}}(-P^{{2}};m_{{1}}^{{2}},m_{{2}}^{{2}})+p^{{2}}+\Phi (x_{{\perp }})]\Psi =0\,,

 

 

 

 

(8)

where

b 2 ( − P 2 , m 1 2 , m 2 2 ) = ε 1 2 − m 1 2 = ε 2 2 − m 2 2   = − 1 4 P 2 ( P 4 + 2 P 2 ( m 1 2 + m 2 2 ) + ( m 1 2 − m 2 2 ) 2 ) . {\displaystyle b^{2}(-P^{2},m_{1}^{2},m_{2}^{2})=\varepsilon _{1}^{2}-m_{1}^{2}=\varepsilon _{2}^{2}-m_{2}^{2}\ =-{\frac {1}{4P^{2}}}(P^{4}+2P^{2}(m_{1}^{2}+m_{2}^{2})+(m_{1}^{2}-m_{2}^{2})^{2})\,.} b^{{2}}(-P^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}})=\varepsilon _{{1}}^{{2}}-m_{{1}}^{{2}}=\varepsilon _{{2}}^{{2}}-m_{{2}}^{{2}}\ =-{\frac  {1}{4P^{{2}}}}(P^{{4}}+2P^{{2}}(m_{{1}}^{{2}}+m_{{2}}^{{2}})+(m_{{1}}^{{2}}-m_{{2}}^{{2}})^{{2}})\,.

Eq.(8) contains both the total momentum P {\displaystyle P} P [through the b 2 ( − P 2 , m 1 2 , m 2 2 ) {\displaystyle b^{2}(-P^{2},m_{1}^{2},m_{2}^{2})} b^{{2}}(-P^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}})] and the relative momentum p {\displaystyle p} p. Using Eq. (4), one obtains the eigenvalue equation

( λ 1 + λ 2 ) { p 2 + Φ ( x ⊥ ) − b 2 ( w 2 , m 1 2 , m 2 2 ) } Ψ = 0 , {\displaystyle (\lambda _{1}+\lambda _{2})\left\{p^{2}+\Phi (x_{\perp })-b^{2}(w^{2},m_{1}^{2},m_{2}^{2})\right\}\Psi =0\,,} (\lambda _{{1}}+\lambda _{{2}})\left\{p^{{2}}+\Phi (x_{{\perp }})-b^{{2}}(w^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}})\right\}\Psi =0\,,

 

 

 

 

(9)

so that b 2 ( w 2 , m 1 2 , m 2 2 ) {\displaystyle b^{2}(w^{2},m_{1}^{2},m_{2}^{2})} b^{{2}}(w^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}}) becomes the standard triangle function displaying exact relativistic two-body kinematics:

b 2 ( w 2 , m 1 2 , m 2 2 ) = 1 4 w 2 { w 4 − 2 w 2 ( m 1 2 + m 2 2 ) + ( m 1 2 − m 2 2 ) 2 } . {\displaystyle b^{2}(w^{2},m_{1}^{2},m_{2}^{2})={\frac {1}{4w^{2}}}\left\{w^{4}-2w^{2}(m_{1}^{2}+m_{2}^{2})+(m_{1}^{2}-m_{2}^{2})^{2}\right\}\,.} b^{{2}}(w^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}})={\frac  {1}{4w^{{2}}}}\left\{w^{{4}}-2w^{{2}}(m_{{1}}^{{2}}+m_{{2}}^{{2}})+(m_{{1}}^{{2}}-m_{{2}}^{{2}})^{{2}}\right\}\,.

With the above constraint Eqs.(7) on Ψ {\displaystyle \Psi } \Psi then p 2 Ψ = p ⊥ 2 Ψ {\displaystyle p^{2}\Psi =p_{\perp }^{2}\Psi } p^{{2}}\Psi =p_{{\perp }}^{{2}}\Psi where p ⊥ = p − p ⋅ P P / P 2 {\displaystyle p_{\perp }=p-p\cdot PP/P^{2}} p_{{\perp }}=p-p\cdot PP/P^{{2}}. This allows writing Eq. (9) in the form of an eigenvalue equation

{ p ⊥ 2 + Φ ( x ⊥ ) } Ψ = b 2 ( w 2 , m 1 2 , m 2 2 ) Ψ , {\displaystyle \{p_{\perp }^{2}+\Phi (x_{\perp })\}\Psi =b^{2}(w^{2},m_{1}^{2},m_{2}^{2})\Psi \,,} \{p_{{\perp }}^{{2}}+\Phi (x_{{\perp }})\}\Psi =b^{{2}}(w^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}})\Psi \,,

having a structure very similar to that of the ordinary three-dimensional nonrelativistic Schrödinger equation. It is a manifestly covariant equation, but at the same time its three-dimensional structure is evident. The four-vectors p ⊥ μ {\displaystyle p_{\perp }^{\mu }} p_{{\perp }}^{{\mu }} and x ⊥ μ {\displaystyle x_{\perp }^{\mu }} x_{{\perp }}^{{\mu }} have only three independent components since

P ⋅ p ⊥ = P ⋅ x ⊥ = 0 . {\displaystyle P\cdot p_{\perp }=P\cdot x_{\perp }=0\,.} P\cdot p_{{\perp }}=P\cdot x_{{\perp }}=0\,.

The similarity to the three-dimensional structure of the nonrelativistic Schrödinger equation can be made more explicit by writing the equation in the c.m. frame in which

P = ( w , 0 → ) {\displaystyle P=(w,{\vec {0}})} P=(w,{\vec  {0}}),
p ⊥ = ( 0 , p → ) {\displaystyle p_{\perp }=(0,{\vec {p}})} p_{{\perp }}=(0,{\vec  {p}}),
x ⊥ = ( 0 , x → ) {\displaystyle x_{\perp }=(0,{\vec {x}})} x_{{\perp }}=(0,{\vec  {x}}).

Comparison of the resultant form

{ p → 2 + Φ ( x → ) } Ψ = b 2 ( w 2 , m 1 2 , m 2 2 ) Ψ , {\displaystyle \{{\vec {p}}^{2}+\Phi ({\vec {x}})\}\Psi =b^{2}(w^{2},m_{1}^{2},m_{2}^{2})\Psi \,,} \{{\vec  {p}}^{{2}}+\Phi ({\vec  {x}})\}\Psi =b^{{2}}(w^{{2}},m_{{1}}^{{2}},m_{{2}}^{{2}})\Psi \,,

 

 

 

 

(10)

with the time independent Schrödinger equation

( p → 2 + 2 μ V ( x → ) ) Ψ = 2 μ E Ψ , {\displaystyle \left({\vec {p}}^{2}+2\mu V({\vec {x}})\right)\Psi =2\mu E\Psi \,,} \left({\vec  {p}}^{{2}}+2\mu V({\vec  {x}})\right)\Psi =2\mu E\Psi \,,

 

 

 

 

(11)

makes this similarity explicit.

The two-body relativistic Klein–Gordon equations

A plausible structure for the quasipotential Φ {\displaystyle \Phi } \Phi can be found by observing that the one-body Klein–Gordon equation ( p 2 + m 2 ) ψ = ( p → 2 − ε 2 + m 2 ) ψ = 0 {\displaystyle (p^{2}+m^{2})\psi =({\vec {p}}^{2}-\varepsilon ^{2}+m^{2})\psi =0} (p^{{2}}+m^{{2}})\psi =({\vec  {p}}^{{2}}-\varepsilon ^{{2}}+m^{{2}})\psi =0 takes the form ( p → 2 − ε 2 + m 2 + 2 m S + S 2 + 2 ε A − A 2 ) ψ = 0   {\displaystyle ({\vec {p}}^{2}-\varepsilon ^{2}+m^{2}+2mS+S^{2}+2\varepsilon A-A^{2})\psi =0~} ({\vec  {p}}^{{2}}-\varepsilon ^{{2}}+m^{{2}}+2mS+S^{{2}}+2\varepsilon A-A^{{2}})\psi =0~ when one introduces a scalar interaction and timelike vector interaction via m → m + S   {\displaystyle m\rightarrow m+S~} m\rightarrow m+S~and ε → ε − A {\displaystyle \varepsilon \rightarrow \varepsilon -A} \varepsilon \rightarrow \varepsilon -A. In the two-body case, separate classical  and quantum field theory  arguments show that when one includes world scalar and vector interactions then Φ {\displaystyle \Phi } \Phi depends on two underlying invariant functions S ( r ) {\displaystyle S(r)} S(r) and A ( r ) {\displaystyle A(r)} A(r) through the two-body Klein–Gordon-like potential form with the same general structure, that is

Φ = 2 m w S + S 2 + 2 ε w A − A 2 . {\displaystyle \Phi =2m_{w}S+S^{2}+2\varepsilon _{w}A-A^{2}.} \Phi =2m_{{w}}S+S^{{2}}+2\varepsilon _{{w}}A-A^{{2}}.

Those field theories further yield the c.m. energy dependent forms

m w = m 1 m 2 / w , {\displaystyle m_{w}=m_{1}m_{2}/w,} m_{{w}}=m_{{1}}m_{{2}}/w,

and

ε w = ( w 2 − m 1 2 − m 2 2 ) / 2 w , {\displaystyle \varepsilon _{w}=(w^{2}-m_{1}^{2}-m_{2}^{2})/2w,} \varepsilon _{{w}}=(w^{{2}}-m_{{1}}^{{2}}-m_{{2}}^{{2}})/2w,

ones that Tododov introduced as the relativistic reduced mass and effective particle energy for a two-body system. Similar to what happens in the nonrelativistic two-body problem, in the relativistic case we have the motion of this effective particle taking place as if it were in an external field (here generated by S {\displaystyle S} S and A {\displaystyle A} A). The two kinematical variables m w {\displaystyle m_{w}} m_{w} and ε w {\displaystyle \varepsilon _{w}} \varepsilon _{{w}} are related to one another by the Einstein condition

ε w 2 − m w 2 = b 2 ( w ) , {\displaystyle \varepsilon _{w}^{2}-m_{w}^{2}=b^{2}(w),} \varepsilon _{{w}}^{{2}}-m_{{w}}^{{2}}=b^{{2}}(w),

If one introduces the four-vectors, including a vector interaction A μ {\displaystyle A^{\mu }} A^{{\mu }}

p = ε w P ^ + p , {\displaystyle {\mathfrak {p}}=\varepsilon _{w}{\hat {P}}+p,} {\mathfrak  {p}}=\varepsilon _{{w}}{\hat  {P}}+p,
A μ = P ^ μ A ( r ) {\displaystyle A^{\mu }={\hat {P}}^{\mu }A(r)} A^{{\mu }}={\hat  {P}}^{{\mu }}A(r)
r = x ⊥ 2 , {\displaystyle r={\sqrt {x_{\perp }^{2}}}\,,} r={\sqrt  {x_{{\perp }}^{{2}}}}\,,

and scalar interaction S ( r ) {\displaystyle S(r)} S(r), then the following classical minimal constraint form

H = ( p − A ) 2 + ( m w + S ) 2 ≈ 0 , {\displaystyle {\mathcal {H=}}\left({\mathfrak {p-}}A\right)^{2}+(m_{w}+S)^{2}\approx 0\,,} {\mathcal  {H=}}\left({\mathfrak  {p-}}A\right)^{{2}}+(m_{{w}}+S)^{{2}}\approx 0\,,

reproduces

H = p ⊥ 2 + Φ − b 2 ≈ 0 . {\displaystyle {\mathcal {H=}}p_{\perp }^{2}+\Phi -b^{2}\approx 0\,.} {\mathcal  {H=}}p_{{\perp }}^{{2}}+\Phi -b^{{2}}\approx 0\,.

 

 

 

 

(12)

Notice, that the interaction in this "reduced particle" constraint depends on two invariant scalars, A ( r ) {\displaystyle A(r)} A(r) and S ( r ) {\displaystyle S(r)} S(r), one guiding the time-like vector interaction and one the scalar interaction.

Is there a set of two-body Klein–Gordon equations analogous to the two-body Dirac equations? The classical relativistic constraints analogous to the quantum two-body Dirac equations (discussed in the introduction) and that have the same structure as the above Klein–Gordon one-body form are

H 1 = ( p 1 − A 1 ) 2 + ( m 1 + S 1 ) 2 = p 1 2 + m 1 2 + Φ 1 ≈ 0 {\displaystyle {\mathcal {H}}_{1}=(p_{1}-A_{1})^{2}+(m_{1}+S_{1})^{2}=p_{1}^{2}+m_{1}^{2}+\Phi _{1}\approx 0} {\mathcal  {H}}_{{1}}=(p_{{1}}-A_{{1}})^{{2}}+(m_{{1}}+S_{{1}})^{{2}}=p_{{1}}^{{2}}+m_{{1}}^{{2}}+\Phi _{{1}}\approx 0
H 2 = ( p 1 − A 2 ) 2 + ( m 2 + S 2 ) 2 = p 2 2 + m 2 2 + Φ 2 ≈ 0 , {\displaystyle {\mathcal {H}}_{2}=(p_{1}-A_{2})^{2}+(m_{2}+S_{2})^{2}=p_{2}^{2}+m_{2}^{2}+\Phi _{2}\approx 0,} {\mathcal  {H}}_{{2}}=(p_{{1}}-A_{{2}})^{{2}}+(m_{{2}}+S_{{2}})^{{2}}=p_{{2}}^{{2}}+m_{{2}}^{{2}}+\Phi _{{2}}\approx 0,
p 1 = ε 1 P ^ + p ;     p 2 = ε 2 P ^ − p   . {\displaystyle p_{1}=\varepsilon _{1}{\hat {P}}+p;~~p_{2}=\varepsilon _{2}{\hat {P}}-p~.} p_{{1}}=\varepsilon _{{1}}{\hat  {P}}+p;~~p_{{2}}=\varepsilon _{{2}}{\hat  {P}}-p~.

Defining structures that display time-like vector and scalar interactions

π 1 = p 1 − A 1 = [ P ^ ( ε 1 − A 1 ) + p ] , {\displaystyle \pi _{1}=p_{1}-A_{1}=[{\hat {P}}(\varepsilon _{1}-{\mathcal {A}}_{1})+p],} \pi _{{1}}=p_{{1}}-A_{{1}}=[{\hat  {P}}(\varepsilon _{{1}}-{\mathcal  {A}}_{{1}})+p],
π 2 = p 2 − A 2 = [ P ^ ( ε 2 − A 1 ) − p ] , {\displaystyle \pi _{2}=p_{2}-A_{2}=[{\hat {P}}(\varepsilon _{2}-{\mathcal {A}}_{1})-p],} \pi _{{2}}=p_{{2}}-A_{{2}}=[{\hat  {P}}(\varepsilon _{{2}}-{\mathcal  {A}}_{{1}})-p],
M 1 = m 1 + S 1 , {\displaystyle M_{1}=m_{1}+S_{1},} M_{{1}}=m_{{1}}+S_{{1}},
M 2 = m 2 + S 2 , {\displaystyle M_{2}=m_{2}+S_{2},} M_{{2}}=m_{{2}}+S_{{2}},

gives

H 1 = π 1 2 + M 1 2 , {\displaystyle {\mathcal {H}}_{1}=\pi _{1}^{2}+M_{1}^{2},} {\mathcal  {H}}_{{1}}=\pi _{{1}}^{{2}}+M_{{1}}^{{2}},
H 2 = π 2 2 + M 2 2 . {\displaystyle {\mathcal {H}}_{2}=\pi _{2}^{2}+M_{2}^{2}.} {\mathcal  {H}}_{{2}}=\pi _{{2}}^{{2}}+M_{{2}}^{{2}}.

Imposing

Φ 1 = Φ 2 ≡ Φ ( x ⊥ ) = − 2 p 1 ⋅ A 1 + A 1 2 + 2 m 1 S 1 + S 1 2 = − 2 p 2 ⋅ A 2 + A 2 2 + 2 m 2 S 2 + S 2 2 = 2 ε w A − A 2 + 2 m w S + S 2 , {\displaystyle {\begin{aligned}\Phi _{1}&=\Phi _{2}\equiv \Phi (x_{\perp })\\&=-2p_{1}\cdot A_{1}+A_{1}^{2}+2m_{1}S_{1}+S_{1}^{2}\\&=-2p_{2}\cdot A_{2}+A_{2}^{2}+2m_{2}S_{2}+S_{2}^{2}\\&=2\varepsilon _{w}A-A^{2}+2m_{w}S+S^{2},\end{aligned}}} {\begin{aligned}\Phi _{{1}}&=\Phi _{{2}}\equiv \Phi (x_{{\perp }})\\&=-2p_{{1}}\cdot A_{{1}}+A_{{1}}^{{2}}+2m_{{1}}S_{{1}}+S_{{1}}^{{2}}\\&=-2p_{{2}}\cdot A_{{2}}+A_{{2}}^{{2}}+2m_{{2}}S_{{2}}+S_{{2}}^{{2}}\\&=2\varepsilon _{{w}}A-A^{{2}}+2m_{{w}}S+S^{{2}},\end{aligned}}

and using the constraint P ⋅ p ≈ 0 {\displaystyle P\cdot p\approx 0} P\cdot p\approx 0, reproduces Eqs.(12) provided

π 1 2 − p 2 = − ( ε 1 − A 1 ) 2 = − ε 1 2 + 2 ε w A − A 2 , {\displaystyle \pi _{1}^{2}-p^{2}=-\left(\varepsilon _{1}-{\mathcal {A}}_{1}\right)^{2}=-\varepsilon _{1}^{2}+2\varepsilon _{w}A-A^{2},} \pi _{{1}}^{{2}}-p^{{2}}=-\left(\varepsilon _{{1}}-{\mathcal  {A}}_{{1}}\right)^{{2}}=-\varepsilon _{{1}}^{{2}}+2\varepsilon _{{w}}A-A^{{2}},
π 2 2 − p 2 = − ( ε 2 − A 2 ) 2 = − ε 2 2 + 2 ε w A − A 2 , {\displaystyle \pi _{2}^{2}-p^{2}=-\left(\varepsilon _{2}-{\mathcal {A}}_{2}\right)^{2}=-\varepsilon _{2}^{2}+2\varepsilon _{w}A-A^{2},} \pi _{{2}}^{{2}}-p^{{2}}=-\left(\varepsilon _{{2}}-{\mathcal  {A}}_{{2}}\right)^{{2}}=-\varepsilon _{{2}}^{{2}}+2\varepsilon _{{w}}A-A^{{2}},
M 1 2 = m 1 2 + 2 m w S + S 2 , {\displaystyle M_{1}{}^{2}=m_{1}^{2}+2m_{w}S+S^{2},} M_{{1}}{}^{{2}}=m_{{1}}^{{2}}+2m_{{w}}S+S^{{2}},
M 2 2 = m 2 2 + 2 m w S + S 2 . {\displaystyle M_{2}^{2}=m_{2}^{2}+2m_{w}S+S^{2}.} M_{{2}}^{{2}}=m_{{2}}^{{2}}+2m_{{w}}S+S^{{2}}.

