Search This Blog

Tuesday, June 27, 2023

Artificial photosynthesis

From Wikipedia, the free encyclopedia

Artificial photosynthesis is a chemical process that biomimics the natural process of photosynthesis to convert sunlight, water, and carbon dioxide into carbohydrates and oxygen. The term artificial photosynthesis is commonly used to refer to any scheme for capturing and storing the energy from sunlight in the chemical bonds of a fuel (a solar fuel). Photocatalytic water splitting converts water into hydrogen and oxygen and is a major research topic of artificial photosynthesis. Light-driven carbon dioxide reduction is another process studied that replicates natural carbon fixation.

Research on this topic includes the design and assembly of devices for the direct production of solar fuels, photoelectrochemistry and its application in fuel cells, and the engineering of enzymes and photoautotrophic microorganisms for microbial biofuel and biohydrogen production from sunlight.

Overview

The photosynthetic reaction can be divided into two half-reactions of oxidation and reduction, both of which are essential to producing fuel. In plant photosynthesis, water molecules are photo-oxidized to release oxygen and protons. The second phase of plant photosynthesis (also known as the Calvin-Benson cycle) is a light-independent reaction that converts carbon dioxide into glucose (fuel). Researchers of artificial photosynthesis are developing photocatalysts that are able to perform both of these reactions. Furthermore, the protons resulting from water splitting can be used for hydrogen production. These catalysts must be able to react quickly and absorb a large percentage of the incident solar photons.

Natural (left) versus artificial photosynthesis (right)

Whereas photovoltaics can provide energy directly from sunlight, the inefficiency of fuel production from photovoltaic electricity (indirect process) and the fact that sunshine is not constant throughout the day sets a limit to its use. One way of using natural photosynthesis is for the production of a biofuel, which is an indirect process that suffers from low energy conversion efficiency (due to photosynthesis' own low efficiency in converting sunlight to biomass), the cost of harvesting and transporting the fuel, and conflicts due to the increasing need of land mass for food production. The purpose of artificial photosynthesis is to produce a fuel from sunlight that can be stored conveniently and used when sunlight is not available, by using direct processes, that is, to produce a solar fuel. With the development of catalysts able to reproduce the major parts of photosynthesis, the only inputs needed to produce clean energy would ultimately be water, carbon dioxide and sunlight. The only by-product would be oxygen, and production of a solar fuel has the potential to be cheaper than gasoline.

One process for the creation of a clean and affordable energy supply is the development of photocatalytic water splitting under solar light. This method of sustainable hydrogen production is a major objective for the development of alternative energy systems. It is also predicted to be one of the more, if not the most, efficient ways of obtaining hydrogen from water. The conversion of solar energy into hydrogen via a water-splitting process assisted by photosemiconductor catalysts is one of the most promising technologies in development. This process has the potential for large quantities of hydrogen to be generated in an ecologically sound manner. The conversion of solar energy into a clean fuel (H2) under ambient conditions is one of the greatest challenges facing scientists in the twenty-first century.

Two methods are generally recognized for the construction of solar fuel cells for hydrogen production:

  • A homogeneous system is one such that catalysts are not compartmentalized, that is, components are present in the same compartment. This means that hydrogen and oxygen are produced in the same location. This can be a drawback, since they compose an explosive mixture, demanding gas product separation. Also, all components must be active in approximately the same conditions (e.g., pH).
  • A heterogeneous system has two separate electrodes, an anode and a cathode, making possible the separation of oxygen and hydrogen production. Furthermore, different components do not necessarily need to work in the same conditions. However, the increased complexity of these systems makes them harder to develop and more expensive.

Another area of research within artificial photosynthesis is the selection and manipulation of photosynthetic microorganisms, namely green microalgae and cyanobacteria, for the production of solar fuels. Many strains are able to produce hydrogen naturally, and scientists are working to improve them. Algae biofuels such as butanol and methanol are produced both at laboratory and commercial scales. This method has benefited from the development of synthetic biology, which is also being explored by the J. Craig Venter Institute to produce a synthetic organism capable of biofuel production. In 2017, an efficient process was developed to produce acetic acid from carbon dioxide using "cyborg bacteria".

History

Artificial photosynthesis was first anticipated by the Italian chemist Giacomo Ciamician during 1912. In a lecture that was later published in Science he proposed a switch from the use of fossil fuels to radiant energy provided by the sun and captured by technical photochemistry devices. In this switch he saw a possibility to lessen the difference between the rich north of Europe and poor south and ventured a guess that this switch from coal to solar energy would "not be harmful to the progress and to human happiness."

During the late 1960s, Akira Fujishima discovered the photocatalytic properties of titanium dioxide, the so-called Honda-Fujishima effect, which could be used for hydrolysis.

Visible light water splitting with a one piece multijunction semiconductor device (vs. UV light with titanium dioxide semiconductors) was first demonstrated and patented by William Ayers at Energy Conversion Devices during 1983. This group demonstrated water photolysis into hydrogen and oxygen, now referred to as an "artificial leaf" with a low cost, thin film amorphous silicon multijunction sheet immersed directly in water. Hydrogen evolved on the front amorphous silicon surface decorated with various catalysts while oxygen evolved from the back side metal substrate which also eliminated the hazard of mixed hydrogen/oxygen gas evolution. A polymer membrane above the immersed device provided a path for proton transport. The higher photovoltage available from the multijunction thin film device with visible light was a major advance over previous photolysis attempts with UV or other single junction semiconductor photoelectrodes. The group's patent also lists several other semiconductor multijunction compositions in addition to amorphous silicon.

The Swedish Consortium for Artificial Photosynthesis, the first of its kind, was established during 1994 as a collaboration between groups of three different universities, Lund, Uppsala and Stockholm, being presently active around Lund and the Ångström Laboratories in Uppsala. The consortium was built with a multidisciplinary approach to focus on learning from natural photosynthesis and applying this knowledge in biomimetic systems.

