From Wikipedia, the free encyclopedia

Quantum foundations is a discipline of science that seeks to understand the most counter-intuitive aspects of quantum theory, reformulate it and even propose new generalizations thereof. Contrary to other physical theories, such as general relativity, the defining axioms of quantum theory are quite ad hoc, with no obvious physical intuition. While they lead to the right experimental predictions, they do not come with a mental picture of the world where they fit.

There exist different approaches to resolve this conceptual gap:

  • First, one can put quantum physics in contraposition with classical physics: by identifying scenarios, such as Bell experiments, where quantum theory radically deviates from classical predictions, one hopes to gain physical insights on the structure of quantum physics.
  • Second, one can attempt to find a re-derivation of the quantum formalism in terms of operational axioms.
  • Third, one can search for a full correspondence between the mathematical elements of the quantum framework and physical phenomena: any such correspondence is called an interpretation.
  • Fourth, one can renounce quantum theory altogether and propose a different model of the world.

Research in quantum foundations is structured along these roads.

Non-classical features of quantum theory