The corresponding Klein–Gordon equations are

( π 1 2 + M 1 2 ) ψ = 0 , {\displaystyle \left(\pi _{1}^{2}+M_{1}^{2}\right)\psi =0,} \left(\pi _{{1}}^{{2}}+M_{{1}}^{{2}}\right)\psi =0,
( π 2 2 + M 2 2 ) ψ = 0 , {\displaystyle \left(\pi _{2}^{2}+M_{2}^{2}\right)\psi =0,} \left(\pi _{{2}}^{{2}}+M_{{2}}^{{2}}\right)\psi =0,

and each, due to the constraint P ⋅ p ≈ 0 , {\displaystyle P\cdot p\approx 0,} P\cdot p\approx 0, is equivalent to

H ψ = ( p ⊥ 2 + Φ − b 2 ) ψ = 0. {\displaystyle {\mathcal {H\psi =}}\left(p_{\perp }^{2}+\Phi -b^{2}\right){\mathcal {\psi }}=0.} {\mathcal  {H\psi =}}\left(p_{{\perp }}^{{2}}+\Phi -b^{{2}}\right){\mathcal  {\psi }}=0.

Hyperbolic versus external field form of the two-body Dirac equations

For the two body system there are numerous covariant forms of interaction. The simplest way of looking at these is from the point of view of the gamma matrix structures of the corresponding interaction vertices of the single particle exchange diagrams. For scalar, pseudoscalar, vector, pseudovector, and tensor exchanges those matrix structures are respectively

1 1 1 2 ; γ 51 γ 52 ; γ 1 μ γ 2 μ ; γ 51 γ 1 μ γ 52 γ 2 μ ; σ 1 μ ν σ 2 μ ν , {\displaystyle 1_{1}1_{2};\gamma _{51}\gamma _{52};\gamma _{1}^{\mu }\gamma _{2\mu };\gamma _{51}\gamma _{1}^{\mu }\gamma _{52}\gamma _{2\mu };\sigma _{1\mu \nu }\sigma _{2}^{\mu \nu },} 1_{{1}}1_{{2}};\gamma _{{51}}\gamma _{{52}};\gamma _{{1}}^{{\mu }}\gamma _{{2\mu }};\gamma _{{51}}\gamma _{{1}}^{{\mu }}\gamma _{{52}}\gamma _{{2\mu }};\sigma _{{1\mu \nu }}\sigma _{{2}}^{{\mu \nu }},

in which

σ i μ ν = 1 2 i [ γ i μ , γ i ν ] ; i = 1 , 2. {\displaystyle \sigma _{i\mu \nu }={\frac {1}{2i}}[\gamma _{i\mu },\gamma _{i\nu }];i=1,2.} \sigma _{{i\mu \nu }}={\frac  {1}{2i}}[\gamma _{{i\mu }},\gamma _{{i\nu }}];i=1,2.

The form of the Two-Body Dirac equations which most readily incorporates each or any number of these intereractions in concert is the so-called hyperbolic form of the TBDE . For combined scalar and vector interactions those forms ultimately reduce to the ones given in the first set of equations of this article. Those equations are called the external field-like forms because their appearances are individually the same as those for the usual one-body Dirac equation in the presence of external vector and scalar fields.

The most general hyperbolic form for compatible TBDE is

S 1 ψ = ( cosh ⁡ ( Δ ) S 1 + sinh ⁡ ( Δ ) S 2 ) ψ = 0 , {\displaystyle {\mathcal {S}}_{1}\psi =(\cosh(\Delta )\mathbf {S} _{1}+\sinh(\Delta )\mathbf {S} _{2})\psi =0\mathrm {,} } {\mathcal  {S}}_{{1}}\psi =(\cosh(\Delta ){\mathbf  {S}}_{{1}}+\sinh(\Delta ){\mathbf  {S}}_{{2}})\psi =0{\mathrm  {,}}
S 2 ψ = ( cosh ⁡ ( Δ ) S 2 + sinh ⁡ ( Δ ) S 1 ) ψ = 0 , {\displaystyle {\mathcal {S}}_{2}\psi =(\cosh(\Delta )\mathbf {S} _{2}+\sinh(\Delta )\mathbf {S} _{1})\psi =0,} {\mathcal  {S}}_{{2}}\psi =(\cosh(\Delta ){\mathbf  {S}}_{{2}}+\sinh(\Delta ){\mathbf  {S}}_{{1}})\psi =0,

 

 

 

 

(13)

where Δ {\displaystyle \Delta } \Delta represents any invariant interaction singly or in combination. It has a matrix structure in addition to coordinate dependence. Depending on what that matrix structure is one has either scalar, pseudoscalar, vector, pseudovector, or tensor interactions. The operators S 1 {\displaystyle \mathbf {S} _{1}} {\mathbf  {S}}_{{1}} and S 2 {\displaystyle \mathbf {S} _{2}} {\mathbf  {S}}_{{2}} are auxiliary constraints satisfying

S 1 ψ ≡ ( S 10 cosh ⁡ ( Δ ) + S 20 sinh ⁡ ( Δ )   ) ψ = 0 , {\displaystyle \mathbf {S} _{1}\psi \equiv ({\mathcal {S}}_{10}\cosh(\Delta )+{\mathcal {S}}_{20}\sinh(\Delta )~)\psi =0,} {\mathbf  {S}}_{{1}}\psi \equiv ({\mathcal  {S}}_{{10}}\cosh(\Delta )+{\mathcal  {S}}_{{20}}\sinh(\Delta )~)\psi =0,
S 2 ψ ≡ ( S 20 cosh ⁡ ( Δ ) + S 10 sinh ⁡ ( Δ )   ) ψ = 0 , {\displaystyle \mathbf {S} _{2}\psi \equiv ({\mathcal {S}}_{20}\cosh(\Delta )+{\mathcal {S}}_{10}\sinh(\Delta )~)\psi =0,} {\mathbf  {S}}_{{2}}\psi \equiv ({\mathcal  {S}}_{{20}}\cosh(\Delta )+{\mathcal  {S}}_{{10}}\sinh(\Delta )~)\psi =0,

 

 

 

 

(14)

in which the S i 0 {\displaystyle {\mathcal {S}}_{i0}} {\mathcal  {S}}_{{i0}} are the free Dirac operators

S i 0 = i 2 γ 5 i ( γ i ⋅ p i + m i ) = 0 , {\displaystyle {\mathcal {S}}_{i0}={\frac {i}{\sqrt {2}}}\gamma _{5i}(\gamma _{i}\cdot p_{i}+m_{i})=0,} {\mathcal  {S}}_{{i0}}={\frac  {i}{{\sqrt  {2}}}}\gamma _{{5i}}(\gamma _{{i}}\cdot p_{{i}}+m_{{i}})=0,

 

 

 

 

(15)

This, in turn leads to the two compatibility conditions

[ S 1 , S 2 ] ψ = 0 , {\displaystyle \lbrack {\mathcal {S}}_{1},{\mathcal {S}}_{2}]\psi =0,} \lbrack {\mathcal  {S}}_{{1}},{\mathcal  {S}}_{{2}}]\psi =0,

and

[ S 1 , S 2 ] ψ = 0 , {\displaystyle \lbrack \mathbf {S} _{1},\mathbf {S} _{2}]\psi =0,} \lbrack {\mathbf  {S}}_{{1}},{\mathbf  {S}}_{{2}}]\psi =0,

provided that Δ = Δ ( x ⊥ ) . {\displaystyle \Delta =\Delta (x_{\perp }).} \Delta =\Delta (x_{{\perp }}). These compatibility conditions do not restrict the gamma matrix structure of Δ {\displaystyle \Delta } \Delta . That matrix structure is determined by the type of vertex-vertex structure incorporated in the interaction. For the two types of invariant interactions Δ {\displaystyle \Delta } \Delta emphasized in this article they are

Δ L ( x ⊥ ) = − 1 1 1 2 L ( x ⊥ ) 2 O 1 , scalar , {\displaystyle \Delta _{\mathcal {L}}(x_{\perp })=-1_{1}1_{2}{\frac {{\mathcal {L}}(x_{\perp })}{2}}{\mathcal {O}}_{1},{\text{scalar}}\mathrm {,} } \Delta _{{{\mathcal  {L}}}}(x_{{\perp }})=-1_{{1}}1_{{2}}{\frac  {{\mathcal  {L}}(x_{{\perp }})}{2}}{\mathcal  {O}}_{{1}},{\text{scalar}}{\mathrm  {,}}
Δ G ( x ⊥ ) = γ 1 ⋅ γ 2 G ( x ⊥ ) 2 O 1 , vector , {\displaystyle \Delta _{\mathcal {G}}(x_{\perp })=\gamma _{1}\cdot \gamma _{2}{\frac {{\mathcal {G}}(x_{\perp })}{2}}{\mathcal {O}}_{1},{\text{vector}}\mathrm {,} } \Delta _{{{\mathcal  {G}}}}(x_{{\perp }})=\gamma _{{1}}\cdot \gamma _{{2}}{\frac  {{\mathcal  {G}}(x_{{\perp }})}{2}}{\mathcal  {O}}_{{1}},{\text{vector}}{\mathrm  {,}}
O 1 = − γ 51 γ 52 . {\displaystyle {\mathcal {O}}_{1}=-\gamma _{51}\gamma _{52}.} {\mathcal  {O}}_{{1}}=-\gamma _{{51}}\gamma _{{52}}.

For general independent scalar and vector interactions

Δ ( x ⊥ ) = Δ L + Δ G . {\displaystyle \Delta (x_{\perp })=\Delta _{\mathcal {L}}+\Delta _{\mathcal {G}}.} \Delta (x_{{\perp }})=\Delta _{{{\mathcal  {L}}}}+\Delta _{{{\mathcal  {G}}}}.

The vector interaction specified by the above matrix structure for an electromagnetic-like interaction would correspond to the Feynman gauge.

If one inserts Eq.(14) into (13) and brings the free Dirac operator (15) to the right of the matrix hyperbolic functions and uses standard gamma matrix commutators and anticommutators and cosh 2 ⁡ Δ − sinh 2 ⁡ Δ = 1 {\displaystyle \cosh ^{2}\Delta -\sinh ^{2}\Delta =1} \cosh ^{{2}}\Delta -\sinh ^{{2}}\Delta =1 one arrives at ( ∂ μ = ∂ / ∂ x μ ) , {\displaystyle \left(\partial _{\mu }=\partial /\partial x^{\mu }\right),} \left(\partial _{{\mu }}=\partial /\partial x^{{\mu }}\right),

( G γ 1 ⋅ P 2 − E 1 β 1 + M 1 − G i 2 Σ 2 ⋅ ∂ ( L β 2 − G β 1 ) γ 52 ) ψ = 0 , {\displaystyle {\big (}G\gamma _{1}\cdot {\mathcal {P}}_{2}-E_{1}\beta _{1}+M_{1}-G{\frac {i}{2}}\Sigma _{2}\cdot \partial ({\mathcal {L}}\beta _{2}{\mathcal {-G}}\beta _{1})\gamma _{52}{\big )}\psi =0,} {\big (}G\gamma _{{1}}\cdot {\mathcal  {P}}_{{2}}-E_{{1}}\beta _{{1}}+M_{{1}}-G{\frac  {i}{2}}\Sigma _{{2}}\cdot \partial ({\mathcal  {L}}\beta _{{2}}{\mathcal  {-G}}\beta _{{1}})\gamma _{{52}}{\big )}\psi =0,
( − G γ 2 ⋅ P 1 − E 2 β 2 + M 2 + G i 2 Σ 1 ⋅ ∂ ( L β 1 − G β 2 ) γ 51 ) ψ = 0 , {\displaystyle {\big (}-G\gamma _{2}\cdot {\mathcal {P}}_{1}-E_{2}\beta _{2}+M_{2}+G{\frac {i}{2}}\Sigma _{1}\cdot \partial ({\mathcal {L}}\beta _{1}{\mathcal {-G}}\beta _{2})\gamma _{51}{\big )}\psi =0,} {\big (}-G\gamma _{{2}}\cdot {\mathcal  {P}}_{{1}}-E_{{2}}\beta _{{2}}+M_{{2}}+G{\frac  {i}{2}}\Sigma _{{1}}\cdot \partial ({\mathcal  {L}}\beta _{{1}}{\mathcal  {-G}}\beta _{{2}})\gamma _{{51}}{\big )}\psi =0,

 

 

 

 

(16)

in which

G = exp ⁡ G , {\displaystyle G=\exp {\mathcal {G}},} G=\exp {\mathcal  {G}},
β i = − γ i ⋅ P ^ , {\displaystyle \beta _{i}=-\gamma _{i}\cdot {\hat {P}},} \beta _{{i}}=-\gamma _{{i}}\cdot {\hat  {P}},
γ i ⊥ μ = ( η μ ν + P ^ μ P ^ ν ) γ ν i , {\displaystyle \gamma _{i\perp }^{\mu }=(\eta ^{\mu \nu }+{\hat {P}}^{\mu }{\hat {P}}^{\nu })\gamma _{\nu i},} \gamma _{{i\perp }}^{{\mu }}=(\eta ^{{\mu \nu }}+{\hat  {P}}^{{\mu }}{\hat  {P}}^{{\nu }})\gamma _{{\nu i}},
Σ i = γ 5 i β i γ ⊥ i , {\displaystyle \Sigma _{i}=\gamma _{5i}\beta _{i}\gamma _{\perp i},} \Sigma _{{i}}=\gamma _{{5i}}\beta _{{i}}\gamma _{{\perp i}},
P i ≡ p ⊥ − i 2 Σ i ⋅ ∂ G Σ i , i = 1 , 2. {\displaystyle {\mathcal {P}}_{i}\equiv p_{\perp }-{\frac {i}{2}}\Sigma _{i}\cdot \partial {\mathcal {G}}\Sigma _{i},i=1,2.} {\mathcal  {P}}_{{i}}\equiv p_{{\perp }}-{\frac  {i}{2}}\Sigma _{{i}}\cdot \partial {\mathcal  {G}}\Sigma _{{i}},i=1,2.

The (covariant) structure of these equations are analogous to those of a Dirac equation for each of the two particles, with M i {\displaystyle M_{i}} M_{i} and E i {\displaystyle E_{i}} E_{i} playing the roles that m + S {\displaystyle m+S} m+S and ε − A {\displaystyle \varepsilon -A} \varepsilon -A do in the single particle Dirac equation

( γ ⋅ p − β ( ε − A ) + m + S ) ψ = 0. {\displaystyle (\mathbf {\gamma } \cdot \mathbf {p-} \beta (\varepsilon -A)+m+S)\psi =0.} ({\mathbf  {\gamma }}\cdot {\mathbf  {p-}}\beta (\varepsilon -A)+m+S)\psi =0.

Over and above the usual kinetic part γ 1 ⋅ p ⊥ {\displaystyle \gamma _{1}\cdot p_{\perp }} \gamma _{{1}}\cdot p_{{\perp }} and time-like vector and scalar potential portions, the spin-dependent modifications involving Σ i ⋅ ∂ G Σ i {\displaystyle \Sigma _{i}\cdot \partial {\mathcal {G}}\Sigma _{i}} \Sigma _{{i}}\cdot \partial {\mathcal  {G}}\Sigma _{{i}} and the last set of derivative terms are two-body recoil effects absent for the one-body Dirac equation but essential for the compatibility (consistency) of the two-body equations. The connections between what are designated as the vertex invariants L , G {\displaystyle {\mathcal {L}},{\mathcal {G}}} {\mathcal  {L}},{\mathcal  {G}} and the mass and energy potentials M i , E i {\displaystyle M_{i},E_{i}} M_{{i}},E_{{i}} are

M 1 = m 1 cosh ⁡ L + m 2 sinh ⁡ L , {\displaystyle M_{1}=m_{1}\cosh {\mathcal {L}}+m_{2}\sinh {\mathcal {L}},} M_{{1}}=m_{{1}}\cosh {\mathcal  {L}}+m_{{2}}\sinh {\mathcal  {L}},
M 2 = m 2 cosh ⁡ L + m 1 sinh ⁡ L , {\displaystyle M_{2}=m_{2}\cosh {\mathcal {L}}+m_{1}\sinh {\mathcal {L}},} M_{{2}}=m_{{2}}\cosh {\mathcal  {L}}+m_{{1}}\sinh {\mathcal  {L}},
E 1 = ε 1 cosh ⁡ G − ε 2 sinh ⁡ G , {\displaystyle E_{1}=\varepsilon _{1}\cosh {\mathcal {G}}-\varepsilon _{2}\sinh {\mathcal {G}},} E_{{1}}=\varepsilon _{{1}}\cosh {\mathcal  {G}}-\varepsilon _{{2}}\sinh {\mathcal  {G}},
E 2 = ε 2 cosh ⁡ G − ε 1 sinh ⁡ G . {\displaystyle E_{2}=\varepsilon _{2}\cosh {\mathcal {G}}-\varepsilon _{1}\sinh {\mathcal {G}}.} E_{{2}}=\varepsilon _{{2}}\cosh {\mathcal  {G}}-\varepsilon _{{1}}\sinh {\mathcal  {G}}.