Research of artificial photosynthesis is experiencing a boom at the beginning of the 21st century. During 2000, Commonwealth Scientific and Industrial Research Organisation (CSIRO) researchers publicized their intent to emphasize carbon dioxide capture and its conversion to hydrocarbons. In 2003, the Brookhaven National Laboratory announced the discovery of an important intermediate part of the reduction of CO2 to CO (the simplest possible carbon dioxide reduction reaction), which could result in better catalysts.

One of the disadvantages of artificial systems for water-splitting catalysts is their general reliance on scarce, expensive elements, such as ruthenium or rhenium. During 2008, with the funding of the United States Air Force Office of Scientific Research, MIT chemist and director of the Solar Revolution Project Daniel G. Nocera and postdoctoral fellow Matthew Kanan attempted to circumvent this problem by using a catalyst containing the cheaper and more abundant elements cobalt and phosphate. The catalyst was able to split water into oxygen and protons using sunlight, and could potentially be coupled to a hydrogen gas producing catalyst such as platinum. Furthermore, while the catalyst broke down during catalysis, it could self-repair. This experimental catalyst design was considered a major improvement by many researchers.

Whereas CO is the prime reduction product of CO2, more complex carbon compounds are usually desired. During 2008, Andrew B. Bocarsly reported the direct conversion of carbon dioxide and water to methanol using solar energy in a very efficient photochemical cell.

While Nocera and coworkers had accomplished water splitting to oxygen and protons, a light-driven process to produce hydrogen is desirable. During 2009, the Leibniz Institute for Catalysis reported inexpensive iron carbonyl complexes able to do just that. During the same year, researchers at the University of East Anglia also used iron carbonyl compounds to achieve photoelectrochemical hydrogen production with 60% efficiency, this time using a gold electrode covered with layers of indium phosphide to which the iron complexes were linked. Both of these processes used a molecular approach, where discrete nanoparticles are responsible for catalysis.

During 2009, F. del Valle and K. Domen showed the effect of the thermal treatment in a closed atmosphere using Cd
1-x
Zn
x
S
photocatalysts. Cd
1-x
Zn
x
S
solid solution reports high activity in hydrogen production from water splitting under sunlight irradiation. A mixed heterogeneous/molecular approach by researchers at the University of California, Santa Cruz, during 2010, using both nitrogen-doped and cadmium selenide quantum dots-sensitized titanium dioxide nanoparticles and nanowires, also yielded photoproduced hydrogen.

Artificial photosynthesis remained an academic field for many years. However, in the beginning of 2009, Mitsubishi Chemical Holdings was reported to be developing its own artificial photosynthesis research by using sunlight, water and carbon dioxide to "create the carbon building blocks from which resins, plastics and fibers can be synthesized." This was confirmed with the establishment of the KAITEKI Institute later that year, with carbon dioxide reduction through artificial photosynthesis as one of the main goals.

During 2010, the United States Department of Energy established, as one of its Energy Innovation Hubs, the Joint Center for Artificial Photosynthesis. The mission of JCAP is to find a cost-effective method to produce fuels using only sunlight, water, and carbon-dioxide as inputs.  JCAP is managed by a team from the California Institute of Technology (Caltech), directed by Professor Nathan Lewis and brings together more than 120 scientists and engineers from Caltech and its main partner, Lawrence Berkeley National Laboratory. JCAP also draws on the expertise and capabilities of key partners from Stanford University, the University of California at Berkeley, UCSB, University of California, Irvine, and University of California at San Diego, and the Stanford Linear Accelerator.  Additionally, JCAP serves as a central hub for other solar fuels research teams across the United States, including 20 DOE Energy Frontier Research Center.  The program had a budget of $122M over five years, subject to Congressional appropriation

Also during 2010, a team directed by professor David Wendell at the University of Cincinnati successfully demonstrated photosynthesis in an artificial construct consisting of enzymes suspended in a foam housing.

During 2011, Daniel Nocera and his research team announced the creation of the first practical artificial leaf. In a speech at the 241st National Meeting of the American Chemical Society, Nocera described an advanced solar cell the size of a poker card capable of splitting water into oxygen and hydrogen, approximately ten times more efficient than natural photosynthesis. The cell is mostly made of inexpensive materials that are widely available, works under simple conditions, and shows increased stability over previous catalysts: in laboratory studies, the authors demonstrated that an artificial leaf prototype could operate continuously for at least forty-five hours without a drop in activity. In May 2012, Sun Catalytix, the startup based on Nocera's research, stated that it will not be scaling up the prototype as the device offers few savings over other ways to make hydrogen from sunlight. Leading experts in the field have supported a proposal for a Global Project on Artificial Photosynthesis as a combined energy security and climate change solution. Conferences on this theme have been held at Lord Howe Island during 2011, at Chicheley Hall in the UK in 2014 and at Canberra and Lord Howe island during 2016.

Current research

In energy terms, natural photosynthesis can be divided in three steps:

A triad assembly, with a photosensitizer (P) linked in tandem to a water oxidation catalyst (D) and a hydrogen evolving catalyst (A). Electrons flow from D to A when catalysis occurs.

Using biomimetic approaches, artificial photosynthesis tries to construct systems doing the same type of processes. Ideally, a triad assembly could oxidize water with one catalyst, reduce protons with another and have a photosensitizer molecule to power the whole system. One of the simplest designs is where the photosensitizer is linked in tandem between a water oxidation catalyst and a hydrogen evolving catalyst:

  • The photosensitizer transfers electrons to the hydrogen catalyst when hit by light, becoming oxidized in the process.
  • This drives the water splitting catalyst to donate electrons to the photosensitizer. In a triad assembly, such a catalyst is often referred to as a donor. The oxidized donor is able to perform water oxidation.

The state of the triad with one catalyst oxidized on one end and the second one reduced on the other end of the triad is referred to as a charge separation, and is a driving force for further electron transfer, and consequently catalysis, to occur. The different components may be assembled in diverse ways, such as supramolecular complexes, compartmentalized cells, or linearly, covalently linked molecules.

Research into finding catalysts that can convert water, carbon dioxide, and sunlight to carbohydrates or hydrogen is a current, active field. By studying the natural oxygen-evolving complex (OEC), researchers have developed catalysts such as the "blue dimer" to mimic its function. However, these catalysts are still inefficient.

Photoelectrochemical cells that reduce carbon dioxide into carbon monoxide (CO), formic acid (HCOOH) and methanol (CH3OH) are under development. Similar to natural photosynthesis, such artificial leaves can use a tandem of light absorbers for overall water splitting or CO2 reduction. These integrated systems can be assembled on lightweight, flexible substrates, resulting in floating devices resembling lotus leaves.

Phycobilitproteins from algae are under development for renewable energy production.

Hydrogen catalysts

Hydrogen is the simplest solar fuel to synthesize, since it involves only the transference of two electrons to two protons. It must, however, be done stepwise, with formation of an intermediate hydride anion:

2 e + 2 H+ ⇌ H+ + H ⇌ H2

The proton-to-hydrogen converting catalysts present in nature are hydrogenases. These are enzymes that can either reduce protons to molecular hydrogen or oxidize hydrogen to protons and electrons. Spectroscopic and crystallographic studies spanning several decades have resulted in a good understanding of both the structure and mechanism of hydrogenase catalysis. Using this information, several molecules mimicking the structure of the active site of both nickel-iron and iron-iron hydrogenases have been synthesized. Other catalysts are not structural mimics of hydrogenase but rather functional ones. Synthesized catalysts include structural H-cluster models, a dirhodium photocatalyst, and cobalt catalysts.

Water-oxidizing catalysts

Water oxidation is a more complex chemical reaction than proton reduction. In nature, the oxygen-evolving complex performs this reaction by accumulating reducing equivalents (electrons) in a manganese-calcium cluster within photosystem II (PS II), then delivering them to water molecules, with the resulting production of molecular oxygen and protons:

2 H2O → O2 + 4 H+ + 4e

Without a catalyst (natural or artificial), this reaction is very endothermic, requiring high temperatures (at least 2500 K).

The exact structure of the oxygen-evolving complex has been hard to determine experimentally. As of 2011, the most detailed model was from a 1.9 Å resolution crystal structure of photosystem II. The complex is a cluster containing four manganese and one calcium ions, but the exact location and mechanism of water oxidation within the cluster is unknown. Nevertheless, bio-inspired manganese and manganese-calcium complexes have been synthesized, such as [Mn4O4] cubane-type clusters, some with catalytic activity.

Some ruthenium complexes, such as the dinuclear µ-oxo-bridged "blue dimer" (the first of its kind to be synthesized), are capable of light-driven water oxidation, thanks to being able to form high valence states. In this case, the ruthenium complex acts as both photosensitizer and catalyst. This complexes and other molecular catalysts still attract researchers in the field, having different advantages such as clear structure, active site, and easy to study mechanism. One of the main challenges to overcome is their short-term stability and their effective heterogenization for applications in artificial photosynthesis devices.

Many metal oxides have been found to have water oxidation catalytic activity, including ruthenium(IV) oxide (RuO2), iridium(IV) oxide (IrO2), cobalt oxides (including nickel-doped Co3O4), manganese oxide (including layered MnO2 (birnessite), Mn2O3), and a mix of Mn2O3 with CaMn2O4. Oxides are easier to obtain than molecular catalysts, especially those from relatively abundant transition metals (cobalt and manganese), but suffer from low turnover frequency and slow electron transfer properties, and their mechanism of action is hard to decipher and, therefore, to adjust.

Recently Metal-Organic Framework (MOF)-based materials have been shown to be a highly promising candidate for water oxidation with first row transition metals. The stability and tunability of this system is projected to be highly beneficial for future development.

Photosensitizers

Structure of [Ru(bipy)3]2+, a broadly used photosensitizer.

Nature uses pigments, mainly chlorophylls, to absorb a broad part of the visible spectrum. Artificial systems can use either one type of pigment with a broad absorption range or combine several pigments for the same purpose.

Ruthenium polypyridine complexes, in particular tris(bipyridine)ruthenium(II) and its derivatives, have been extensively used in hydrogen photoproduction due to their efficient visible light absorption and long-lived consequent metal-to-ligand charge transfer excited state, which makes the complexes strong reducing agents. Other noble metal-containing complexes used include ones with platinum, rhodium and iridium.

Metal-free organic complexes have also been successfully employed as photosensitizers. Examples include eosin Y and rose bengal. Pyrrole rings such as porphyrins have also been used in coating nanomaterials or semiconductors for both homogeneous and heterogeneous catalysis.

As part of current research efforts artificial photonic antenna systems are being studied to determine efficient and sustainable ways to collect light for artificial photosynthesis. Gion Calzaferri (2009) describes one such antenna that uses zeolite L as a host for organic dyes, to mimic plant's light collecting systems. The antenna is fabricated by inserting dye molecules into the channels of zeolite L. The insertion process, which takes place under vacuum and at high temperature conditions, is made possible by the cooperative vibrational motion of the zeolite framework and of the dye molecules. The resulting material may be interfaced to an external device via a stopcock intermediate.

Carbon dioxide reduction catalysts

In nature, carbon fixation is done by green plants using the enzyme RuBisCO as a part of the Calvin cycle. RuBisCO is a rather slow catalyst compared to the vast majority of other enzymes, incorporating only a few molecules of carbon dioxide into ribulose-1,5-bisphosphate per minute, but does so at atmospheric pressure and in mild, biological conditions. The resulting product is further reduced and eventually used in the synthesis of glucose, which in turn is a precursor to more complex carbohydrates, such as cellulose and starch. The process consumes energy in the form of ATP and NADPH.

Artificial CO2 reduction for fuel production aims mostly at producing reduced carbon compounds from atmospheric CO2. Some transition metal polyphosphine complexes have been developed for this end; however, they usually require previous concentration of CO2 before use, and carriers (molecules that would fixate CO2) that are both stable in aerobic conditions and able to concentrate CO2 at atmospheric concentrations haven't been yet developed. The simplest product from CO2 reduction is carbon monoxide (CO), but for fuel development, further reduction is needed, and a key step also needing further development is the transfer of hydride anions to CO.