Comparing Eq.(16) with the first equation of this article one finds that the spin-dependent vector interactions are

A ~ 1 μ = ( ( ε 1 − E 1 ) ) P ^ μ + ( 1 − G ) p ⊥ μ − i 2 ∂ G ⋅ γ 2 γ 2 μ , {\displaystyle {\tilde {A}}_{1}^{\mu }={\big (}(\varepsilon _{1}-E_{1}){\big )}{\hat {P}}^{\mu }+(1-G)p_{\perp }^{\mu }-{\frac {i}{2}}\partial G\cdot \gamma _{2}\gamma _{2}^{\mu },} {\tilde  {A}}_{{1}}^{{\mu }}={\big (}(\varepsilon _{{1}}-E_{{1}}){\big )}{\hat  {P}}^{{\mu }}+(1-G)p_{{\perp }}^{{\mu }}-{\frac  {i}{2}}\partial G\cdot \gamma _{{2}}\gamma _{{2}}^{{\mu }},
A 2 μ = ( ( ε 2 − E 2 ) ) P ^ μ − ( 1 − G ) p ⊥ μ + i 2 ∂ G ⋅ γ 1 γ 1 μ , {\displaystyle A_{2}^{\mu }={\big (}(\varepsilon _{2}-E_{2}){\big )}{\hat {P}}^{\mu }-(1-G)p_{\perp }^{\mu }+{\frac {i}{2}}\partial G\cdot \gamma _{1}\gamma _{1}^{\mu },} A_{{2}}^{{\mu }}={\big (}(\varepsilon _{{2}}-E_{{2}}){\big )}{\hat  {P}}^{{\mu }}-(1-G)p_{{\perp }}^{{\mu }}+{\frac  {i}{2}}\partial G\cdot \gamma _{{1}}\gamma _{{1}}^{{\mu }},

Note that the first portion of the vector potentials is timelike (parallel to P ^ μ ) {\displaystyle {\hat {P}}^{\mu })} {\hat  {P}}^{{\mu }}) while the next portion is spacelike (perpendicular to P ^ μ ) {\displaystyle {\hat {P}}^{\mu })} {\hat  {P}}^{{\mu }}). The spin-dependent scalar potentials S ~ i {\displaystyle {\tilde {S}}_{i}} {\tilde  {S}}_{{i}} are

S ~ 1 = M 1 − m 1 − i 2 G γ 2 ⋅ ∂ L , {\displaystyle {\tilde {S}}_{1}=M_{1}-m_{1}-{\frac {i}{2}}G\gamma _{2}\cdot \partial {\mathcal {L}},} {\tilde  {S}}_{{1}}=M_{{1}}-m_{{1}}-{\frac  {i}{2}}G\gamma _{{2}}\cdot \partial {\mathcal  {L}},
S ~ 2 = M 2 − m 2 + i 2 G γ 1 ⋅ ∂ L . {\displaystyle {\tilde {S}}_{2}=M_{2}-m_{2}+{\frac {i}{2}}G\gamma _{1}\cdot {\partial }{\mathcal {L}}{.}} {\tilde  {S}}_{{2}}=M_{{2}}-m_{{2}}+{\frac  {i}{2}}G\gamma _{{1}}\cdot {\partial }{\mathcal  {L}}{.}

The parametrization for L {\displaystyle {\mathcal {L}}} {\mathcal {L}} and G {\displaystyle {\mathcal {G}}} {\mathcal {G}} takes advantage of the Todorov effective external potential forms (as seen in the above section on the two-body Klein Gordon equations) and at the same time displays the correct static limit form for the Pauli reduction to Schrödinger-like form. The choice for these parameterizations (as with the two-body Klein Gordon equations) is closely tied to classical or quantum field theories for separate scalar and vector interactions. This amounts to working in the Feynman gauge with the simplest relation between space- and timelike parts of the vector interaction,. The mass and energy potentials are respectively

M i 2 = m i 2 + exp ⁡ ( 2 G ) ( 2 m w S + S 2 ) , {\displaystyle M_{i}^{2}=m_{i}^{2}+\exp(2{\mathcal {G)(}}2m_{w}S{\mathcal {+}}S^{2}),} M_{{i}}^{{2}}=m_{{i}}^{{2}}+\exp(2{\mathcal  {G)(}}2m_{{w}}S{\mathcal  {+}}S^{{2}}),
E i 2 = exp ⁡ ( 2 G ( A ) ) ( ε i − A ) 2 , {\displaystyle E_{i}^{2}=\exp(2{\mathcal {G(A))(}}\varepsilon _{i}-A)^{2},} E_{{i}}^{{2}}=\exp(2{\mathcal  {G(A))(}}\varepsilon _{{i}}-A)^{{2}},

so that

exp ⁡ ( L ) = exp ⁡ ( L ( S , A ) ) = M 1 + M 2 m 1 + m 2 , {\displaystyle \exp({\mathcal {L}})=\exp({\mathcal {L}}(S,A))={\frac {M_{1}+M_{2}}{m_{1}+m_{2}}},} \exp({\mathcal  {L}})=\exp({\mathcal  {L}}(S,A))={\frac  {M_{{1}}+M_{{2}}}{m_{{1}}+m_{{2}}}},
G = exp ⁡ G = exp ⁡ ( G ( A ) ) = 1 ( 1 − 2 A / w ) . {\displaystyle G=\exp {\mathcal {G=}}\exp({\mathcal {G(}}A{\mathcal {))=}}{\sqrt {\frac {1}{(1-2A/w)}}}.} G=\exp {\mathcal  {G=}}\exp({\mathcal  {G(}}A{\mathcal  {))=}}{\sqrt  {{\frac  {1}{(1-2A/w)}}}}.

Applications and limitations

The TBDE can be readily applied to two body systems such as positronium, muonium, hydrogen-like atoms, quarkonium, and the two-nucleon system. These applications involve two particles only and do not involve creation or annihilation of particles beyond the two. They involve only elastic processes. Because of the connection between the potentials used in the TBDE and the corresponding quantum field theory, any radiative correction to the lowest order interaction can be incorporated into those potentials. To see how this comes about, consider by contrast how one computes scattering amplitudes without quantum field theory. With no quantum field theory one must come upon potentials by classical arguments or phenomenological considerations. Once one has the potential V {\displaystyle V} V between two particles, then one can compute the scattering amplitude T {\displaystyle T} T from the Lippmann–Schwinger equation. 

T + V + V G T = 0 {\displaystyle T+V+VGT=0} T+V+VGT=0,

in which G {\displaystyle G} G is a Green function determined from the Schrödinger equation. Because of the similarity between the Schrödinger equation Eq. (11) and the relativistic constraint equation (10),one can derive the same type of equation as the above

T + Φ + Φ G T = 0 {\displaystyle {\mathcal {T}}+\Phi +\Phi {\mathcal {GT}}=0} {\mathcal  {T}}+\Phi +\Phi {\mathcal  {GT}}=0,

called the quasipotential equation with a G {\displaystyle {\mathcal {G}}} {\mathcal {G}} very similar to that given in the Lippmann–Schwinger equation. The difference is that with the quasipotential equation, one starts with the scattering amplitudes T {\displaystyle {\mathcal {T}}} {\mathcal {T}} of quantum field theory, as determined from Feynman diagrams and deduces the quasipotential Φ perturbatively. Then one can use that Φ in (10), to compute energy levels of two particle systems that are implied by the field theory. Constraint dynamics provides one of many, in fact an infinite number of, different types of quasipotential equations (three-dimensional truncations of the Bethe–Salpeter equation) differing from one another by the choice of G {\displaystyle {\mathcal {G}}} {\mathcal {G}}. The relatively simple solution to the problem of relative time and energy from the generalized mass shell constraint for two particles, has no simple extension, such as presented here with the x ⊥ {\displaystyle x_{\perp }} x_{{\perp }} variable, to either two particles in an external field  or to 3 or more particles. Sazdjian has presented a recipe for this extension when the particles are confined and cannot split into clusters of a smaller number of particles with no inter-cluster interactions  Lusanna has developed an approach, one that does not involve generalized mass shell constraints with no such restrictions, which extends to N bodies with or without fields. It is formulated on spacelike hypersurfaces and when restricted to the family of hyperplanes orthogonal to the total timelike momentum gives rise to a covariant intrinsic 1-time formulation (with no relative time variables) called the "rest-frame instant form" of dynamics.

at August 17, 2022
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Post Older Post Home

Telehealth

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Telehealth ...

  • Islamic State and the Levant
    From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام   ( ...
  • Heart Sutra
    From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...
  • Environmental impact of fracking
    From Wikipedia, the free encyclopedia Fracking Shale gas drilling rig near Alvarado, Texas The environme...