Photobiological production of fuels

Some photoautotrophic microorganisms can, under certain conditions, produce hydrogen. Nitrogen-fixing microorganisms, such as filamentous cyanobacteria, possess the enzyme nitrogenase, responsible for conversion of atmospheric N2 into ammonia; molecular hydrogen is a byproduct of this reaction, and is many times not released by the microorganism, but rather taken up by a hydrogen-oxidizing (uptake) hydrogenase. One way of forcing these organisms to produce hydrogen is then to annihilate uptake hydrogenase activity. This has been done on a strain of Nostoc punctiforme: one of the structural genes of the NiFe uptake hydrogenase was inactivated by insertional mutagenesis, and the mutant strain showed hydrogen evolution under illumination.

Many of these photoautotrophs also have bidirectional hydrogenases, which can produce hydrogen under certain conditions. However, other energy-demanding metabolic pathways can compete with the necessary electrons for proton reduction, decreasing the efficiency of the overall process; also, these hydrogenases are very sensitive to oxygen.

Several carbon-based biofuels have also been produced using cyanobacteria, such as 1-butanol.

Synthetic biology techniques are predicted to be useful for this topic. Microbiological and enzymatic engineering have the potential of improving enzyme efficiency and robustness, as well as constructing new biofuel-producing metabolic pathways in photoautotrophs that previously lack them, or improving on the existing ones. Another topic being developed is the optimization of photobioreactors for commercial application.

Food production

Researchers have achieved controlled growth of diverse foods in the dark via solar energy and electrocatalysis-based artificial photosynthesis. It may become a way to increase energy efficiency of food production and reduce its environmental impacts. However, it is unclear if food production mechanisms based on the experimental process are viable and can be scaled.

Employed research techniques

Research in artificial photosynthesis is necessarily a multidisciplinary topic, requiring a multitude of different expertise. Some techniques employed in making and investigating catalysts and solar cells include:

Advantages, disadvantages, and efficiency

Advantages of solar fuel production through artificial photosynthesis include:

  • The solar energy can be immediately converted and stored. In photovoltaic cells, sunlight is converted into electricity and then converted again into chemical energy for storage, with some necessary losses of energy associated with the second conversion.
  • The byproducts of these reactions are environmentally friendly. Artificially photosynthesized fuel would be a carbon-neutral source of energy, which could be used for transportation or homes.

Disadvantages include:

  • Materials used for artificial photosynthesis often corrode in water, so they may be less stable than photovoltaics over long periods of time. Most hydrogen catalysts are very sensitive to oxygen, being inactivated or degraded in its presence; also, photodamage may occur over time.
  • The cost is not (yet) advantageous enough to compete with fossil fuels as a commercially viable source of energy.

A concern usually addressed in catalyst design is efficiency, in particular how much of the incident light can be used in a system in practice. This is comparable with photosynthetic efficiency, where light-to-chemical-energy conversion is measured. Photosynthetic organisms are able to collect about 50% of incident solar radiation, however the theoretical limit of photosynthetic efficiency is 4.6 and 6.0% for C3 and C4 plants respectively. In reality, the efficiency of photosynthesis is much lower and is usually below 1%, with some exceptions such as sugarcane in tropical climate. In contrast, the highest reported efficiency for artificial photosynthesis lab prototypes is 22.4%. However, plants are efficient in using CO2 at atmospheric concentrations, something that artificial catalysts still cannot perform.

Vegetable oils as alternative energy

Nebraska school district soybean biodiesel powered bus made possible through the Soybean Board of Nebraska grant program.

Vegetable oils are increasingly used as a substitute for fossil fuels. Vegetable oils are the basis of biodiesel, which can be used like conventional diesel. Some vegetable oil blends are used in unmodified vehicles, but straight vegetable oil often needs specially prepared vehicles which have a method of heating the oil to reduce its viscosity and surface tension, sometimes specially made injector nozzles, increased injection pressure and stronger glow-plugs, in addition to fuel pre-heating is used. Another alternative is vegetable oil refining.

The availability of biodiesel around the world is increasing, although still tiny compared to conventional fossil fuel sources. There is significant research in algaculture methods to make biofuel from algae.

Concerns have been expressed about growing crops for fuel use rather than food and the environmental impacts of large-scale agriculture and land clearing required to expand the production of vegetable oil for fuel use. These effects/impacts would need to be specifically researched and evaluated, economically and ecologically, and weighed in balance with the proposed benefits of vegetable oil fuel in relation to the use of other fuel sources.

Future of energy for world economy

There is a limited amount of fossil fuel inside the Earth. Since the current world energy resources and consumption is mainly fossil fuels, society is very dependent on them for both transportation and electric power generation. The Hubbert peak theory predicts that oil depletion will result in oil production dropping off in the not too distant future. As time goes on our economy will have to transition to some alternative fuels. Fossil fuels have solved two problems which could be separately solved in the future: the problem of a source of primary energy and of energy storage. Along with straight vegetable oil and biodiesel, some energy technologies that could play an important part in the future include:

Net CO2 or greenhouse gas production

Plants use sunlight and photosynthesis to take carbon dioxide (CO2) out of the Earth's atmosphere to make vegetable oil. The same CO2 is then put back after it is burned in an engine. Thus vegetable oil does not increase the CO2 in the atmosphere, and does not directly contribute to the problem of greenhouse gas. It is really a way of catching and storing solar energy; it is a renewable energy.

However, as with other "renewable" energy sources, there may be a (relatively small) carbon footprint associated with the production or distribution of vegetable oil.

Safety

Plantains frying in vegetable oil

Vegetable oil is far less toxic than other fuels such as gasoline, petroleum-based diesel, ethanol, or methanol, and has a much higher flash point (approximately 275-290 °C). The higher flash point reduces the risk of accidental ignition. Some types of vegetable oil are edible.

Generation and storage

Technologies of hydrogen economy, batteries, compressed air energy storage, and flywheel energy storage address the energy storage problem but not the source of primary energy. Other technologies like fission power, fusion power, and solar power address the problem of a source of primary energy but not energy storage. Vegetable oil addresses both the source of primary energy and of energy storage. The cost and weight to store a given amount of energy as vegetable oil is low compared to many of the potential replacements for fossil fuels.

Type of vegetable oil

The list of vegetable oils article discusses which types of vegetable oil are used for fuel and where different types are grown.

Transportation

Vegetable oil is used for transportation in four different ways:

  • Vegetable oil blends - Mixing vegetable oil with diesel lets users get some of the advantages of burning vegetable oil and is often done with no modification to the vehicle.
  • Biodiesel - Biodiesel can be produced from vegetable oil through the process of transesterification. Biodiesel burns like normal diesel and works fine in any diesel engine. The name just indicates that the fuel came from vegetable oil.
  • Straight vegetable oil - Straight vegetable oil works in diesel engines if it is heated first. Some diesel engines already heat their fuel, others need a small electric heater on the fuel line. How well it works depends on the heating system, the engine, the type of vegetable oil (thinner is easier), and the climate (warmer is easier). Some data is available on results users are seeing. As vegetable oil has become more popular as a fuel, engines are being designed to handle it better. The Elsbett engine is designed to run on straight vegetable oil. However, as of the start of 2007, it seems that there are not any production vehicles warrantied for burning straight vegetable oil, although Deutz offers a tractor and John Deere are both known to be in late stages of engine development. There is a German grapeseed oil fuel standard DIN 51605. At this point straight vegetable oil is only a niche market although the market segment in Germany is rapidly growing with large haulage vehicle fleets adopting the fuel, largely for economic reasons. A growing number of decentralised oil mills provide a large part of this fuel.
  • Vegetable oil refining - Vegetable oil can be used as feedstock for an oil refinery. There it can be transformed into fuel by hydrocracking (which breaks big molecules into smaller ones using hydrogen) or hydrogenation (which adds hydrogen to molecules). These methods can produce gasoline, diesel, or propane. Some commercial examples of vegetable oil refining are NExBTL, H-Bio, and the ConocoPhilips Process.

The transition can start with biodiesel, vegetable oil refining, and vegetable oil blends, since these technologies do not require the capital outlay of converting an engine to run on vegetable oils. Because it costs to convert vegetable oil into biodiesel it is expected that vegetable oil will always be cheaper than biodiesel. After there are production cars that can use straight vegetable oil and a standard type available at gas stations, consumers will probably choose straight vegetable oil to save money. So the transition to vegetable oil can happen gradually.

Electricity generation

Other methods, like nuclear power, fusion power, wind power and solar power, may provide cheaper electricity, so vegetable oil may only be used in peaking power plants and small power plants, as diesel is limited to today. There is at least one 5 MW power plant that runs on biodiesel. MAN B&W Diesel, Wärtsilä and other companies produce engines suitable for power generation that can be fueled with pure plant oils.

Market, cost, price, and taxes

In some countries, filling stations sell bio-diesel more cheaply than conventional diesel.

In Europe, straight vegetable oil (SVO) costs 150 pence/litre at most supermarkets  and somewhat less when bought in bulk direct from the manufacturers whereas diesel costs at least 130 pence per litre (in the UK ) to well over that (depends on the year, 1.4 euro is the current market price in central Europe). In the USA, diesel costs about 0,6 $ per liter and the cheapest SVO costs about the same, with more expensive oils costing more than that (up to $7 per gallon).

The availability of biodiesel around the World is increasing. It is estimated that by 2010 the market for biodiesel will be 7.5 billion litres (2 billion USgallons) in the U.S and 9.5 billion litres (2.5 billion USgallons) in Europe. Biodiesel currently has 3% of the diesel market in Germany and is the number 1 alternative fuel. The German government has a Biofuels Roadmap in which they expect to reach 10% biofuels by 2010 with the diesel 10% coming from fuel made from vegetable oil.

From 2005 to 2007 a number of types of vegetable oil have doubled in price. The rise in vegetable oil prices is largely attributed to biofuel demand.

Much of the fuel price at the pump is due to fuel tax. If you buy vegetable oil at the grocery store it does not have such high taxes. So at times people have bought vegetable oil at the store for their cars because it was cheaper. They did this in spite of the fact that packaging by the gallon adds to the cost and it was illegal to use in a car since no fuel tax had been paid on it.

Since vegetable oil (even as biodiesel) does not contribute to greenhouse gas, governments may tax it much less than gasoline as they have done with ethanol. This would help them reach Kyoto protocol targets.

Production in sufficient quantity

African Oil Palm (Elaeis guineensis

The World production of vegetable oil seed is forecast to be 418 million tonnes in 2008/09. After pressing this will make 131 million tonnes of vegetable oil. Much of this is from Oil Palm, and palm oil production is growing at 5% per year. At about 7.5 lb/USgal (900 g/L) this is about 38 billion USgallons (144 billion L). Currently vegetable oil is mostly used in food and some industrial uses with a small percentage used as fuel. The major fuel usage is by conversion to biodiesel with about 3 billion US gallons (11,000,000 m3) in 2009.

In 2004 the US consumed 530 billion litres (140 billion USgal) of gasoline and 150 billion litres (40 billion USgal) of diesel. In biodiesel it says oil palm produces 5940 litres per hectare (635 USgal/acre) of palm oil each year. To make 180 billion US gallons (680,000,000 m3) of vegetable oil each year would require 1,150,000 square kilometres (440,000 sq mi) or a square of land 1,070 kilometres (660 mi) on a side.

"The gradual move from oil has begun. Over the next 15 to 20 years we may see biofuels providing a full 25 percent of the world's energy needs. While the move is good for reducing greenhouse emissions, soaring oil prices have encouraged most countries to 'go green' by switching to greater use of biofuels." - Alexander Müller, Assistant Director-General of Sustainable Development at the FAO.

Algaculture could potentially produce far more oil per unit area. Results from pilot algaculture projects using sterile CO2 from power plant smokestacks look promising.

Genetic modifications to soybeans are already being used. Genetic modifications and breeding can increase vegetable oil yields. From 1979 to 2005 the soybean yield in bushels per acre more than doubled. A company has developed a variety of camelina sativa that yields 20% more oil than the standard variety.