Search This Blog

  • Home

About Me

My photo
David J Strumfels
View my complete profile

Blog Archive

  • ►  2025 (869)
    • ►  May (116)
      • ►  May 22 (3)
      • ►  May 21 (2)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (6)
      • ►  May 17 (7)
      • ►  May 16 (1)
      • ►  May 15 (5)
      • ►  May 14 (6)
      • ►  May 13 (12)
      • ►  May 12 (4)
      • ►  May 11 (2)
      • ►  May 10 (5)
      • ►  May 09 (3)
      • ►  May 08 (7)
      • ►  May 07 (3)
      • ►  May 06 (8)
      • ►  May 05 (9)
      • ►  May 04 (5)
      • ►  May 03 (6)
      • ►  May 02 (5)
      • ►  May 01 (10)
    • ►  April (193)
      • ►  Apr 30 (8)
      • ►  Apr 29 (6)
      • ►  Apr 28 (5)
      • ►  Apr 27 (10)
      • ►  Apr 26 (9)
      • ►  Apr 25 (4)
      • ►  Apr 24 (11)
      • ►  Apr 23 (3)
      • ►  Apr 22 (8)
      • ►  Apr 21 (10)
      • ►  Apr 20 (14)
      • ►  Apr 19 (6)
      • ►  Apr 18 (13)
      • ►  Apr 17 (10)
      • ►  Apr 16 (8)
      • ►  Apr 15 (4)
      • ►  Apr 14 (6)
      • ►  Apr 13 (7)
      • ►  Apr 12 (7)
      • ►  Apr 11 (9)
      • ►  Apr 10 (1)
      • ►  Apr 09 (5)
      • ►  Apr 08 (4)
      • ►  Apr 07 (5)
      • ►  Apr 06 (4)
      • ►  Apr 05 (4)
      • ►  Apr 04 (2)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (6)
    • ►  March (182)
      • ►  Mar 31 (5)
      • ►  Mar 30 (10)
      • ►  Mar 29 (12)
      • ►  Mar 28 (5)
      • ►  Mar 27 (7)
      • ►  Mar 26 (5)
      • ►  Mar 25 (7)
      • ►  Mar 24 (8)
      • ►  Mar 23 (6)
      • ►  Mar 22 (5)
      • ►  Mar 21 (5)
      • ►  Mar 20 (5)
      • ►  Mar 19 (6)
      • ►  Mar 18 (4)
      • ►  Mar 17 (7)
      • ►  Mar 16 (5)
      • ►  Mar 15 (7)
      • ►  Mar 14 (5)
      • ►  Mar 13 (2)
      • ►  Mar 12 (1)
      • ►  Mar 11 (1)
      • ►  Mar 10 (6)
      • ►  Mar 09 (8)
      • ►  Mar 08 (7)
      • ►  Mar 07 (6)
      • ►  Mar 06 (11)
      • ►  Mar 05 (6)
      • ►  Mar 04 (8)
      • ►  Mar 03 (4)
      • ►  Mar 02 (5)
      • ►  Mar 01 (3)
    • ►  February (115)
      • ►  Feb 28 (5)
      • ►  Feb 27 (5)
      • ►  Feb 26 (1)
      • ►  Feb 25 (2)
      • ►  Feb 24 (5)
      • ►  Feb 22 (2)
      • ►  Feb 21 (2)
      • ►  Feb 20 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (4)
      • ►  Feb 17 (6)
      • ►  Feb 16 (2)
      • ►  Feb 15 (4)
      • ►  Feb 14 (4)
      • ►  Feb 13 (1)
      • ►  Feb 12 (3)
      • ►  Feb 11 (2)
      • ►  Feb 10 (7)
      • ►  Feb 09 (5)
      • ►  Feb 08 (4)
      • ►  Feb 07 (4)
      • ►  Feb 06 (5)
      • ►  Feb 05 (7)
      • ►  Feb 04 (6)
      • ►  Feb 03 (7)
      • ►  Feb 02 (7)
      • ►  Feb 01 (8)
    • ►  January (263)
      • ►  Jan 31 (7)
      • ►  Jan 30 (8)
      • ►  Jan 29 (8)
      • ►  Jan 28 (6)
      • ►  Jan 27 (7)
      • ►  Jan 26 (15)
      • ►  Jan 25 (11)
      • ►  Jan 24 (18)
      • ►  Jan 23 (10)
      • ►  Jan 22 (13)
      • ►  Jan 21 (5)
      • ►  Jan 20 (9)
      • ►  Jan 19 (2)
      • ►  Jan 18 (6)
      • ►  Jan 17 (4)
      • ►  Jan 16 (5)
      • ►  Jan 15 (7)
      • ►  Jan 14 (7)
      • ►  Jan 13 (11)
      • ►  Jan 12 (4)
      • ►  Jan 11 (16)
      • ►  Jan 10 (11)
      • ►  Jan 09 (6)
      • ►  Jan 08 (5)
      • ►  Jan 07 (9)
      • ►  Jan 06 (6)
      • ►  Jan 05 (10)
      • ►  Jan 04 (14)
      • ►  Jan 03 (4)
      • ►  Jan 02 (14)
      • ►  Jan 01 (5)
  • ►  2024 (3069)
    • ►  December (227)
      • ►  Dec 31 (6)
      • ►  Dec 30 (4)
      • ►  Dec 29 (5)
      • ►  Dec 28 (4)
      • ►  Dec 27 (4)
      • ►  Dec 26 (5)
      • ►  Dec 25 (3)
      • ►  Dec 24 (5)
      • ►  Dec 23 (6)
      • ►  Dec 22 (8)
      • ►  Dec 21 (9)
      • ►  Dec 20 (15)
      • ►  Dec 19 (4)
      • ►  Dec 18 (13)
      • ►  Dec 17 (9)
      • ►  Dec 16 (14)
      • ►  Dec 15 (14)
      • ►  Dec 14 (12)
      • ►  Dec 13 (6)
      • ►  Dec 12 (10)
      • ►  Dec 11 (11)
      • ►  Dec 10 (7)
      • ►  Dec 09 (7)
      • ►  Dec 08 (6)
      • ►  Dec 07 (13)
      • ►  Dec 06 (4)
      • ►  Dec 05 (8)
      • ►  Dec 04 (3)
      • ►  Dec 03 (2)
      • ►  Dec 02 (6)
      • ►  Dec 01 (4)
    • ►  November (223)
      • ►  Nov 30 (6)
      • ►  Nov 29 (6)
      • ►  Nov 28 (6)
      • ►  Nov 27 (4)
      • ►  Nov 26 (5)
      • ►  Nov 25 (12)
      • ►  Nov 24 (9)
      • ►  Nov 23 (9)
      • ►  Nov 22 (7)
      • ►  Nov 21 (8)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (8)
      • ►  Nov 17 (7)
      • ►  Nov 16 (7)
      • ►  Nov 15 (8)
      • ►  Nov 14 (8)
      • ►  Nov 13 (5)
      • ►  Nov 12 (3)
      • ►  Nov 11 (7)
      • ►  Nov 10 (12)
      • ►  Nov 09 (6)
      • ►  Nov 08 (10)
      • ►  Nov 07 (8)
      • ►  Nov 06 (4)
      • ►  Nov 05 (2)
      • ►  Nov 04 (7)
      • ►  Nov 03 (19)
      • ►  Nov 02 (7)
      • ►  Nov 01 (12)
    • ►  October (231)
      • ►  Oct 31 (5)
      • ►  Oct 30 (9)
      • ►  Oct 29 (13)
      • ►  Oct 28 (11)
      • ►  Oct 27 (13)
      • ►  Oct 26 (11)
      • ►  Oct 25 (11)
      • ►  Oct 24 (8)
      • ►  Oct 23 (8)
      • ►  Oct 22 (1)
      • ►  Oct 21 (8)
      • ►  Oct 20 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (8)
      • ►  Oct 15 (14)
      • ►  Oct 14 (15)
      • ►  Oct 13 (11)
      • ►  Oct 12 (7)
      • ►  Oct 11 (8)
      • ►  Oct 10 (4)
      • ►  Oct 09 (11)
      • ►  Oct 08 (3)
      • ►  Oct 07 (6)
      • ►  Oct 06 (3)
      • ►  Oct 05 (2)
      • ►  Oct 04 (5)
      • ►  Oct 03 (9)
      • ►  Oct 02 (8)
      • ►  Oct 01 (12)
    • ►  September (257)
      • ►  Sep 30 (3)
      • ►  Sep 29 (12)
      • ►  Sep 28 (16)
      • ►  Sep 27 (6)
      • ►  Sep 26 (2)
      • ►  Sep 25 (1)
      • ►  Sep 24 (3)
      • ►  Sep 23 (2)
      • ►  Sep 22 (6)
      • ►  Sep 21 (18)
      • ►  Sep 20 (5)
      • ►  Sep 19 (5)
      • ►  Sep 18 (2)
      • ►  Sep 17 (1)
      • ►  Sep 16 (4)
      • ►  Sep 15 (12)
      • ►  Sep 14 (4)
      • ►  Sep 13 (12)
      • ►  Sep 12 (6)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (9)
      • ►  Sep 08 (12)
      • ►  Sep 07 (17)
      • ►  Sep 06 (13)
      • ►  Sep 05 (10)
      • ►  Sep 04 (10)
      • ►  Sep 03 (18)
      • ►  Sep 02 (20)
      • ►  Sep 01 (19)
    • ►  August (338)
      • ►  Aug 31 (16)
      • ►  Aug 30 (17)
      • ►  Aug 29 (11)
      • ►  Aug 28 (15)
      • ►  Aug 27 (16)
      • ►  Aug 26 (7)
      • ►  Aug 25 (7)
      • ►  Aug 24 (11)
      • ►  Aug 23 (9)
      • ►  Aug 22 (11)
      • ►  Aug 21 (8)
      • ►  Aug 20 (14)
      • ►  Aug 19 (9)
      • ►  Aug 18 (7)
      • ►  Aug 17 (3)
      • ►  Aug 16 (13)
      • ►  Aug 15 (7)
      • ►  Aug 14 (12)
      • ►  Aug 13 (12)
      • ►  Aug 12 (15)
      • ►  Aug 11 (13)
      • ►  Aug 10 (12)
      • ►  Aug 09 (17)
      • ►  Aug 08 (13)
      • ►  Aug 07 (8)
      • ►  Aug 06 (8)
      • ►  Aug 05 (17)
      • ►  Aug 04 (4)
      • ►  Aug 03 (7)
      • ►  Aug 02 (13)
      • ►  Aug 01 (6)
    • ►  July (305)
      • ►  Jul 31 (7)
      • ►  Jul 30 (14)
      • ►  Jul 29 (11)
      • ►  Jul 28 (17)
      • ►  Jul 27 (12)
      • ►  Jul 26 (13)
      • ►  Jul 25 (12)
      • ►  Jul 24 (4)
      • ►  Jul 23 (15)
      • ►  Jul 22 (8)
      • ►  Jul 21 (8)
      • ►  Jul 20 (11)
      • ►  Jul 19 (13)
      • ►  Jul 18 (5)
      • ►  Jul 17 (4)
      • ►  Jul 16 (7)
      • ►  Jul 15 (12)
      • ►  Jul 14 (12)
      • ►  Jul 13 (4)
      • ►  Jul 12 (11)
      • ►  Jul 11 (14)
      • ►  Jul 10 (10)
      • ►  Jul 09 (14)
      • ►  Jul 08 (10)
      • ►  Jul 07 (3)
      • ►  Jul 06 (9)
      • ►  Jul 05 (13)
      • ►  Jul 04 (9)
      • ►  Jul 03 (8)
      • ►  Jul 02 (8)
      • ►  Jul 01 (7)
    • ►  June (217)
      • ►  Jun 30 (5)
      • ►  Jun 29 (7)
      • ►  Jun 28 (6)
      • ►  Jun 27 (4)
      • ►  Jun 26 (4)
      • ►  Jun 25 (8)
      • ►  Jun 24 (9)
      • ►  Jun 23 (5)
      • ►  Jun 22 (5)
      • ►  Jun 21 (4)
      • ►  Jun 20 (4)
      • ►  Jun 19 (7)
      • ►  Jun 18 (10)
      • ►  Jun 17 (4)
      • ►  Jun 16 (10)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (9)
      • ►  Jun 08 (14)
      • ►  Jun 07 (2)
      • ►  Jun 06 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (11)
      • ►  Jun 03 (3)
      • ►  Jun 02 (15)
      • ►  Jun 01 (10)
    • ►  May (166)
      • ►  May 31 (3)
      • ►  May 30 (2)
      • ►  May 29 (6)
      • ►  May 28 (5)
      • ►  May 27 (9)
      • ►  May 26 (6)
      • ►  May 25 (3)
      • ►  May 24 (6)
      • ►  May 23 (6)
      • ►  May 22 (6)
      • ►  May 21 (8)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (6)
      • ►  May 14 (4)
      • ►  May 13 (4)
      • ►  May 12 (9)
      • ►  May 11 (12)
      • ►  May 10 (4)
      • ►  May 09 (7)
      • ►  May 08 (5)
      • ►  May 07 (8)
      • ►  May 06 (10)
      • ►  May 05 (2)
      • ►  May 04 (4)
      • ►  May 03 (2)
      • ►  May 02 (6)
      • ►  May 01 (3)
    • ►  April (275)
      • ►  Apr 29 (2)
      • ►  Apr 28 (8)
      • ►  Apr 27 (10)
      • ►  Apr 26 (11)
      • ►  Apr 25 (9)
      • ►  Apr 24 (7)
      • ►  Apr 23 (5)
      • ►  Apr 22 (8)
      • ►  Apr 21 (9)
      • ►  Apr 20 (8)
      • ►  Apr 19 (4)
      • ►  Apr 18 (9)
      • ►  Apr 17 (11)
      • ►  Apr 16 (15)
      • ►  Apr 15 (12)
      • ►  Apr 14 (15)
      • ►  Apr 13 (14)
      • ►  Apr 12 (15)
      • ►  Apr 11 (12)
      • ►  Apr 10 (14)
      • ►  Apr 09 (6)
      • ►  Apr 08 (16)
      • ►  Apr 07 (4)
      • ►  Apr 06 (9)
      • ►  Apr 05 (13)
      • ►  Apr 04 (8)
      • ►  Apr 03 (12)
      • ►  Apr 02 (5)
      • ►  Apr 01 (4)
    • ►  March (200)
      • ►  Mar 31 (6)
      • ►  Mar 30 (12)
      • ►  Mar 29 (9)
      • ►  Mar 28 (11)
      • ►  Mar 27 (13)
      • ►  Mar 26 (8)
      • ►  Mar 25 (9)
      • ►  Mar 24 (3)
      • ►  Mar 23 (7)
      • ►  Mar 22 (3)
      • ►  Mar 21 (16)
      • ►  Mar 20 (2)
      • ►  Mar 19 (7)
      • ►  Mar 18 (6)
      • ►  Mar 17 (12)
      • ►  Mar 16 (9)
      • ►  Mar 15 (10)
      • ►  Mar 14 (2)
      • ►  Mar 13 (8)
      • ►  Mar 12 (1)
      • ►  Mar 10 (4)
      • ►  Mar 09 (2)
      • ►  Mar 08 (1)
      • ►  Mar 07 (4)
      • ►  Mar 06 (6)
      • ►  Mar 05 (11)
      • ►  Mar 04 (9)
      • ►  Mar 02 (8)
      • ►  Mar 01 (1)
    • ►  February (220)
      • ►  Feb 29 (6)
      • ►  Feb 28 (1)
      • ►  Feb 27 (4)
      • ►  Feb 26 (6)
      • ►  Feb 25 (7)
      • ►  Feb 24 (4)
      • ►  Feb 23 (5)
      • ►  Feb 22 (7)
      • ►  Feb 20 (15)
      • ►  Feb 19 (4)
      • ►  Feb 18 (13)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (10)
      • ►  Feb 14 (9)
      • ►  Feb 13 (17)
      • ►  Feb 12 (9)
      • ►  Feb 11 (10)
      • ►  Feb 10 (18)
      • ►  Feb 09 (5)
      • ►  Feb 08 (9)
      • ►  Feb 07 (11)
      • ►  Feb 06 (6)
      • ►  Feb 05 (10)
      • ►  Feb 04 (4)
      • ►  Feb 03 (5)
      • ►  Feb 02 (8)
      • ►  Feb 01 (8)
    • ►  January (410)
      • ►  Jan 31 (13)
      • ►  Jan 30 (11)
      • ►  Jan 29 (14)
      • ►  Jan 28 (11)
      • ►  Jan 27 (20)
      • ►  Jan 26 (22)
      • ►  Jan 25 (16)
      • ►  Jan 24 (14)
      • ►  Jan 23 (18)
      • ►  Jan 22 (15)
      • ►  Jan 21 (11)
      • ►  Jan 20 (16)
      • ►  Jan 19 (5)
      • ►  Jan 18 (11)
      • ►  Jan 17 (11)
      • ►  Jan 16 (8)
      • ►  Jan 15 (27)
      • ►  Jan 14 (12)
      • ►  Jan 13 (16)
      • ►  Jan 12 (4)
      • ►  Jan 11 (8)
      • ►  Jan 10 (7)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (10)
      • ►  Jan 06 (13)
      • ►  Jan 05 (18)
      • ►  Jan 04 (9)
      • ►  Jan 03 (20)
      • ►  Jan 02 (14)
      • ►  Jan 01 (17)
  • ►  2023 (4333)
    • ►  December (314)
      • ►  Dec 31 (10)
      • ►  Dec 30 (18)
      • ►  Dec 29 (17)
      • ►  Dec 28 (8)
      • ►  Dec 27 (1)
      • ►  Dec 26 (14)
      • ►  Dec 25 (19)
      • ►  Dec 24 (20)
      • ►  Dec 23 (12)
      • ►  Dec 22 (12)
      • ►  Dec 21 (4)
      • ►  Dec 20 (18)
      • ►  Dec 19 (9)
      • ►  Dec 18 (5)
      • ►  Dec 17 (6)
      • ►  Dec 16 (17)
      • ►  Dec 15 (5)
      • ►  Dec 14 (16)
      • ►  Dec 13 (10)
      • ►  Dec 12 (7)
      • ►  Dec 11 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (3)
      • ►  Dec 08 (5)
      • ►  Dec 07 (5)
      • ►  Dec 06 (16)
      • ►  Dec 05 (13)
      • ►  Dec 04 (11)
      • ►  Dec 03 (8)
      • ►  Dec 02 (7)
      • ►  Dec 01 (9)
    • ►  November (353)
      • ►  Nov 30 (10)
      • ►  Nov 29 (8)
      • ►  Nov 28 (7)
      • ►  Nov 27 (13)
      • ►  Nov 26 (7)
      • ►  Nov 25 (4)
      • ►  Nov 23 (11)
      • ►  Nov 22 (6)
      • ►  Nov 21 (7)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (13)
      • ►  Nov 17 (10)
      • ►  Nov 16 (2)
      • ►  Nov 15 (16)
      • ►  Nov 14 (21)
      • ►  Nov 13 (14)
      • ►  Nov 12 (12)
      • ►  Nov 11 (19)
      • ►  Nov 10 (11)
      • ►  Nov 09 (24)
      • ►  Nov 08 (8)
      • ►  Nov 07 (11)
      • ►  Nov 06 (13)
      • ►  Nov 05 (18)
      • ►  Nov 04 (9)
      • ►  Nov 03 (21)
      • ►  Nov 02 (25)
      • ►  Nov 01 (22)
    • ►  October (549)
      • ►  Oct 31 (23)
      • ►  Oct 30 (19)
      • ►  Oct 29 (22)
      • ►  Oct 28 (30)
      • ►  Oct 27 (24)
      • ►  Oct 26 (28)
      • ►  Oct 25 (24)
      • ►  Oct 24 (20)
      • ►  Oct 23 (4)
      • ►  Oct 22 (24)
      • ►  Oct 21 (20)
      • ►  Oct 20 (17)
      • ►  Oct 19 (14)
      • ►  Oct 18 (14)
      • ►  Oct 17 (19)
      • ►  Oct 16 (12)
      • ►  Oct 15 (4)
      • ►  Oct 14 (23)
      • ►  Oct 13 (21)
      • ►  Oct 12 (22)
      • ►  Oct 11 (22)
      • ►  Oct 10 (11)
      • ►  Oct 09 (12)
      • ►  Oct 08 (19)
      • ►  Oct 07 (16)
      • ►  Oct 06 (19)