Environmental effects

Jungle burned for agriculture in southern Mexico.

There is concern that the current growing demand for vegetable oil is causing deforestation, with old forests being replaced with oil palms. When land is cleared, it is often burned, releases large amounts of the greenhouse gas CO2. Vegetable oil production would have to increase substantially to replace gasoline and diesel. With current technology, such an increase in production would have a substantial environmental impact.

Food vs fuel debate

In some poor countries the rising price of vegetable oil is causing problems. There are those that say using a food crop for fuel sets up competition between food in poor countries and fuel in rich countries. Some propose that fuel only be made from non-edible vegetable oils like jatropha oil. Others argue that the problem is more fundamental. The law of supply and demand predicts that if fewer farmers are producing food the price of food will rise. It may take some time, as farmers can take some time to change which things they are growing, but increasing demand for biofuels is likely to result in price increases for many kinds of food. Some have pointed out that there are poor farmers and poor countries making more money because of the higher price of vegetable oil.

With the use of non-edible vegetable oils produced by trees such as Millettia Pinnata (formerly Pongamia Pinnata) or the Moringa oleifera tree, both which grow on borderline or non-arable land, the food versus fuel debate becomes less of an either/or question. Apart from their facility of growing in non-arable and/or marginal land, these trees offer major advantages over peanut, soy-bean, sunflower, etc., in that they have long lives (up to 100 years), very low maintenance (since the intensive husbandry is limited to the first few years of their producing lives) and can provide cash-crops to rural areas, such as rural India. In the case of Millettia Pinnata and a few others, the fact that they are nitrogen-fixing legumes is another very important factor, in that they do not deplete the soil. Among other benefits of these trees is that they have root-systems that penetrate much deeper and do not compete with shallow-rooted plants, like grass (once the trees have attained a certain maturity). This means that the land can be used for multiple purposes, such as grazing for animals. Yet another benefit of using Millettia Pinnata to produce bio-diesel is that it can tolerate low rainfall (as little as 250 ml per year), far below what most food-crops require, thus reducing yet more their potential to compete.

Algae for vegetable oil production

Algae display at the UPLB MNH.jpg

Some species of algae contain as much as 50% vegetable oil. Algae have very high growth rates compared to plants normally used to produce vegetable oil. Potentially algae could produce much more oil per area of land than current farming methods. So producing vegetable oil this way should result in less deforestation and less competition for food production land. Yusuf Chisti of the Institute of Technology and Engineering at Massey University states, "As demonstrated here, microalgal biodiesel is technically feasible. It is the only renewable biodiesel that can potentially completely displace liquid fuels derived from petroleum. Economics of producing microalgal biodiesel need to improve substantially to make it competitive with petrodiesel, but the level of improvement necessary appears to be attainable."

Where there is existing electricity generation using fossil fuels, there is a source of sterile CO2. This makes algaculture much easier. To grow algae you need lots of CO2, but if you get it from air you will also get all kinds of other organisms, some of which eat algae. Getting CO2 from a smokestack works out really well. Governments trying to address the external costs of coal power plants may have a carbon tax or carbon credit that provides additional motivation to use CO2 from smokestacks. Several commercial pilot plants are under construction.

There is substantial research and development work in this area but as of 2007 there is no commercial vegetable oil produced from algae and used as biofuel. ExxonMobil is investing $600 million and estimates they are 5 to 10 years from significant production, but could invest billions in final development and commercialization. If and when the commercialization challenges are overcome, vegetable oil production could expand very rapidly. In 2012, United States President Barack Obama supported the idea of getting oil from algae.

Carbon dioxide scrubber

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Carbon_dioxide_scrubber

A carbon dioxide scrubber is a piece of equipment that absorbs carbon dioxide (CO2). It is used to treat exhaust gases from industrial plants or from exhaled air in life support systems such as rebreathers or in spacecraft, submersible craft or airtight chambers. Carbon dioxide scrubbers are also used in controlled atmosphere (CA) storage. They have also been researched for carbon capture and storage as a means of combating climate change.

Technologies

Amine scrubbing

The primary application for CO2 scrubbing is for removal of CO2 from the exhaust of coal- and gas-fired power plants. Virtually the only technology being seriously evaluated involves the use of various amines, e.g. monoethanolamine. Cold solutions of these organic compounds bind CO2, but the binding is reversed at higher temperatures:

CO2 + 2 HOCH
2
CH
2
NH
2
HOCH
2
CH
2
NH+
3
+ HOCH
2
CH
2
NHCO
2

As of 2009, this technology has only been lightly implemented because of capital costs of installing the facility and the operating costs of utilizing it.

Minerals and zeolites

Several minerals and mineral-like materials reversibly bind CO2. Most often, these minerals are oxides or hydroxides, and often the CO2 is bound as carbonate. Carbon dioxide reacts with quicklime (calcium oxide) to form limestone (calcium carbonate), in a process called carbonate looping. Other minerals include serpentinite, a magnesium silicate hydroxide, and olivine. Molecular sieves also function in this capacity.

Various (cyclical) scrubbing processes have been proposed to remove CO2 from the air or from flue gases and release them in a controlled environment, reverting the scrubbing agent. These usually involve using a variant of the Kraft process which may be based on sodium hydroxide. The CO2 is absorbed into such a solution, transfers to lime (via a process called causticization) and is released again through the use of a kiln. With some modifications to the existing processes (mainly changing to an oxygen-fired kiln) the resulting exhaust becomes a concentrated stream of CO2, ready for storage or use in fuels. An alternative to this thermo-chemical process is an electrical one which releases the CO2 through electrolyzing of the carbonate solution. While simpler, this electrical process consumes more energy as electrolysis, also splits water. To prevent negating the environmental benefit of using electrolysis over the kiln method, the electricity should come from a renewable (or less emissive than the otherwise needed kiln) source. Early incarnations of environmentally motivated CO2 capture used electricity as the energy source and were therefore dependent on green energy. Some thermal CO2 capture systems use heat generated on-site, which reduces the inefficiencies resulting from off-site electricity production, but it still needs a source of (green) heat, which nuclear power or concentrated solar power could provide. 