      • ►  Oct 05 (20)
      • ►  Oct 04 (11)
      • ►  Oct 03 (15)
      • ►  Oct 02 (11)
      • ►  Oct 01 (9)
    • ►  September (478)
      • ►  Sep 30 (25)
      • ►  Sep 29 (19)
      • ►  Sep 28 (28)
      • ►  Sep 27 (17)
      • ►  Sep 26 (21)
      • ►  Sep 25 (21)
      • ►  Sep 24 (6)
      • ►  Sep 23 (13)
      • ►  Sep 22 (6)
      • ►  Sep 21 (11)
      • ►  Sep 20 (9)
      • ►  Sep 19 (4)
      • ►  Sep 18 (6)
      • ►  Sep 17 (4)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (22)
      • ►  Sep 13 (9)
      • ►  Sep 12 (11)
      • ►  Sep 11 (13)
      • ►  Sep 10 (25)
      • ►  Sep 09 (26)
      • ►  Sep 08 (23)
      • ►  Sep 07 (20)
      • ►  Sep 06 (27)
      • ►  Sep 05 (20)
      • ►  Sep 04 (18)
      • ►  Sep 03 (11)
      • ►  Sep 02 (24)
      • ►  Sep 01 (15)
    • ►  August (464)
      • ►  Aug 31 (20)
      • ►  Aug 30 (24)
      • ►  Aug 29 (10)
      • ►  Aug 28 (17)
      • ►  Aug 27 (15)
      • ►  Aug 26 (20)
      • ►  Aug 25 (12)
      • ►  Aug 24 (8)
      • ►  Aug 23 (16)
      • ►  Aug 22 (12)
      • ►  Aug 21 (21)
      • ►  Aug 20 (18)
      • ►  Aug 19 (10)
      • ►  Aug 18 (19)
      • ►  Aug 17 (14)
      • ►  Aug 16 (15)
      • ►  Aug 15 (22)
      • ►  Aug 14 (22)
      • ►  Aug 13 (11)
      • ►  Aug 12 (18)
      • ►  Aug 11 (15)
      • ►  Aug 10 (15)
      • ►  Aug 09 (22)
      • ►  Aug 08 (19)
      • ►  Aug 07 (24)
      • ►  Aug 06 (17)
      • ►  Aug 05 (3)
      • ►  Aug 04 (7)
      • ►  Aug 03 (2)
      • ►  Aug 02 (6)
      • ►  Aug 01 (10)
    • ►  July (359)
      • ►  Jul 31 (21)
      • ►  Jul 30 (5)
      • ►  Jul 29 (15)
      • ►  Jul 28 (10)
      • ►  Jul 27 (12)
      • ►  Jul 26 (12)
      • ►  Jul 25 (2)
      • ►  Jul 23 (17)
      • ►  Jul 22 (5)
      • ►  Jul 21 (15)
      • ►  Jul 20 (9)
      • ►  Jul 19 (11)
      • ►  Jul 18 (24)
      • ►  Jul 17 (10)
      • ►  Jul 16 (12)
      • ►  Jul 15 (6)
      • ►  Jul 14 (10)
      • ►  Jul 13 (7)
      • ►  Jul 12 (14)
      • ►  Jul 11 (14)
      • ►  Jul 10 (8)
      • ►  Jul 09 (8)
      • ►  Jul 08 (10)
      • ►  Jul 07 (12)
      • ►  Jul 06 (18)
      • ►  Jul 05 (19)
      • ►  Jul 04 (8)
      • ►  Jul 03 (17)
      • ►  Jul 02 (9)
      • ►  Jul 01 (19)
    • ►  June (397)
      • ►  Jun 30 (17)
      • ►  Jun 29 (15)
      • ►  Jun 28 (6)
      • ►  Jun 27 (8)
      • ►  Jun 26 (15)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (23)
      • ►  Jun 22 (30)
      • ►  Jun 21 (20)
      • ►  Jun 20 (18)
      • ►  Jun 19 (18)
      • ►  Jun 18 (20)
      • ►  Jun 17 (16)
      • ►  Jun 16 (13)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (7)
      • ►  Jun 12 (5)
      • ►  Jun 11 (4)
      • ►  Jun 10 (4)
      • ►  Jun 09 (4)
      • ►  Jun 08 (5)
      • ►  Jun 07 (3)
      • ►  Jun 06 (3)
      • ►  Jun 05 (21)
      • ►  Jun 04 (24)
      • ►  Jun 03 (12)
      • ►  Jun 02 (18)
      • ►  Jun 01 (20)
    • ►  May (395)
      • ►  May 31 (15)
      • ►  May 30 (25)
      • ►  May 29 (24)
      • ►  May 28 (26)
      • ►  May 27 (21)
      • ►  May 26 (23)
      • ►  May 25 (14)
      • ►  May 24 (7)
      • ►  May 23 (6)
      • ►  May 22 (4)
      • ►  May 21 (6)
      • ►  May 20 (2)
      • ►  May 19 (9)
      • ►  May 18 (8)
      • ►  May 17 (11)
      • ►  May 16 (8)
      • ►  May 15 (14)
      • ►  May 14 (15)
      • ►  May 13 (12)
      • ►  May 12 (10)
      • ►  May 11 (16)
      • ►  May 10 (10)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (6)
      • ►  May 06 (8)
      • ►  May 05 (13)
      • ►  May 04 (14)
      • ►  May 03 (17)
      • ►  May 02 (12)
      • ►  May 01 (12)
    • ►  April (292)
      • ►  Apr 30 (13)
      • ►  Apr 29 (12)
      • ►  Apr 28 (19)
      • ►  Apr 27 (15)
      • ►  Apr 26 (18)
      • ►  Apr 25 (14)
      • ►  Apr 24 (24)
      • ►  Apr 23 (7)
      • ►  Apr 22 (21)
      • ►  Apr 21 (14)
      • ►  Apr 20 (10)
      • ►  Apr 19 (10)
      • ►  Apr 18 (12)
      • ►  Apr 17 (7)
      • ►  Apr 16 (8)
      • ►  Apr 15 (11)
      • ►  Apr 14 (9)
      • ►  Apr 13 (11)
      • ►  Apr 12 (12)
      • ►  Apr 11 (10)
      • ►  Apr 10 (13)
      • ►  Apr 09 (7)
      • ►  Apr 08 (10)
      • ►  Apr 07 (2)
      • ►  Apr 02 (1)
      • ►  Apr 01 (2)
    • ►  March (306)
      • ►  Mar 28 (1)
      • ►  Mar 27 (2)
      • ►  Mar 26 (3)
      • ►  Mar 25 (3)
      • ►  Mar 24 (5)
      • ►  Mar 22 (3)
      • ►  Mar 21 (3)
      • ►  Mar 20 (6)
      • ►  Mar 19 (17)
      • ►  Mar 18 (7)
      • ►  Mar 17 (23)
      • ►  Mar 16 (24)
      • ►  Mar 15 (18)
      • ►  Mar 14 (30)
      • ►  Mar 13 (24)
      • ►  Mar 12 (26)
      • ►  Mar 11 (13)
      • ►  Mar 10 (24)
      • ►  Mar 09 (22)
      • ►  Mar 08 (18)
      • ►  Mar 06 (9)
      • ►  Mar 05 (6)
      • ►  Mar 04 (7)
      • ►  Mar 03 (7)
      • ►  Mar 02 (3)
      • ►  Mar 01 (2)
    • ►  February (210)
      • ►  Feb 27 (1)
      • ►  Feb 26 (4)
      • ►  Feb 24 (12)
      • ►  Feb 23 (9)
      • ►  Feb 22 (9)
      • ►  Feb 21 (9)
      • ►  Feb 19 (4)
      • ►  Feb 16 (9)
      • ►  Feb 15 (2)
      • ►  Feb 14 (5)
      • ►  Feb 13 (1)
      • ►  Feb 12 (1)
      • ►  Feb 11 (13)
      • ►  Feb 10 (8)
      • ►  Feb 09 (12)
      • ►  Feb 08 (10)
      • ►  Feb 07 (19)
      • ►  Feb 06 (9)
      • ►  Feb 05 (18)
      • ►  Feb 04 (10)
      • ►  Feb 03 (13)
      • ►  Feb 02 (12)
      • ►  Feb 01 (20)
    • ►  January (216)
      • ►  Jan 31 (8)
      • ►  Jan 30 (11)
      • ►  Jan 29 (13)
      • ►  Jan 28 (7)
      • ►  Jan 27 (13)
      • ►  Jan 26 (13)
      • ►  Jan 25 (4)
      • ►  Jan 24 (2)
      • ►  Jan 23 (6)
      • ►  Jan 22 (7)
      • ►  Jan 21 (4)
      • ►  Jan 20 (5)
      • ►  Jan 19 (1)
      • ►  Jan 18 (3)
      • ►  Jan 17 (2)
      • ►  Jan 15 (1)
      • ►  Jan 14 (2)
      • ►  Jan 13 (13)
      • ►  Jan 12 (25)
      • ►  Jan 11 (13)
      • ►  Jan 10 (18)
      • ►  Jan 09 (18)
      • ►  Jan 07 (9)
      • ►  Jan 06 (2)
      • ►  Jan 05 (11)
      • ►  Jan 04 (3)
      • ►  Jan 03 (2)
  • ▼  2022 (2401)
    • ►  December (115)
      • ►  Dec 31 (1)
      • ►  Dec 30 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (8)
      • ►  Dec 08 (8)
      • ►  Dec 07 (12)
      • ►  Dec 06 (16)
      • ►  Dec 05 (11)
      • ►  Dec 04 (15)
      • ►  Dec 03 (15)
      • ►  Dec 02 (8)
      • ►  Dec 01 (12)
    • ►  November (498)
      • ►  Nov 30 (2)
      • ►  Nov 29 (11)
      • ►  Nov 28 (13)
      • ►  Nov 27 (1)
      • ►  Nov 26 (9)
      • ►  Nov 25 (13)
      • ►  Nov 24 (16)
      • ►  Nov 23 (8)
      • ►  Nov 22 (16)
      • ►  Nov 21 (21)
      • ►  Nov 20 (13)
      • ►  Nov 19 (24)
      • ►  Nov 18 (23)
      • ►  Nov 17 (28)
      • ►  Nov 16 (15)
      • ►  Nov 15 (22)
      • ►  Nov 14 (32)
      • ►  Nov 13 (20)
      • ►  Nov 12 (22)
      • ►  Nov 11 (30)
      • ►  Nov 10 (4)
      • ►  Nov 09 (21)
      • ►  Nov 08 (21)
      • ►  Nov 07 (21)
      • ►  Nov 06 (14)
      • ►  Nov 05 (19)
      • ►  Nov 04 (17)
      • ►  Nov 03 (14)
      • ►  Nov 02 (12)
      • ►  Nov 01 (16)
    • ►  October (272)
      • ►  Oct 31 (14)
      • ►  Oct 30 (12)
      • ►  Oct 29 (13)
      • ►  Oct 28 (9)
      • ►  Oct 27 (10)
      • ►  Oct 26 (6)
      • ►  Oct 25 (15)
      • ►  Oct 24 (11)
      • ►  Oct 23 (12)
      • ►  Oct 22 (9)
      • ►  Oct 21 (5)
      • ►  Oct 19 (5)
      • ►  Oct 18 (8)
      • ►  Oct 17 (4)
      • ►  Oct 16 (4)
      • ►  Oct 15 (10)
      • ►  Oct 14 (6)
      • ►  Oct 13 (8)
      • ►  Oct 12 (9)
      • ►  Oct 11 (14)
      • ►  Oct 10 (15)
      • ►  Oct 09 (9)
      • ►  Oct 08 (12)
      • ►  Oct 07 (14)
      • ►  Oct 06 (7)
      • ►  Oct 05 (13)
      • ►  Oct 04 (8)
      • ►  Oct 03 (10)
    • ►  September (149)
      • ►  Sep 30 (4)
      • ►  Sep 29 (6)
      • ►  Sep 28 (4)
      • ►  Sep 27 (3)
      • ►  Sep 26 (6)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (6)
      • ►  Sep 22 (1)
      • ►  Sep 21 (6)
      • ►  Sep 20 (5)
      • ►  Sep 19 (6)
      • ►  Sep 17 (5)
      • ►  Sep 16 (2)
      • ►  Sep 15 (4)
      • ►  Sep 14 (6)
      • ►  Sep 13 (3)
      • ►  Sep 12 (5)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (11)
      • ►  Sep 08 (6)
      • ►  Sep 07 (7)
      • ►  Sep 06 (6)
      • ►  Sep 05 (8)
      • ►  Sep 04 (5)
      • ►  Sep 03 (12)
      • ►  Sep 02 (2)
      • ►  Sep 01 (9)
    • ▼  August (231)
      • ►  Aug 31 (7)
      • ►  Aug 30 (9)
      • ►  Aug 29 (8)
      • ►  Aug 28 (10)
      • ►  Aug 27 (6)
      • ►  Aug 26 (10)
      • ►  Aug 25 (9)
      • ►  Aug 24 (8)
      • ►  Aug 23 (12)
      • ►  Aug 22 (6)
      • ►  Aug 21 (4)
      • ►  Aug 20 (10)
      • ►  Aug 19 (12)
      • ►  Aug 18 (7)
      • ▼  Aug 17 (10)
        • Hyperloop
        • Neodymium magnet
        • Protests against Donald Trump
        • Numerical methods for ordinary differential equations
        • Two-body Dirac equations
        • Proteases in angiogenesis
        • Race in the United States criminal justice system
        • Maglev
        • Magnet
        • Republicanism
      • ►  Aug 16 (9)
      • ►  Aug 15 (10)
      • ►  Aug 14 (7)
      • ►  Aug 13 (9)
      • ►  Aug 12 (7)
      • ►  Aug 11 (8)
      • ►  Aug 10 (5)
      • ►  Aug 09 (7)
      • ►  Aug 08 (8)
      • ►  Aug 07 (9)
      • ►  Aug 06 (10)
      • ►  Aug 05 (10)
      • ►  Aug 04 (4)
    • ►  July (258)
      • ►  Jul 31 (1)
      • ►  Jul 30 (3)
      • ►  Jul 29 (3)
      • ►  Jul 28 (1)
      • ►  Jul 27 (5)
      • ►  Jul 26 (5)
      • ►  Jul 25 (4)
      • ►  Jul 24 (4)
      • ►  Jul 23 (6)
      • ►  Jul 22 (5)
      • ►  Jul 21 (2)
      • ►  Jul 20 (10)
      • ►  Jul 19 (5)
      • ►  Jul 18 (8)
      • ►  Jul 17 (1)
      • ►  Jul 15 (6)
      • ►  Jul 14 (11)
      • ►  Jul 13 (9)
      • ►  Jul 12 (8)
      • ►  Jul 11 (17)
      • ►  Jul 10 (16)
      • ►  Jul 09 (14)
      • ►  Jul 08 (18)
      • ►  Jul 07 (12)
      • ►  Jul 06 (12)
      • ►  Jul 05 (17)
      • ►  Jul 04 (13)
      • ►  Jul 03 (15)
      • ►  Jul 02 (12)
      • ►  Jul 01 (15)
    • ►  June (133)
      • ►  Jun 30 (10)
      • ►  Jun 29 (9)
      • ►  Jun 28 (9)
      • ►  Jun 27 (9)
      • ►  Jun 26 (11)
      • ►  Jun 25 (12)
      • ►  Jun 24 (12)
      • ►  Jun 23 (10)
      • ►  Jun 22 (10)
      • ►  Jun 21 (4)
      • ►  Jun 20 (3)
      • ►  Jun 19 (8)
      • ►  Jun 18 (2)
      • ►  Jun 17 (2)
      • ►  Jun 15 (3)
      • ►  Jun 14 (1)
      • ►  Jun 13 (1)
      • ►  Jun 07 (1)
      • ►  Jun 04 (5)
      • ►  Jun 03 (2)
      • ►  Jun 02 (7)
      • ►  Jun 01 (2)
    • ►  May (168)
      • ►  May 31 (1)
      • ►  May 30 (2)
      • ►  May 29 (1)
      • ►  May 28 (1)
      • ►  May 26 (4)
      • ►  May 24 (1)
      • ►  May 23 (1)
      • ►  May 21 (3)
      • ►  May 20 (3)
      • ►  May 19 (2)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (11)
      • ►  May 14 (7)
      • ►  May 13 (8)
      • ►  May 12 (8)
      • ►  May 11 (7)
      • ►  May 10 (10)
      • ►  May 09 (11)
      • ►  May 08 (14)
      • ►  May 07 (7)
      • ►  May 06 (9)
      • ►  May 05 (6)
      • ►  May 04 (12)
      • ►  May 03 (10)
      • ►  May 02 (7)
      • ►  May 01 (9)
    • ►  April (59)
      • ►  Apr 30 (8)
      • ►  Apr 29 (11)
      • ►  Apr 28 (3)
      • ►  Apr 27 (5)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (1)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (2)
      • ►  Apr 13 (1)
      • ►  Apr 11 (2)
      • ►  Apr 09 (1)
      • ►  Apr 08 (4)
      • ►  Apr 07 (1)
      • ►  Apr 06 (4)
      • ►  Apr 05 (7)
      • ►  Apr 04 (1)
    • ►  March (114)
      • ►  Mar 27 (1)
      • ►  Mar 26 (8)
      • ►  Mar 25 (1)
      • ►  Mar 23 (4)
      • ►  Mar 22 (4)
      • ►  Mar 21 (2)
      • ►  Mar 20 (8)
      • ►  Mar 17 (4)
      • ►  Mar 16 (1)
      • ►  Mar 15 (8)
      • ►  Mar 14 (1)
      • ►  Mar 13 (4)
      • ►  Mar 12 (6)
      • ►  Mar 11 (4)
      • ►  Mar 10 (6)
      • ►  Mar 09 (6)
      • ►  Mar 08 (12)
      • ►  Mar 07 (5)
      • ►  Mar 06 (3)
      • ►  Mar 05 (4)
      • ►  Mar 04 (2)
      • ►  Mar 03 (6)
      • ►  Mar 02 (6)
      • ►  Mar 01 (8)
    • ►  February (136)
      • ►  Feb 28 (3)
      • ►  Feb 27 (3)
      • ►  Feb 26 (4)
      • ►  Feb 25 (1)
      • ►  Feb 24 (1)
      • ►  Feb 23 (4)
      • ►  Feb 22 (6)
      • ►  Feb 21 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (2)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (7)
      • ►  Feb 14 (5)
      • ►  Feb 13 (6)
      • ►  Feb 12 (3)
      • ►  Feb 11 (7)
      • ►  Feb 10 (5)
      • ►  Feb 09 (4)
      • ►  Feb 08 (3)
      • ►  Feb 07 (2)
      • ►  Feb 06 (5)
      • ►  Feb 05 (6)
      • ►  Feb 04 (4)
      • ►  Feb 03 (11)
      • ►  Feb 02 (13)
      • ►  Feb 01 (15)
    • ►  January (268)
      • ►  Jan 31 (16)
      • ►  Jan 30 (21)
      • ►  Jan 29 (11)
      • ►  Jan 28 (14)
      • ►  Jan 27 (11)
      • ►  Jan 26 (14)
      • ►  Jan 25 (5)
      • ►  Jan 23 (1)
      • ►  Jan 22 (2)
      • ►  Jan 19 (2)
      • ►  Jan 17 (9)
      • ►  Jan 16 (3)
      • ►  Jan 14 (14)
      • ►  Jan 13 (5)
      • ►  Jan 12 (6)
      • ►  Jan 11 (8)
      • ►  Jan 10 (13)
      • ►  Jan 09 (4)
      • ►  Jan 08 (14)
      • ►  Jan 07 (9)
      • ►  Jan 06 (10)
      • ►  Jan 05 (15)
      • ►  Jan 04 (13)
      • ►  Jan 03 (14)
      • ►  Jan 02 (19)
      • ►  Jan 01 (15)
  • ►  2021 (3238)
    • ►  December (507)
      • ►  Dec 31 (10)
      • ►  Dec 30 (9)
      • ►  Dec 29 (14)
      • ►  Dec 28 (11)
      • ►  Dec 27 (18)
      • ►  Dec 26 (12)
      • ►  Dec 25 (18)