Sodium hydroxide

Zeman and Lackner outlined a specific method of air capture.

First, CO2 is absorbed by an alkaline NaOH solution to produce dissolved sodium carbonate. The absorption reaction is a gas liquid reaction, strongly exothermic, here:

2NaOH(aq) + CO2(g) → Na
2
CO
3
(aq) + H2O(l)
Na
2
CO
3
(aq) + Ca(OH)
2
(s) → 2NaOH(aq) + CaCO
3
(s)
ΔH° = -114.7 kJ/mol

Causticization is performed ubiquitously in the pulp and paper industry and readily transfers 94% of the carbonate ions from the sodium to the calcium cation. Subsequently, the calcium carbonate precipitate is filtered from solution and thermally decomposed to produce gaseous CO2. The calcination reaction is the only endothermic reaction in the process and is shown here:

CaCO
3
(s) → CaO(s) + CO2(g)
ΔH° = + 179.2 kJ/mol

The thermal decomposition of calcite is performed in a lime kiln fired with oxygen in order to avoid an additional gas separation step. Hydration of the lime (CaO) completes the cycle. Lime hydration is an exothermic reaction that can be performed with water or steam. Using water, it is a liquid/solid reaction as shown here:

CaO(s) + H2O(l) → Ca(OH)
2
(s)
ΔH° = -64.5 kJ/mol

Lithium hydroxide

Other strong bases such as soda lime, sodium hydroxide, potassium hydroxide, and lithium hydroxide are able to remove carbon dioxide by chemically reacting with it. In particular, lithium hydroxide was used aboard spacecraft, such as in the Apollo program, to remove carbon dioxide from the atmosphere. It reacts with carbon dioxide to form lithium carbonate. Recently lithium hydroxide absorbent technology has been adapted for use in anesthesia machines. Anesthesia machines which provide life support and inhaled agents during surgery typically employ a closed circuit necessitating the removal of carbon dioxide exhaled by the patient. Lithium hydroxide may offer some safety and convenience benefits over the older calcium based products.

2 LiOH(s) + 2 H2O(g) → 2 LiOH·H2O(s)
2 LiOH·H2O(s) + CO2(g) → Li
2
CO
3
(s) + 3 H2O(g)

The net reaction being:

2LiOH(s) + CO2(g) → Li
2
CO
3
(s) + H2O(g)

Lithium peroxide can also be used as it absorbs more CO2 per unit weight with the added advantage of releasing oxygen.

In recent years lithium orthosilicate has attracted much attention towards CO2capture, as well as energy storage. This material offers considerable performance advantages although it requires high temperatures for the formation of carbonate to take place.

Regenerative carbon dioxide removal system

The regenerative carbon dioxide removal system (RCRS) on the Space Shuttle orbiter used a two-bed system that provided continuous removal of carbon dioxide without expendable products. Regenerable systems allowed a shuttle mission a longer stay in space without having to replenish its sorbent canisters. Older lithium hydroxide (LiOH)-based systems, which are non-regenerable, were replaced by regenerable metal-oxide-based systems. A system based on metal oxide primarily consisted of a metal oxide sorbent canister and a regenerator assembly. It worked by removing carbon dioxide using a sorbent material and then regenerating the sorbent material. The metal-oxide sorbent canister was regenerated by pumping air at approximately 400 °F (204 °C) through it at a standard flow rate of 7.5 cu ft/min (0.0035 m3/s) for 10 hours.

Activated carbon

Activated carbon can be used as a carbon dioxide scrubber. Air with high carbon dioxide content, such as air from fruit storage locations, can be blown through beds of activated carbon and the carbon dioxide will adhere to the activated carbon [adsorption]. Once the bed is saturated it must then be "regenerated" by blowing low carbon dioxide air, such as ambient air, through the bed. This will release the carbon dioxide from the bed, and it can then be used to scrub again, leaving the net amount of carbon dioxide in the air the same as when the process was started.

Metal-organic frameworks (MOFs)

Metal-organic frameworks are one of the most promising new technologies for carbon dioxide capture and sequestration via adsorption. Although no large-scale commercial technology exists nowadays, several research studies have indicated the great potential that MOFs have as a CO2 adsorbent. Its characteristics, such as pore structure and surface functions can be easily tuned to improve CO2 selectivity over other gases.

A MOF could be specifically designed to act like a CO2 removal agent in post-combustion power plants. In this scenario, the flue gas would pass through a bed packed with a MOF material, where CO2 would be stripped. After saturation is reached, CO2 could be desorbed by doing a pressure or temperature swing. Carbon dioxide could then be compressed to supercritical conditions in order to be stored underground or utilized in enhanced oil recovery processes. However, this is not possible in large scale yet due to several difficulties, one of those being the production of MOFs in great quantities.

Another problem is the availability of metals necessary to synthesize MOFs. In a hypothetical scenario where these materials are used to capture all CO2 needed to avoid global warming issues, such as maintaining a global temperature rise less than 2 °C above the pre-industrial average temperature, we would need more metals than are available on Earth. For example, to synthesize all MOFs that utilize vanadium, we would need 1620% of 2010 global reserves. Even if using magnesium-based MOFs, which have demonstrated a great capacity to adsorb CO2, we would need 14% of 2010 global reserves, which is a considerable amount. Also, extensive mining would be necessary, leading to more potential environmental problems.

In a project sponsored by the DOE and operated by UOP LLC in collaboration with faculty from four different universities, MOFs were tested as possible carbon dioxide removal agents in post-combustion flue gas. They were able to separate 90% of the CO2 from the flue gas stream using a vacuum pressure swing process. Through extensive investigation, researchers found out that the best MOF to be used was Mg/DOBDC, which has a 21.7 wt% CO2 loading capacity. Estimations showed that, if a similar system were to be applied to a large scale power plant, the cost of energy would increase by 65%, while a NETL baseline amine based system would cause an increase of 81% (the DOE goal is 35%). Also, each ton of CO2 avoided would cost $57, while for the amine system this cost is estimated to be $72. The project ended in 2010, estimating that the total capital required to implement such a project in a 580 MW power plant was 354 million dollars.