      • ►  Dec 24 (13)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (6)
      • ►  Dec 20 (15)
      • ►  Dec 19 (12)
      • ►  Dec 18 (11)
      • ►  Dec 17 (19)
      • ►  Dec 16 (13)
      • ►  Dec 15 (22)
      • ►  Dec 14 (25)
      • ►  Dec 13 (23)
      • ►  Dec 12 (21)
      • ►  Dec 11 (21)
      • ►  Dec 10 (22)
      • ►  Dec 09 (18)
      • ►  Dec 08 (23)
      • ►  Dec 07 (25)
      • ►  Dec 06 (19)
      • ►  Dec 05 (11)
      • ►  Dec 04 (20)
      • ►  Dec 03 (19)
      • ►  Dec 02 (25)
      • ►  Dec 01 (10)
    • ►  November (305)
      • ►  Nov 30 (16)
      • ►  Nov 29 (20)
      • ►  Nov 28 (11)
      • ►  Nov 27 (16)
      • ►  Nov 26 (17)
      • ►  Nov 25 (20)
      • ►  Nov 24 (14)
      • ►  Nov 23 (15)
      • ►  Nov 22 (16)
      • ►  Nov 21 (16)
      • ►  Nov 20 (16)
      • ►  Nov 19 (11)
      • ►  Nov 18 (12)
      • ►  Nov 17 (10)
      • ►  Nov 16 (13)
      • ►  Nov 15 (9)
      • ►  Nov 14 (6)
      • ►  Nov 13 (5)
      • ►  Nov 12 (10)
      • ►  Nov 11 (3)
      • ►  Nov 10 (6)
      • ►  Nov 09 (7)
      • ►  Nov 08 (2)
      • ►  Nov 07 (1)
      • ►  Nov 06 (5)
      • ►  Nov 05 (4)
      • ►  Nov 04 (2)
      • ►  Nov 03 (5)
      • ►  Nov 02 (3)
      • ►  Nov 01 (14)
    • ►  October (238)
      • ►  Oct 31 (16)
      • ►  Oct 30 (6)
      • ►  Oct 29 (13)
      • ►  Oct 28 (16)
      • ►  Oct 27 (10)
      • ►  Oct 26 (8)
      • ►  Oct 25 (8)
      • ►  Oct 24 (5)
      • ►  Oct 23 (11)
      • ►  Oct 22 (5)
      • ►  Oct 21 (12)
      • ►  Oct 20 (4)
      • ►  Oct 19 (2)
      • ►  Oct 18 (2)
      • ►  Oct 17 (2)
      • ►  Oct 16 (1)
      • ►  Oct 15 (4)
      • ►  Oct 12 (2)
      • ►  Oct 11 (4)
      • ►  Oct 10 (9)
      • ►  Oct 09 (13)
      • ►  Oct 08 (4)
      • ►  Oct 07 (6)
      • ►  Oct 06 (6)
      • ►  Oct 05 (9)
      • ►  Oct 04 (12)
      • ►  Oct 03 (12)
      • ►  Oct 02 (20)
      • ►  Oct 01 (16)
    • ►  September (358)
      • ►  Sep 30 (16)
      • ►  Sep 29 (18)
      • ►  Sep 28 (10)
      • ►  Sep 27 (17)
      • ►  Sep 26 (11)
      • ►  Sep 25 (15)
      • ►  Sep 24 (11)
      • ►  Sep 23 (12)
      • ►  Sep 22 (7)
      • ►  Sep 21 (8)
      • ►  Sep 20 (19)
      • ►  Sep 19 (14)
      • ►  Sep 18 (16)
      • ►  Sep 17 (17)
      • ►  Sep 16 (20)
      • ►  Sep 15 (17)
      • ►  Sep 14 (8)
      • ►  Sep 13 (19)
      • ►  Sep 12 (13)
      • ►  Sep 11 (11)
      • ►  Sep 10 (10)
      • ►  Sep 09 (13)
      • ►  Sep 08 (8)
      • ►  Sep 07 (9)
      • ►  Sep 06 (6)
      • ►  Sep 05 (10)
      • ►  Sep 04 (8)
      • ►  Sep 03 (6)
      • ►  Sep 02 (4)
      • ►  Sep 01 (5)
    • ►  August (213)
      • ►  Aug 31 (6)
      • ►  Aug 30 (10)
      • ►  Aug 29 (4)
      • ►  Aug 26 (3)
      • ►  Aug 25 (2)
      • ►  Aug 23 (4)
      • ►  Aug 22 (2)
      • ►  Aug 21 (10)
      • ►  Aug 20 (12)
      • ►  Aug 19 (10)
      • ►  Aug 18 (13)
      • ►  Aug 17 (8)
      • ►  Aug 16 (12)
      • ►  Aug 15 (15)
      • ►  Aug 14 (12)
      • ►  Aug 13 (10)
      • ►  Aug 12 (3)
      • ►  Aug 11 (7)
      • ►  Aug 10 (7)
      • ►  Aug 09 (5)
      • ►  Aug 08 (7)
      • ►  Aug 07 (9)
      • ►  Aug 06 (9)
      • ►  Aug 05 (6)
      • ►  Aug 04 (5)
      • ►  Aug 03 (4)
      • ►  Aug 02 (6)
      • ►  Aug 01 (12)
    • ►  July (213)
      • ►  Jul 31 (18)
      • ►  Jul 30 (7)
      • ►  Jul 29 (17)
      • ►  Jul 28 (16)
      • ►  Jul 27 (6)
      • ►  Jul 25 (1)
      • ►  Jul 24 (7)
      • ►  Jul 23 (5)
      • ►  Jul 22 (13)
      • ►  Jul 21 (3)
      • ►  Jul 20 (8)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (6)
      • ►  Jul 16 (16)
      • ►  Jul 15 (7)
      • ►  Jul 14 (8)
      • ►  Jul 13 (8)
      • ►  Jul 12 (5)
      • ►  Jul 11 (1)
      • ►  Jul 09 (4)
      • ►  Jul 08 (3)
      • ►  Jul 07 (1)
      • ►  Jul 05 (1)
      • ►  Jul 04 (2)
      • ►  Jul 03 (8)
      • ►  Jul 02 (5)
      • ►  Jul 01 (17)
    • ►  June (292)
      • ►  Jun 30 (13)
      • ►  Jun 29 (19)
      • ►  Jun 28 (17)
      • ►  Jun 27 (12)
      • ►  Jun 26 (27)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (12)
      • ►  Jun 22 (11)
      • ►  Jun 21 (16)
      • ►  Jun 20 (7)
      • ►  Jun 19 (9)
      • ►  Jun 18 (14)
      • ►  Jun 17 (7)
      • ►  Jun 16 (11)
      • ►  Jun 15 (9)
      • ►  Jun 14 (12)
      • ►  Jun 13 (2)
      • ►  Jun 12 (4)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (2)
      • ►  Jun 08 (5)
      • ►  Jun 07 (4)
      • ►  Jun 06 (3)
      • ►  Jun 05 (4)
      • ►  Jun 04 (4)
      • ►  Jun 03 (8)
      • ►  Jun 02 (6)
      • ►  Jun 01 (11)
    • ►  May (302)
      • ►  May 31 (14)
      • ►  May 30 (21)
      • ►  May 29 (11)
      • ►  May 28 (21)
      • ►  May 27 (8)
      • ►  May 26 (5)
      • ►  May 25 (11)
      • ►  May 24 (13)
      • ►  May 23 (5)
      • ►  May 22 (13)
      • ►  May 21 (8)
      • ►  May 20 (8)
      • ►  May 19 (8)
      • ►  May 18 (11)
      • ►  May 17 (12)
      • ►  May 16 (17)
      • ►  May 15 (13)
      • ►  May 14 (10)
      • ►  May 13 (8)
      • ►  May 12 (16)
      • ►  May 11 (11)
      • ►  May 10 (16)
      • ►  May 09 (9)
      • ►  May 08 (7)
      • ►  May 07 (5)
      • ►  May 06 (7)
      • ►  May 05 (1)
      • ►  May 04 (1)
      • ►  May 03 (3)
      • ►  May 02 (1)
      • ►  May 01 (8)
    • ►  April (398)
      • ►  Apr 30 (7)
      • ►  Apr 29 (6)
      • ►  Apr 28 (11)
      • ►  Apr 27 (5)
      • ►  Apr 26 (21)
      • ►  Apr 25 (18)
      • ►  Apr 24 (16)
      • ►  Apr 23 (21)
      • ►  Apr 22 (19)
      • ►  Apr 21 (14)
      • ►  Apr 20 (16)
      • ►  Apr 19 (25)
      • ►  Apr 18 (11)
      • ►  Apr 17 (3)
      • ►  Apr 16 (9)
      • ►  Apr 15 (8)
      • ►  Apr 14 (11)
      • ►  Apr 13 (19)
      • ►  Apr 12 (9)
      • ►  Apr 11 (15)
      • ►  Apr 10 (11)
      • ►  Apr 09 (14)
      • ►  Apr 08 (15)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (12)
      • ►  Apr 04 (14)
      • ►  Apr 03 (17)
      • ►  Apr 02 (16)
      • ►  Apr 01 (7)
    • ►  March (330)
      • ►  Mar 31 (7)
      • ►  Mar 30 (8)
      • ►  Mar 29 (11)
      • ►  Mar 28 (16)
      • ►  Mar 27 (10)
      • ►  Mar 26 (12)
      • ►  Mar 25 (19)
      • ►  Mar 24 (14)
      • ►  Mar 23 (14)
      • ►  Mar 22 (11)
      • ►  Mar 21 (12)
      • ►  Mar 20 (14)
      • ►  Mar 19 (15)
      • ►  Mar 18 (17)
      • ►  Mar 17 (4)
      • ►  Mar 16 (12)
      • ►  Mar 15 (18)
      • ►  Mar 14 (9)
      • ►  Mar 13 (12)
      • ►  Mar 12 (12)
      • ►  Mar 11 (14)
      • ►  Mar 10 (7)
      • ►  Mar 09 (7)
      • ►  Mar 08 (11)
      • ►  Mar 07 (9)
      • ►  Mar 06 (7)
      • ►  Mar 05 (9)
      • ►  Mar 04 (4)
      • ►  Mar 03 (5)
      • ►  Mar 02 (5)
      • ►  Mar 01 (5)
    • ►  February (76)
      • ►  Feb 28 (8)
      • ►  Feb 27 (11)
      • ►  Feb 26 (4)
      • ►  Feb 25 (4)
      • ►  Feb 24 (1)
      • ►  Feb 23 (3)
      • ►  Feb 22 (2)
      • ►  Feb 21 (1)
      • ►  Feb 20 (3)
      • ►  Feb 19 (3)
      • ►  Feb 18 (4)
      • ►  Feb 17 (8)
      • ►  Feb 16 (2)
      • ►  Feb 15 (6)
      • ►  Feb 14 (1)
      • ►  Feb 13 (3)
      • ►  Feb 12 (5)
      • ►  Feb 10 (2)
      • ►  Feb 08 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (2)
      • ►  Feb 02 (1)
    • ►  January (6)
      • ►  Jan 31 (1)
      • ►  Jan 24 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (3)
  • ►  2020 (2688)
    • ►  December (67)
      • ►  Dec 29 (1)
      • ►  Dec 28 (3)
      • ►  Dec 27 (1)
      • ►  Dec 23 (5)
      • ►  Dec 21 (4)
      • ►  Dec 19 (1)
      • ►  Dec 18 (2)
      • ►  Dec 11 (1)
      • ►  Dec 10 (6)
      • ►  Dec 09 (15)
      • ►  Dec 08 (8)
      • ►  Dec 07 (10)
      • ►  Dec 06 (5)
      • ►  Dec 05 (5)
    • ►  November (141)
      • ►  Nov 30 (5)
      • ►  Nov 29 (5)
      • ►  Nov 28 (1)
      • ►  Nov 27 (8)
      • ►  Nov 26 (20)
      • ►  Nov 25 (9)
      • ►  Nov 24 (11)
      • ►  Nov 23 (9)
      • ►  Nov 22 (11)
      • ►  Nov 21 (12)
      • ►  Nov 20 (3)
      • ►  Nov 19 (10)
      • ►  Nov 18 (7)
      • ►  Nov 17 (8)
      • ►  Nov 16 (2)
      • ►  Nov 15 (4)
      • ►  Nov 14 (8)
      • ►  Nov 13 (4)
      • ►  Nov 12 (2)
      • ►  Nov 10 (1)
      • ►  Nov 02 (1)
    • ►  October (190)
      • ►  Oct 26 (1)
      • ►  Oct 25 (4)
      • ►  Oct 24 (19)
      • ►  Oct 23 (16)
      • ►  Oct 22 (2)
      • ►  Oct 21 (1)
      • ►  Oct 20 (1)
      • ►  Oct 16 (2)
      • ►  Oct 11 (11)
      • ►  Oct 10 (8)
      • ►  Oct 09 (14)
      • ►  Oct 08 (18)
      • ►  Oct 07 (9)
      • ►  Oct 06 (17)
      • ►  Oct 05 (17)
      • ►  Oct 04 (4)
      • ►  Oct 03 (14)
      • ►  Oct 02 (13)
      • ►  Oct 01 (19)
    • ►  September (371)
      • ►  Sep 30 (12)
      • ►  Sep 29 (11)
      • ►  Sep 28 (14)
      • ►  Sep 27 (14)
      • ►  Sep 26 (13)
      • ►  Sep 25 (25)
      • ►  Sep 24 (30)
      • ►  Sep 23 (16)
      • ►  Sep 22 (11)
      • ►  Sep 21 (18)
      • ►  Sep 20 (16)
      • ►  Sep 19 (23)
      • ►  Sep 18 (22)
      • ►  Sep 17 (15)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (9)
      • ►  Sep 13 (11)
      • ►  Sep 12 (9)
      • ►  Sep 11 (6)
      • ►  Sep 10 (1)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (7)
      • ►  Sep 06 (13)
      • ►  Sep 05 (8)
      • ►  Sep 04 (6)
      • ►  Sep 03 (1)
      • ►  Sep 02 (3)
      • ►  Sep 01 (10)
    • ►  August (112)
      • ►  Aug 31 (12)
      • ►  Aug 30 (2)
      • ►  Aug 29 (7)
      • ►  Aug 28 (2)
      • ►  Aug 27 (1)
      • ►  Aug 26 (1)
      • ►  Aug 24 (2)
      • ►  Aug 23 (2)
      • ►  Aug 21 (3)
      • ►  Aug 20 (4)
      • ►  Aug 19 (8)
      • ►  Aug 18 (5)
      • ►  Aug 17 (4)
      • ►  Aug 16 (6)
      • ►  Aug 15 (4)
      • ►  Aug 14 (1)
      • ►  Aug 13 (2)
      • ►  Aug 12 (4)
      • ►  Aug 11 (5)
      • ►  Aug 10 (7)
      • ►  Aug 09 (8)
      • ►  Aug 08 (4)
      • ►  Aug 07 (1)
      • ►  Aug 06 (5)
      • ►  Aug 05 (2)
      • ►  Aug 04 (1)
      • ►  Aug 03 (4)
      • ►  Aug 02 (1)
      • ►  Aug 01 (4)
    • ►  July (227)
      • ►  Jul 30 (3)
      • ►  Jul 29 (6)
      • ►  Jul 28 (2)
      • ►  Jul 27 (1)
      • ►  Jul 26 (7)
      • ►  Jul 25 (3)
      • ►  Jul 24 (3)
      • ►  Jul 23 (14)
      • ►  Jul 22 (1)
      • ►  Jul 21 (12)
      • ►  Jul 20 (8)
      • ►  Jul 19 (10)
      • ►  Jul 18 (12)
      • ►  Jul 17 (4)
      • ►  Jul 16 (12)
      • ►  Jul 15 (12)
      • ►  Jul 14 (8)
      • ►  Jul 13 (13)
      • ►  Jul 12 (8)
      • ►  Jul 11 (14)
      • ►  Jul 10 (7)
      • ►  Jul 09 (9)
      • ►  Jul 08 (7)
      • ►  Jul 07 (10)
      • ►  Jul 06 (8)
      • ►  Jul 05 (8)
      • ►  Jul 04 (8)
      • ►  Jul 03 (6)
      • ►  Jul 02 (4)
      • ►  Jul 01 (7)
    • ►  June (243)
      • ►  Jun 30 (5)
      • ►  Jun 29 (3)
      • ►  Jun 28 (4)
      • ►  Jun 27 (6)
      • ►  Jun 26 (4)
      • ►  Jun 25 (2)
      • ►  Jun 24 (3)
      • ►  Jun 23 (5)
      • ►  Jun 22 (6)
      • ►  Jun 20 (5)
      • ►  Jun 19 (6)
      • ►  Jun 18 (5)
      • ►  Jun 17 (16)
      • ►  Jun 16 (17)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (8)
      • ►  Jun 12 (11)
      • ►  Jun 11 (6)
      • ►  Jun 10 (15)
      • ►  Jun 09 (6)
      • ►  Jun 08 (20)
      • ►  Jun 07 (10)
      • ►  Jun 06 (11)
      • ►  Jun 05 (13)
      • ►  Jun 04 (12)
      • ►  Jun 03 (11)
      • ►  Jun 02 (6)
      • ►  Jun 01 (8)
    • ►  May (405)
      • ►  May 31 (8)
      • ►  May 30 (6)
      • ►  May 29 (16)
      • ►  May 28 (10)
      • ►  May 27 (15)
      • ►  May 26 (18)
      • ►  May 25 (14)
      • ►  May 24 (23)
      • ►  May 23 (15)
      • ►  May 22 (21)
      • ►  May 21 (13)
      • ►  May 20 (22)
      • ►  May 19 (25)
      • ►  May 18 (17)
      • ►  May 17 (21)
      • ►  May 16 (10)
      • ►  May 15 (12)
      • ►  May 14 (22)
      • ►  May 13 (13)
      • ►  May 12 (14)
      • ►  May 11 (10)
      • ►  May 10 (8)
      • ►  May 09 (15)
      • ►  May 08 (17)
      • ►  May 07 (1)
      • ►  May 06 (3)
      • ►  May 05 (11)
      • ►  May 04 (11)
      • ►  May 03 (7)
      • ►  May 02 (2)
      • ►  May 01 (5)
    • ►  April (183)
      • ►  Apr 30 (10)
      • ►  Apr 29 (6)
      • ►  Apr 28 (7)
      • ►  Apr 27 (9)
      • ►  Apr 26 (8)
      • ►  Apr 25 (10)
      • ►  Apr 24 (8)
      • ►  Apr 23 (10)
      • ►  Apr 22 (4)
      • ►  Apr 21 (10)
      • ►  Apr 20 (9)
      • ►  Apr 19 (10)
      • ►  Apr 18 (22)
      • ►  Apr 17 (8)
      • ►  Apr 16 (8)
      • ►  Apr 15 (5)
      • ►  Apr 14 (2)
      • ►  Apr 13 (4)
      • ►  Apr 12 (1)
      • ►  Apr 11 (7)
      • ►  Apr 10 (8)
      • ►  Apr 09 (1)
      • ►  Apr 07 (3)
      • ►  Apr 06 (1)
      • ►  Apr 03 (3)
      • ►  Apr 02 (3)
      • ►  Apr 01 (6)
    • ►  March (208)
      • ►  Mar 31 (10)
      • ►  Mar 30 (9)
      • ►  Mar 29 (4)
      • ►  Mar 28 (3)
      • ►  Mar 27 (11)
      • ►  Mar 26 (5)
      • ►  Mar 25 (5)
      • ►  Mar 24 (7)
      • ►  Mar 23 (5)
      • ►  Mar 22 (7)
      • ►  Mar 21 (7)
      • ►  Mar 20 (9)
      • ►  Mar 19 (8)
      • ►  Mar 18 (3)
      • ►  Mar 17 (1)
      • ►  Mar 16 (1)
      • ►  Mar 14 (5)
      • ►  Mar 13 (8)
      • ►  Mar 12 (11)
      • ►  Mar 11 (9)
      • ►  Mar 10 (6)
      • ►  Mar 09 (10)
      • ►  Mar 08 (8)
      • ►  Mar 07 (10)
      • ►  Mar 06 (7)
      • ►  Mar 05 (11)
      • ►  Mar 04 (15)
      • ►  Mar 03 (9)
      • ►  Mar 02 (4)
    • ►  February (255)
      • ►  Feb 28 (6)
      • ►  Feb 27 (7)
      • ►  Feb 26 (6)
      • ►  Feb 25 (5)
      • ►  Feb 24 (12)
      • ►  Feb 22 (9)
      • ►  Feb 21 (11)
      • ►  Feb 20 (9)
      • ►  Feb 19 (9)
      • ►  Feb 18 (4)
      • ►  Feb 17 (9)
      • ►  Feb 16 (9)
      • ►  Feb 15 (12)
      • ►  Feb 14 (15)
      • ►  Feb 13 (13)
      • ►  Feb 12 (10)
      • ►  Feb 11 (12)
      • ►  Feb 10 (14)
      • ►  Feb 09 (7)
      • ►  Feb 08 (8)
      • ►  Feb 07 (11)
      • ►  Feb 06 (8)
      • ►  Feb 05 (14)
      • ►  Feb 04 (7)
      • ►  Feb 03 (12)
      • ►  Feb 02 (12)
      • ►  Feb 01 (4)
    • ►  January (286)
      • ►  Jan 31 (10)
      • ►  Jan 30 (12)
      • ►  Jan 29 (10)
      • ►  Jan 28 (6)
      • ►  Jan 27 (11)
      • ►  Jan 26 (11)
      • ►  Jan 25 (11)
      • ►  Jan 24 (13)
      • ►  Jan 23 (17)
      • ►  Jan 22 (6)
      • ►  Jan 21 (10)
      • ►  Jan 20 (9)
      • ►  Jan 19 (12)
      • ►  Jan 18 (6)
      • ►  Jan 17 (11)
      • ►  Jan 16 (6)
      • ►  Jan 15 (7)
      • ►  Jan 14 (8)
      • ►  Jan 13 (10)
      • ►  Jan 12 (9)
      • ►  Jan 11 (1)
      • ►  Jan 10 (11)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (13)
      • ►  Jan 06 (5)
      • ►  Jan 05 (11)
      • ►  Jan 04 (8)
      • ►  Jan 03 (6)
      • ►  Jan 02 (11)
      • ►  Jan 01 (6)
  • ►  2019 (3306)
    • ►  December (344)
      • ►  Dec 31 (13)
      • ►  Dec 30 (9)
      • ►  Dec 29 (10)
      • ►  Dec 28 (15)
      • ►  Dec 27 (10)
      • ►  Dec 26 (6)
      • ►  Dec 25 (13)
      • ►  Dec 24 (10)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (13)
      • ►  Dec 20 (14)
      • ►  Dec 19 (10)
      • ►  Dec 18 (12)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (11)
      • ►  Dec 14 (19)
      • ►  Dec 13 (10)
      • ►  Dec 12 (15)
      • ►  Dec 11 (10)
      • ►  Dec 10 (9)
      • ►  Dec 09 (12)
      • ►  Dec 08 (9)
      • ►  Dec 07 (10)
      • ►  Dec 06 (7)
      • ►  Dec 05 (10)
      • ►  Dec 04 (8)
      • ►  Dec 03 (11)
      • ►  Dec 02 (10)
      • ►  Dec 01 (7)
    • ►  November (197)
      • ►  Nov 30 (13)
      • ►  Nov 29 (14)
      • ►  Nov 28 (11)
      • ►  Nov 27 (9)
      • ►  Nov 26 (5)
      • ►  Nov 25 (3)
      • ►  Nov 24 (11)
      • ►  Nov 23 (2)
      • ►  Nov 22 (7)
      • ►  Nov 21 (4)
      • ►  Nov 20 (4)
      • ►  Nov 19 (2)
      • ►  Nov 18 (7)
      • ►  Nov 17 (3)
      • ►  Nov 16 (9)
      • ►  Nov 15 (1)
      • ►  Nov 14 (3)
      • ►  Nov 13 (14)
      • ►  Nov 12 (2)
      • ►  Nov 11 (5)
      • ►  Nov 10 (5)
      • ►  Nov 09 (4)
      • ►  Nov 08 (11)
      • ►  Nov 07 (3)
      • ►  Nov 06 (9)
      • ►  Nov 05 (7)
      • ►  Nov 04 (2)
      • ►  Nov 03 (7)
      • ►  Nov 02 (10)
      • ►  Nov 01 (10)
    • ►  October (154)
      • ►  Oct 31 (7)
      • ►  Oct 30 (8)
      • ►  Oct 29 (5)
      • ►  Oct 28 (12)
      • ►  Oct 27 (5)
      • ►  Oct 26 (12)
      • ►  Oct 25 (7)
      • ►  Oct 24 (7)
      • ►  Oct 23 (5)
      • ►  Oct 22 (14)
      • ►  Oct 21 (9)
      • ►  Oct 20 (8)
      • ►  Oct 19 (4)
      • ►  Oct 18 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (3)
      • ►  Oct 15 (9)
      • ►  Oct 14 (7)
      • ►  Oct 13 (4)
      • ►  Oct 12 (5)
      • ►  Oct 10 (2)
      • ►  Oct 09 (10)
      • ►  Oct 07 (2)
      • ►  Oct 05 (1)
      • ►  Oct 02 (1)
    • ►  September (67)
      • ►  Sep 30 (3)
      • ►  Sep 29 (1)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (4)
      • ►  Sep 25 (3)
      • ►  Sep 22 (3)
      • ►  Sep 21 (6)
      • ►  Sep 19 (1)
      • ►  Sep 18 (3)
      • ►  Sep 16 (3)
      • ►  Sep 15 (2)
      • ►  Sep 14 (4)
      • ►  Sep 13 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (4)
      • ►  Sep 08 (4)
      • ►  Sep 07 (1)
      • ►  Sep 06 (6)
      • ►  Sep 04 (3)
      • ►  Sep 03 (6)
      • ►  Sep 01 (4)
    • ►  August (84)
      • ►  Aug 26 (2)
      • ►  Aug 25 (2)
      • ►  Aug 24 (2)
      • ►  Aug 23 (1)
      • ►  Aug 22 (3)
      • ►  Aug 21 (2)
      • ►  Aug 19 (1)
      • ►  Aug 18 (2)
      • ►  Aug 17 (1)
      • ►  Aug 14 (1)
      • ►  Aug 13 (1)
      • ►  Aug 12 (5)
      • ►  Aug 11 (4)
      • ►  Aug 10 (7)
      • ►  Aug 09 (2)
      • ►  Aug 08 (2)
      • ►  Aug 07 (5)
      • ►  Aug 06 (6)
      • ►  Aug 05 (3)
      • ►  Aug 04 (5)
      • ►  Aug 03 (9)
      • ►  Aug 02 (8)
      • ►  Aug 01 (10)
    • ►  July (217)
      • ►  Jul 31 (6)
      • ►  Jul 29 (10)
      • ►  Jul 28 (5)
      • ►  Jul 27 (10)
      • ►  Jul 25 (7)
      • ►  Jul 24 (11)
      • ►  Jul 23 (8)
      • ►  Jul 22 (4)
      • ►  Jul 21 (17)
      • ►  Jul 20 (7)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (7)
      • ►  Jul 16 (10)
      • ►  Jul 15 (6)
      • ►  Jul 14 (6)
      • ►  Jul 13 (15)
      • ►  Jul 12 (12)
      • ►  Jul 11 (3)
      • ►  Jul 10 (7)
      • ►  Jul 09 (2)
      • ►  Jul 08 (2)
      • ►  Jul 07 (7)
      • ►  Jul 06 (9)
      • ►  Jul 04 (11)
      • ►  Jul 03 (2)
      • ►  Jul 02 (4)
      • ►  Jul 01 (9)
    • ►  June (260)
      • ►  Jun 30 (7)
      • ►  Jun 29 (15)
      • ►  Jun 28 (4)
      • ►  Jun 27 (2)
      • ►  Jun 26 (6)
      • ►  Jun 25 (2)
      • ►  Jun 24 (10)
      • ►  Jun 23 (10)
      • ►  Jun 22 (8)
      • ►  Jun 21 (12)
      • ►  Jun 20 (8)
      • ►  Jun 19 (8)
      • ►  Jun 18 (12)
      • ►  Jun 17 (7)
      • ►  Jun 16 (7)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (1)
      • ►  Jun 11 (2)
      • ►  Jun 10 (13)
      • ►  Jun 09 (16)
      • ►  Jun 08 (10)
      • ►  Jun 07 (16)
      • ►  Jun 06 (11)
      • ►  Jun 05 (17)
      • ►  Jun 04 (6)
      • ►  Jun 03 (13)
      • ►  Jun 02 (4)
      • ►  Jun 01 (12)
    • ►  May (426)
      • ►  May 31 (22)
      • ►  May 30 (14)
      • ►  May 29 (7)
      • ►  May 28 (16)
      • ►  May 27 (8)
      • ►  May 26 (9)
      • ►  May 25 (25)
      • ►  May 24 (10)
      • ►  May 23 (10)
      • ►  May 22 (13)
      • ►  May 21 (11)
      • ►  May 20 (16)
      • ►  May 19 (26)
      • ►  May 18 (8)
      • ►  May 17 (17)
      • ►  May 16 (11)
      • ►  May 15 (3)
      • ►  May 14 (17)
      • ►  May 13 (17)
      • ►  May 12 (14)
      • ►  May 11 (13)
      • ►  May 10 (18)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (8)
      • ►  May 06 (12)
      • ►  May 05 (12)
      • ►  May 04 (13)
      • ►  May 03 (13)
      • ►  May 02 (16)
      • ►  May 01 (20)
    • ►  April (356)
      • ►  Apr 30 (9)
      • ►  Apr 29 (10)
      • ►  Apr 28 (11)
      • ►  Apr 27 (11)
      • ►  Apr 26 (15)
      • ►  Apr 25 (9)
      • ►  Apr 24 (12)
      • ►  Apr 23 (15)
      • ►  Apr 22 (12)
      • ►  Apr 21 (15)
      • ►  Apr 20 (13)
      • ►  Apr 19 (9)
      • ►  Apr 18 (14)
      • ►  Apr 17 (11)
      • ►  Apr 16 (8)
      • ►  Apr 15 (15)
      • ►  Apr 14 (6)
      • ►  Apr 13 (8)
      • ►  Apr 12 (10)
      • ►  Apr 11 (17)
      • ►  Apr 10 (12)
      • ►  Apr 09 (8)
      • ►  Apr 08 (13)
      • ►  Apr 07 (18)
      • ►  Apr 06 (11)
      • ►  Apr 05 (12)
      • ►  Apr 04 (16)
      • ►  Apr 03 (12)
      • ►  Apr 02 (12)
      • ►  Apr 01 (12)
    • ►  March (419)
      • ►  Mar 31 (13)
      • ►  Mar 30 (17)
      • ►  Mar 29 (13)
      • ►  Mar 28 (14)
      • ►  Mar 27 (17)
      • ►  Mar 26 (12)
      • ►  Mar 25 (9)
      • ►  Mar 24 (13)
      • ►  Mar 23 (13)
      • ►  Mar 22 (12)
      • ►  Mar 21 (12)
      • ►  Mar 20 (12)
      • ►  Mar 19 (12)
      • ►  Mar 18 (12)
      • ►  Mar 17 (12)
      • ►  Mar 16 (17)
      • ►  Mar 15 (13)
      • ►  Mar 14 (16)
      • ►  Mar 13 (8)
      • ►  Mar 12 (12)
      • ►  Mar 11 (11)
      • ►  Mar 10 (12)
      • ►  Mar 09 (15)
      • ►  Mar 08 (11)
      • ►  Mar 07 (19)
      • ►  Mar 06 (26)
      • ►  Mar 05 (14)
      • ►  Mar 04 (14)
      • ►  Mar 03 (12)
      • ►  Mar 02 (12)
      • ►  Mar 01 (14)
    • ►  February (375)
      • ►  Feb 28 (11)
      • ►  Feb 27 (10)
      • ►  Feb 26 (8)
      • ►  Feb 25 (11)
      • ►  Feb 24 (11)
      • ►  Feb 23 (5)
      • ►  Feb 22 (14)
      • ►  Feb 21 (13)
      • ►  Feb 20 (17)
      • ►  Feb 19 (14)
      • ►  Feb 18 (15)
      • ►  Feb 17 (12)
      • ►  Feb 16 (14)
      • ►  Feb 15 (14)
      • ►  Feb 14 (15)
      • ►  Feb 13 (20)
      • ►  Feb 12 (11)
      • ►  Feb 11 (21)
      • ►  Feb 10 (12)
      • ►  Feb 09 (18)
      • ►  Feb 08 (20)
      • ►  Feb 07 (13)
      • ►  Feb 06 (12)
      • ►  Feb 05 (14)
      • ►  Feb 04 (17)
      • ►  Feb 03 (8)
      • ►  Feb 02 (11)
      • ►  Feb 01 (14)
    • ►  January (407)
      • ►  Jan 31 (15)
      • ►  Jan 30 (11)
      • ►  Jan 29 (5)
      • ►  Jan 28 (19)
      • ►  Jan 27 (15)
      • ►  Jan 26 (13)
      • ►  Jan 25 (15)
      • ►  Jan 24 (13)
      • ►  Jan 23 (15)
      • ►  Jan 22 (10)
      • ►  Jan 21 (10)
      • ►  Jan 20 (18)
      • ►  Jan 19 (18)
      • ►  Jan 18 (7)
      • ►  Jan 17 (14)
      • ►  Jan 16 (17)
      • ►  Jan 15 (12)
      • ►  Jan 14 (14)
      • ►  Jan 13 (19)
      • ►  Jan 12 (8)
      • ►  Jan 11 (15)
      • ►  Jan 10 (9)
      • ►  Jan 09 (13)
      • ►  Jan 08 (12)
      • ►  Jan 07 (12)
      • ►  Jan 06 (15)
      • ►  Jan 05 (25)
      • ►  Jan 04 (11)
      • ►  Jan 03 (7)
      • ►  Jan 02 (12)
      • ►  Jan 01 (8)
  • ►  2018 (2910)
    • ►  December (343)
      • ►  Dec 31 (10)
      • ►  Dec 30 (14)
      • ►  Dec 29 (10)
      • ►  Dec 28 (7)
      • ►  Dec 27 (6)
      • ►  Dec 26 (16)
      • ►  Dec 25 (15)
      • ►  Dec 24 (11)
      • ►  Dec 23 (14)
      • ►  Dec 22 (7)
      • ►  Dec 21 (11)
      • ►  Dec 20 (9)
      • ►  Dec 19 (12)
      • ►  Dec 18 (8)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (14)
      • ►  Dec 14 (9)
      • ►  Dec 13 (12)
      • ►  Dec 12 (11)
      • ►  Dec 11 (7)
      • ►  Dec 10 (8)
      • ►  Dec 09 (8)
      • ►  Dec 08 (14)
      • ►  Dec 07 (16)
      • ►  Dec 06 (12)
      • ►  Dec 05 (14)
      • ►  Dec 04 (8)
      • ►  Dec 03 (10)
      • ►  Dec 02 (3)
      • ►  Dec 01 (18)
    • ►  November (319)
      • ►  Nov 30 (11)
      • ►  Nov 29 (14)
      • ►  Nov 28 (9)
      • ►  Nov 27 (4)
      • ►  Nov 26 (10)
      • ►  Nov 25 (18)
      • ►  Nov 24 (14)
      • ►  Nov 23 (9)
      • ►  Nov 22 (15)
      • ►  Nov 21 (4)
      • ►  Nov 20 (6)
      • ►  Nov 19 (9)
      • ►  Nov 18 (3)
      • ►  Nov 17 (10)
      • ►  Nov 16 (5)
      • ►  Nov 15 (13)
      • ►  Nov 14 (11)
      • ►  Nov 13 (11)
      • ►  Nov 12 (16)
      • ►  Nov 11 (8)
      • ►  Nov 10 (14)
      • ►  Nov 09 (6)
      • ►  Nov 08 (6)
      • ►  Nov 07 (6)
      • ►  Nov 06 (14)
      • ►  Nov 05 (6)
      • ►  Nov 04 (18)
      • ►  Nov 03 (22)
      • ►  Nov 02 (7)
      • ►  Nov 01 (20)
    • ►  October (304)
      • ►  Oct 31 (6)
      • ►  Oct 30 (10)
      • ►  Oct 29 (17)
      • ►  Oct 28 (10)
      • ►  Oct 27 (11)
      • ►  Oct 26 (11)
      • ►  Oct 25 (12)
      • ►  Oct 24 (13)
      • ►  Oct 23 (13)
      • ►  Oct 22 (10)
      • ►  Oct 21 (9)
      • ►  Oct 20 (11)
      • ►  Oct 19 (7)
      • ►  Oct 18 (7)
      • ►  Oct 17 (14)
      • ►  Oct 16 (5)
      • ►  Oct 15 (13)
      • ►  Oct 14 (8)
      • ►  Oct 13 (13)
      • ►  Oct 12 (6)
      • ►  Oct 11 (17)
      • ►  Oct 10 (17)
      • ►  Oct 09 (1)
      • ►  Oct 08 (10)
      • ►  Oct 07 (2)
      • ►  Oct 06 (11)
      • ►  Oct 05 (16)
      • ►  Oct 04 (6)
      • ►  Oct 03 (9)
      • ►  Oct 02 (6)
      • ►  Oct 01 (3)
    • ►  September (324)
      • ►  Sep 30 (5)
      • ►  Sep 29 (8)
      • ►  Sep 28 (9)
      • ►  Sep 27 (9)
      • ►  Sep 26 (11)
      • ►  Sep 25 (13)
      • ►  Sep 24 (16)
      • ►  Sep 23 (7)
      • ►  Sep 22 (18)
      • ►  Sep 21 (8)
      • ►  Sep 20 (8)
      • ►  Sep 19 (8)
      • ►  Sep 18 (11)
      • ►  Sep 17 (6)
      • ►  Sep 16 (9)
      • ►  Sep 15 (13)
      • ►  Sep 14 (7)
      • ►  Sep 13 (13)
      • ►  Sep 12 (4)
      • ►  Sep 11 (14)
      • ►  Sep 10 (12)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (11)
      • ►  Sep 06 (13)
      • ►  Sep 05 (17)
      • ►  Sep 04 (12)
      • ►  Sep 03 (17)
      • ►  Sep 02 (10)
      • ►  Sep 01 (12)
    • ►  August (453)
      • ►  Aug 31 (6)
      • ►  Aug 30 (12)
      • ►  Aug 29 (13)
      • ►  Aug 28 (7)
      • ►  Aug 27 (6)
      • ►  Aug 26 (9)
      • ►  Aug 25 (11)
      • ►  Aug 24 (6)
      • ►  Aug 23 (10)
      • ►  Aug 22 (18)
      • ►  Aug 21 (8)
      • ►  Aug 20 (18)
      • ►  Aug 19 (5)
      • ►  Aug 18 (8)
      • ►  Aug 17 (16)
      • ►  Aug 16 (18)
      • ►  Aug 15 (7)
      • ►  Aug 14 (8)
      • ►  Aug 13 (17)
      • ►  Aug 12 (18)
      • ►  Aug 11 (21)
      • ►  Aug 10 (10)
      • ►  Aug 09 (14)
      • ►  Aug 08 (25)
      • ►  Aug 07 (25)
      • ►  Aug 06 (22)
      • ►  Aug 05 (32)
      • ►  Aug 04 (24)
      • ►  Aug 03 (15)
      • ►  Aug 02 (26)
      • ►  Aug 01 (18)
    • ►  July (443)
      • ►  Jul 31 (28)
      • ►  Jul 30 (13)
      • ►  Jul 29 (20)
      • ►  Jul 28 (16)
      • ►  Jul 27 (30)
      • ►  Jul 26 (14)
      • ►  Jul 25 (16)
      • ►  Jul 24 (26)
      • ►  Jul 23 (14)
      • ►  Jul 22 (15)
      • ►  Jul 21 (21)
      • ►  Jul 20 (10)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (12)
      • ►  Jul 16 (10)
      • ►  Jul 15 (10)
      • ►  Jul 14 (11)
      • ►  Jul 13 (12)
      • ►  Jul 12 (7)
      • ►  Jul 11 (12)
      • ►  Jul 10 (8)
      • ►  Jul 09 (16)
      • ►  Jul 08 (7)
      • ►  Jul 07 (11)
      • ►  Jul 06 (8)
      • ►  Jul 05 (22)
      • ►  Jul 04 (15)
      • ►  Jul 03 (15)
      • ►  Jul 02 (13)
      • ►  Jul 01 (11)
    • ►  June (335)
      • ►  Jun 30 (18)
      • ►  Jun 29 (16)
      • ►  Jun 28 (27)
      • ►  Jun 27 (8)
      • ►  Jun 26 (9)
      • ►  Jun 25 (15)
      • ►  Jun 24 (6)
      • ►  Jun 23 (12)
      • ►  Jun 22 (8)
      • ►  Jun 21 (6)
      • ►  Jun 20 (8)
      • ►  Jun 19 (15)
      • ►  Jun 18 (7)
      • ►  Jun 17 (7)
      • ►  Jun 16 (16)
      • ►  Jun 15 (9)
      • ►  Jun 14 (10)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (20)
      • ►  Jun 10 (16)
      • ►  Jun 09 (10)
      • ►  Jun 08 (9)
      • ►  Jun 07 (9)
      • ►  Jun 06 (6)
      • ►  Jun 05 (9)
      • ►  Jun 04 (9)
      • ►  Jun 03 (6)
      • ►  Jun 02 (9)
      • ►  Jun 01 (12)
    • ►  May (298)
      • ►  May 31 (15)
      • ►  May 30 (10)
      • ►  May 29 (12)
      • ►  May 28 (13)
      • ►  May 27 (12)
      • ►  May 26 (23)
      • ►  May 25 (13)
      • ►  May 24 (7)
      • ►  May 23 (4)
      • ►  May 22 (10)
      • ►  May 21 (7)
      • ►  May 20 (13)
      • ►  May 19 (10)
      • ►  May 18 (10)
      • ►  May 17 (8)
      • ►  May 16 (8)
      • ►  May 15 (12)
      • ►  May 14 (10)
      • ►  May 13 (19)
      • ►  May 12 (7)
      • ►  May 11 (6)
      • ►  May 10 (11)
      • ►  May 09 (7)
      • ►  May 08 (4)
      • ►  May 07 (4)
      • ►  May 06 (12)
      • ►  May 05 (6)
      • ►  May 04 (3)
      • ►  May 03 (7)
      • ►  May 02 (13)
      • ►  May 01 (2)
    • ►  April (36)
      • ►  Apr 30 (3)
      • ►  Apr 29 (11)
      • ►  Apr 28 (2)
      • ►  Apr 27 (2)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (3)
      • ►  Apr 21 (1)
      • ►  Apr 20 (4)
      • ►  Apr 16 (1)
      • ►  Apr 14 (1)
      • ►  Apr 08 (1)
      • ►  Apr 07 (2)
    • ►  March (24)
      • ►  Mar 30 (3)
      • ►  Mar 25 (1)
      • ►  Mar 24 (1)
      • ►  Mar 23 (1)
      • ►  Mar 22 (1)
      • ►  Mar 17 (1)
      • ►  Mar 15 (2)
      • ►  Mar 13 (1)
      • ►  Mar 12 (2)
      • ►  Mar 11 (2)
      • ►  Mar 10 (1)
      • ►  Mar 09 (1)
      • ►  Mar 06 (1)
      • ►  Mar 05 (2)
      • ►  Mar 03 (1)
      • ►  Mar 02 (2)
      • ►  Mar 01 (1)
    • ►  February (19)
      • ►  Feb 28 (4)
      • ►  Feb 26 (1)
      • ►  Feb 23 (1)
      • ►  Feb 21 (1)
      • ►  Feb 20 (1)
      • ►  Feb 19 (1)
      • ►  Feb 18 (2)
      • ►  Feb 17 (1)
      • ►  Feb 16 (1)
      • ►  Feb 15 (3)
      • ►  Feb 07 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (1)
    • ►  January (12)
      • ►  Jan 28 (3)
      • ►  Jan 26 (5)
      • ►  Jan 24 (2)
      • ►  Jan 07 (1)
      • ►  Jan 05 (1)
  • ►  2017 (105)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 27 (2)
      • ►  Dec 24 (1)
      • ►  Dec 15 (1)
      • ►  Dec 02 (4)
    • ►  November (8)
      • ►  Nov 24 (1)
      • ►  Nov 23 (1)
      • ►  Nov 17 (1)
      • ►  Nov 16 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (2)
    • ►  October (1)
      • ►  Oct 09 (1)
    • ►  August (2)
      • ►  Aug 12 (1)
      • ►  Aug 04 (1)
    • ►  July (18)
      • ►  Jul 28 (1)
      • ►  Jul 27 (1)
      • ►  Jul 26 (4)
      • ►  Jul 19 (1)
      • ►  Jul 17 (1)
      • ►  Jul 15 (2)
      • ►  Jul 14 (2)
      • ►  Jul 13 (1)
      • ►  Jul 12 (2)
      • ►  Jul 02 (3)
    • ►  June (9)
      • ►  Jun 25 (1)
      • ►  Jun 18 (1)
      • ►  Jun 16 (1)
      • ►  Jun 14 (2)
      • ►  Jun 08 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (1)
    • ►  May (22)
      • ►  May 29 (1)
      • ►  May 20 (2)
      • ►  May 19 (1)
      • ►  May 18 (1)
      • ►  May 17 (1)
      • ►  May 14 (3)
      • ►  May 13 (1)
      • ►  May 09 (1)
      • ►  May 07 (3)
      • ►  May 06 (2)
      • ►  May 05 (1)
      • ►  May 04 (2)
      • ►  May 03 (1)
      • ►  May 02 (1)
      • ►  May 01 (1)
    • ►  April (25)
      • ►  Apr 30 (1)
      • ►  Apr 29 (1)
      • ►  Apr 27 (1)
      • ►  Apr 24 (2)
      • ►  Apr 23 (1)
      • ►  Apr 18 (1)
      • ►  Apr 17 (2)
      • ►  Apr 16 (1)
      • ►  Apr 14 (2)
      • ►  Apr 12 (2)
      • ►  Apr 11 (1)
      • ►  Apr 08 (1)
      • ►  Apr 06 (1)
      • ►  Apr 05 (1)
      • ►  Apr 04 (1)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (2)
    • ►  March (11)
      • ►  Mar 31 (2)
      • ►  Mar 30 (2)
      • ►  Mar 28 (1)
      • ►  Mar 27 (3)
      • ►  Mar 25 (2)
      • ►  Mar 11 (1)
  • ►  2016 (31)
    • ►  August (1)
      • ►  Aug 10 (1)
    • ►  March (3)
      • ►  Mar 17 (1)
      • ►  Mar 12 (1)
      • ►  Mar 04 (1)
    • ►  February (11)
      • ►  Feb 29 (1)
      • ►  Feb 24 (1)
      • ►  Feb 22 (1)
      • ►  Feb 21 (2)
      • ►  Feb 11 (1)
      • ►  Feb 09 (2)
      • ►  Feb 03 (1)
      • ►  Feb 02 (1)
      • ►  Feb 01 (1)
    • ►  January (16)
      • ►  Jan 26 (2)
      • ►  Jan 24 (1)
      • ►  Jan 22 (2)
      • ►  Jan 21 (1)
      • ►  Jan 20 (1)
      • ►  Jan 19 (2)
      • ►  Jan 16 (1)
      • ►  Jan 14 (3)
      • ►  Jan 13 (1)
      • ►  Jan 12 (1)
      • ►  Jan 07 (1)
  • ►  2015 (1803)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 26 (1)
      • ►  Dec 25 (1)
      • ►  Dec 23 (1)
      • ►  Dec 22 (2)
      • ►  Dec 19 (1)
      • ►  Dec 01 (2)
    • ►  November (11)
      • ►  Nov 28 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (1)
      • ►  Nov 09 (3)
      • ►  Nov 07 (1)
      • ►  Nov 05 (1)
      • ►  Nov 03 (1)
      • ►  Nov 02 (1)
    • ►  October (31)
      • ►  Oct 31 (1)
      • ►  Oct 30 (2)
      • ►  Oct 29 (1)
      • ►  Oct 28 (3)
      • ►  Oct 26 (1)
      • ►  Oct 24 (1)
      • ►  Oct 22 (1)
      • ►  Oct 21 (1)
      • ►  Oct 19 (1)
      • ►  Oct 17 (1)
      • ►  Oct 16 (1)
      • ►  Oct 15 (1)
      • ►  Oct 14 (1)
      • ►  Oct 11 (2)
      • ►  Oct 09 (4)
      • ►  Oct 08 (1)
      • ►  Oct 07 (6)
      • ►  Oct 06 (1)
      • ►  Oct 02 (1)
    • ►  September (34)
      • ►  Sep 29 (4)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (3)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (2)
      • ►  Sep 22 (4)
      • ►  Sep 21 (6)
      • ►  Sep 14 (1)
      • ►  Sep 13 (1)
      • ►  Sep 12 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (2)
      • ►  Sep 08 (1)
      • ►  Sep 05 (1)
      • ►  Sep 04 (1)
    • ►  August (6)
      • ►  Aug 22 (1)
      • ►  Aug 20 (1)
      • ►  Aug 08 (1)
      • ►  Aug 07 (2)
      • ►  Aug 06 (1)
    • ►  July (29)
      • ►  Jul 21 (1)
      • ►  Jul 18 (1)
      • ►  Jul 15 (1)
      • ►  Jul 14 (3)
      • ►  Jul 13 (1)
      • ►  Jul 12 (1)
      • ►  Jul 10 (2)
      • ►  Jul 09 (1)
      • ►  Jul 08 (1)
      • ►  Jul 06 (4)
      • ►  Jul 05 (3)
      • ►  Jul 04 (1)
      • ►  Jul 03 (6)
      • ►  Jul 02 (1)
      • ►  Jul 01 (2)
    • ►  June (9)
      • ►  Jun 28 (2)
      • ►  Jun 24 (2)
      • ►  Jun 22 (1)
      • ►  Jun 18 (1)
      • ►  Jun 17 (1)
      • ►  Jun 02 (2)
    • ►  May (141)
      • ►  May 31 (3)
      • ►  May 30 (7)
      • ►  May 29 (8)
      • ►  May 28 (4)
      • ►  May 27 (4)
      • ►  May 26 (5)
      • ►  May 25 (1)
      • ►  May 24 (4)
      • ►  May 23 (8)
      • ►  May 22 (6)
      • ►  May 21 (4)
      • ►  May 20 (4)
      • ►  May 19 (7)
      • ►  May 18 (3)
      • ►  May 17 (2)
      • ►  May 16 (7)
      • ►  May 15 (10)
      • ►  May 14 (7)
      • ►  May 13 (5)
      • ►  May 12 (2)
      • ►  May 11 (2)
      • ►  May 10 (4)
      • ►  May 09 (3)
      • ►  May 08 (3)
      • ►  May 07 (5)
      • ►  May 06 (4)
      • ►  May 05 (4)
      • ►  May 04 (2)
      • ►  May 03 (3)
      • ►  May 02 (4)
      • ►  May 01 (6)
    • ►  April (150)
      • ►  Apr 29 (4)
      • ►  Apr 28 (5)
      • ►  Apr 24 (3)
      • ►  Apr 22 (1)
      • ►  Apr 19 (3)
      • ►  Apr 17 (2)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (1)
      • ►  Apr 12 (3)
      • ►  Apr 10 (13)
      • ►  Apr 09 (18)
      • ►  Apr 08 (8)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (17)
      • ►  Apr 04 (9)
      • ►  Apr 03 (4)
      • ►  Apr 02 (14)
      • ►  Apr 01 (14)
    • ►  March (609)
      • ►  Mar 31 (29)
      • ►  Mar 30 (24)
      • ►  Mar 29 (18)
      • ►  Mar 28 (15)
      • ►  Mar 27 (7)
      • ►  Mar 26 (14)
      • ►  Mar 25 (6)
      • ►  Mar 23 (11)
      • ►  Mar 22 (22)
      • ►  Mar 21 (29)
      • ►  Mar 20 (41)
      • ►  Mar 19 (34)
      • ►  Mar 18 (34)
      • ►  Mar 17 (41)
      • ►  Mar 16 (31)
      • ►  Mar 15 (1)
      • ►  Mar 14 (3)
      • ►  Mar 13 (17)
      • ►  Mar 12 (12)
      • ►  Mar 11 (12)
      • ►  Mar 10 (19)
      • ►  Mar 09 (25)
      • ►  Mar 08 (20)
      • ►  Mar 07 (17)
      • ►  Mar 06 (20)
      • ►  Mar 05 (19)
      • ►  Mar 04 (30)
      • ►  Mar 03 (5)
      • ►  Mar 02 (18)
      • ►  Mar 01 (35)
    • ►  February (652)
      • ►  Feb 28 (19)
      • ►  Feb 27 (19)
      • ►  Feb 26 (28)
      • ►  Feb 25 (18)
      • ►  Feb 24 (8)
      • ►  Feb 23 (26)
      • ►  Feb 22 (15)
      • ►  Feb 21 (40)
      • ►  Feb 20 (24)
      • ►  Feb 19 (40)
      • ►  Feb 18 (38)
      • ►  Feb 17 (39)
      • ►  Feb 16 (53)
      • ►  Feb 15 (28)
      • ►  Feb 14 (31)
      • ►  Feb 13 (14)
      • ►  Feb 12 (26)
      • ►  Feb 11 (18)
      • ►  Feb 10 (32)
      • ►  Feb 09 (15)
      • ►  Feb 08 (7)
      • ►  Feb 07 (24)
      • ►  Feb 06 (15)
      • ►  Feb 05 (16)
      • ►  Feb 04 (21)
      • ►  Feb 03 (9)
      • ►  Feb 02 (23)
      • ►  Feb 01 (6)
    • ►  January (122)
      • ►  Jan 31 (10)
      • ►  Jan 30 (21)
      • ►  Jan 29 (4)
      • ►  Jan 28 (5)
      • ►  Jan 27 (9)
      • ►  Jan 26 (3)
      • ►  Jan 25 (6)
      • ►  Jan 24 (9)
      • ►  Jan 23 (5)
      • ►  Jan 22 (4)
      • ►  Jan 21 (3)
      • ►  Jan 20 (1)
      • ►  Jan 17 (1)
      • ►  Jan 16 (2)
      • ►  Jan 15 (2)
      • ►  Jan 14 (2)
      • ►  Jan 13 (8)
      • ►  Jan 12 (4)
      • ►  Jan 11 (4)
      • ►  Jan 10 (2)
      • ►  Jan 09 (6)
      • ►  Jan 08 (6)
      • ►  Jan 07 (5)
  • ►  2014 (1062)
    • ►  November (6)
      • ►  Nov 26 (2)
      • ►  Nov 25 (3)
      • ►  Nov 24 (1)
    • ►  October (10)
      • ►  Oct 23 (2)
      • ►  Oct 16 (3)
      • ►  Oct 12 (4)
      • ►  Oct 06 (1)
    • ►  September (270)
      • ►  Sep 21 (34)
      • ►  Sep 20 (15)
      • ►  Sep 17 (9)
      • ►  Sep 13 (10)
      • ►  Sep 12 (33)
      • ►  Sep 11 (30)
      • ►  Sep 10 (1)
      • ►  Sep 09 (14)
      • ►  Sep 08 (23)
      • ►  Sep 07 (5)
      • ►  Sep 06 (19)
      • ►  Sep 05 (18)
      • ►  Sep 04 (24)
      • ►  Sep 03 (18)
      • ►  Sep 02 (10)
      • ►  Sep 01 (7)
    • ►  August (497)
      • ►  Aug 31 (15)
      • ►  Aug 30 (20)
      • ►  Aug 28 (1)
      • ►  Aug 25 (10)
      • ►  Aug 24 (26)
      • ►  Aug 23 (23)
      • ►  Aug 22 (14)
      • ►  Aug 21 (22)
      • ►  Aug 20 (21)
      • ►  Aug 19 (18)
      • ►  Aug 18 (66)
      • ►  Aug 17 (21)
      • ►  Aug 16 (16)
      • ►  Aug 15 (34)
      • ►  Aug 14 (25)
      • ►  Aug 13 (12)
      • ►  Aug 11 (7)
      • ►  Aug 10 (18)
      • ►  Aug 09 (13)
      • ►  Aug 08 (13)
      • ►  Aug 07 (26)
      • ►  Aug 06 (21)
      • ►  Aug 05 (7)
      • ►  Aug 04 (15)
      • ►  Aug 03 (20)
      • ►  Aug 02 (5)
      • ►  Aug 01 (8)
    • ►  July (85)
      • ►  Jul 31 (5)
      • ►  Jul 30 (26)
      • ►  Jul 29 (21)
      • ►  Jul 28 (33)
    • ►  March (3)
      • ►  Mar 25 (1)
      • ►  Mar 12 (1)
      • ►  Mar 09 (1)
    • ►  February (23)
      • ►  Feb 14 (1)
      • ►  Feb 06 (2)
      • ►  Feb 04 (4)
      • ►  Feb 03 (1)
      • ►  Feb 02 (6)
      • ►  Feb 01 (9)
    • ►  January (168)
      • ►  Jan 31 (10)
      • ►  Jan 30 (6)
      • ►  Jan 29 (4)
      • ►  Jan 27 (6)
      • ►  Jan 26 (1)
      • ►  Jan 25 (7)
      • ►  Jan 24 (13)
      • ►  Jan 23 (11)
      • ►  Jan 22 (3)
      • ►  Jan 21 (6)
      • ►  Jan 20 (3)
      • ►  Jan 19 (8)
      • ►  Jan 18 (7)
      • ►  Jan 17 (7)
      • ►  Jan 16 (13)
      • ►  Jan 15 (1)
      • ►  Jan 12 (1)
      • ►  Jan 11 (1)
      • ►  Jan 09 (3)
      • ►  Jan 08 (6)
      • ►  Jan 07 (7)
      • ►  Jan 06 (14)
      • ►  Jan 05 (10)
      • ►  Jan 04 (2)
      • ►  Jan 02 (6)
      • ►  Jan 01 (12)
  • ►  2013 (210)
    • ►  December (199)
      • ►  Dec 30 (5)
      • ►  Dec 29 (8)
      • ►  Dec 28 (6)
      • ►  Dec 27 (11)
      • ►  Dec 26 (9)
      • ►  Dec 25 (7)
      • ►  Dec 24 (15)
      • ►  Dec 23 (13)
      • ►  Dec 22 (3)
      • ►  Dec 21 (9)
      • ►  Dec 20 (10)
      • ►  Dec 19 (7)
      • ►  Dec 18 (4)
      • ►  Dec 17 (7)
      • ►  Dec 16 (6)
      • ►  Dec 15 (5)
      • ►  Dec 14 (3)
      • ►  Dec 13 (5)
      • ►  Dec 12 (2)
      • ►  Dec 11 (4)
      • ►  Dec 10 (9)
      • ►  Dec 09 (11)
      • ►  Dec 08 (11)
      • ►  Dec 07 (14)
      • ►  Dec 06 (3)
      • ►  Dec 05 (3)
      • ►  Dec 04 (6)
      • ►  Dec 03 (1)
      • ►  Dec 02 (2)
    • ►  September (2)
      • ►  Sep 25 (2)
    • ►  April (1)
      • ►  Apr 30 (1)
    • ►  January (8)
      • ►  Jan 22 (1)
      • ►  Jan 20 (4)
      • ►  Jan 16 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (1)
  • ►  2012 (2)
    • ►  December (1)
      • ►  Dec 21 (1)
    • ►  January (1)
      • ►  Jan 11 (1)
  • ►  2011 (26)
    • ►  December (25)
      • ►  Dec 22 (1)
      • ►  Dec 17 (3)
      • ►  Dec 16 (2)
      • ►  Dec 15 (1)
      • ►  Dec 14 (1)
      • ►  Dec 13 (2)
      • ►  Dec 12 (1)
      • ►  Dec 11 (1)
      • ►  Dec 10 (1)
      • ►  Dec 07 (4)
      • ►  Dec 06 (2)
      • ►  Dec 04 (1)
      • ►  Dec 03 (2)
      • ►  Dec 02 (3)
    • ►  November (1)
      • ►  Nov 19 (1)
  • ►  2010 (2)
    • ►  September (1)
      • ►  Sep 11 (1)
    • ►  January (1)
      • ►  Jan 16 (1)
  • ►  2008 (1)
    • ►  April (1)
      • ►  Apr 05 (1)

Labels

  • Estradiol

Report Abuse

Followers

Total Pageviews

Translate

Simple theme. Theme images by merrymoonmary. Powered by Blogger.