Extend Air Cartridge

An Extend Air Cartridge (EAC) is a make or type of pre-loaded one-use absorbent canister that can be fitted into a recipient cavity in a suitably-designed rebreather.

Other methods

Many other methods and materials have been discussed for scrubbing carbon dioxide.

Direct air capture

From Wikipedia, the free encyclopedia
Flow diagram of direct air capture process using sodium hydroxide as the absorbent and including solvent regeneration.
Flow diagram of direct air capture process using sodium hydroxide as the absorbent and including solvent regeneration

Direct air capture (DAC) is the use of chemical or physical processes to extract carbon dioxide directly from the ambient air. If the extracted CO2 is then sequestered in safe long-term storage (called direct air carbon capture and sequestration (DACCS)), the overall process will achieve carbon dioxide removal and be a "negative emissions technology" (NET). As of 2022, DAC has yet to become profitable because the cost of using DAC to sequester carbon dioxide is several times the carbon price.

The carbon dioxide (CO2) is captured directly from the ambient air; this is contrast to carbon capture and storage (CCS) which captures CO2) from point sources, such as a cement factory or a bioenergy plant. After the capture, DAC generates a concentrated stream of CO2 for sequestration or utilization or production of carbon-neutral fuel and windgas. Carbon dioxide removal is achieved when ambient air makes contact with chemical media, typically an aqueous alkaline solvent or sorbents. These chemical media are subsequently stripped of CO2 through the application of energy (namely heat), resulting in a CO2 stream that can undergo dehydration and compression, while simultaneously regenerating the chemical media for reuse.

When combined with long-term storage of CO2, DAC is known as direct air carbon capture and storage (DACCS or DACS). It would require renewable energies to power since approximately 400kJ of energy is needed per mole of CO2 capture. DACCS can act as a carbon dioxide removal mechanism (or a carbon negative technology), although as of 2022 it has yet to be profitable because the cost per tonne of carbon dioxide is several times the carbon price.

DAC was suggested in 1999 and is still in development. Several commercial plants are planned or in operation in Europe and the US. Large-scale DAC deployment may be accelerated when connected with economical applications or policy incentives.

In contrast to carbon capture and storage (CCS) which captures emissions from a point source such as a factory, DAC reduces the carbon dioxide concentration in the atmosphere as a whole. Typically, CCS is recommended for large and stationary sources of CO2 rather than distributed and movable ones. On the contrary, DAC has no limitation on sources.

Methods of capture

The International Energy Agency reported growth in direct air capture global operating capacity.

Most commercial techniques require large fans to push ambient air through a filter. More recently, Ireland-based company Carbon Collect Limited has developed the MechanicalTree™ which simply stands in the wind to capture CO2. The company claims this 'passive capture' of CO2 significantly reduces the energy cost of Direct Air Capture, and that its geometry lends itself to scaling for gigaton CO2 capture.

Most commercial techniques use a liquid solvent—usually amine-based or caustic—to absorb CO2 from a gas. For example, a common caustic solvent: sodium hydroxide reacts with CO2 and precipitates a stable sodium carbonate. This carbonate is heated to produce a highly pure gaseous CO2 stream. Sodium hydroxide can be recycled from sodium carbonate in a process of causticizing. Alternatively, the CO2 binds to solid sorbent in the process of chemisorption. Through heat and vacuum, the CO2 is then desorbed from the solid.

Among the specific chemical processes that are being explored, three stand out: causticization with alkali and alkali-earth hydroxides, carbonation, and organic−inorganic hybrid sorbents consisting of amines supported in porous adsorbents.

Other explored methods

The idea of using many small dispersed DAC scrubbers—analogous to live plants—to create environmentally significant reduction in CO2 levels, has earned the technology a name of artificial trees in popular media.

Moisture swing sorbent

In a cyclical process designed in 2012 by professor Klaus Lackner, the director of the Center for Negative Carbon Emissions (CNCE), dilute CO2 can be efficiently separated using an anionic exchange polymer resin called Marathon MSA, which absorbs air CO2 when dry, and releases it when exposed to moisture. A large part of the energy for the process is supplied by the latent heat of phase change of water.[19] The technology requires further research to determine its cost-effectiveness.

Metal-organic frameworks

Other substances which can be used are Metal-organic frameworks (or MOF's).

Membranes

Membrane separation of CO2 rely on semi-permeable membranes. This method requires little water and has a smaller footprint. Typically polymeric membranes, either glassy or rubbery, are used for direct air capture. Glassy membranes typically exhibit high selectivity with respect to Carbon Dioxide; however, they also have low permeabilities. Membrane capture of carbon dioxide is still in development and needs further research before it can be implemented on a larger scale. 

Environmental impact

Proponents of DAC argue that it is an essential component of climate change mitigation. Researchers posit that DAC could help contribute to the goals of the Paris Agreement (namely limiting the increase in global average temperature to well below 2 °C above pre-industrial levels). However, others claim that relying on this technology is risky and might postpone emission reduction under the notion that it will be possible to fix the problem later, and suggest that reducing emissions may be a better solution.

DAC relying on amine-based absorption demands significant water input. It was estimated, that to capture 3.3 gigatonnes of CO2 a year would require 300 km3 of water, or 4% of the water used for irrigation. On the other hand, using sodium hydroxide needs far less water, but the substance itself is highly caustic and dangerous.

DAC also requires much greater energy input in comparison to traditional capture from point sources, like flue gas, due to the low concentration of CO2. The theoretical minimum energy required to extract CO2 from ambient air is about 250 kWh per tonne of CO2, while capture from natural gas and coal power plants requires, respectively, about 100 and 65 kWh per tonne of CO2. Because of this implied demand for energy, some geoengineering promoters have proposed using "small nuclear power plants" connected to DAC installations.

When DAC is combined with a carbon capture and storage (CCS) system, it can produce a negative emissions plant, but it would require a carbon-free electricity source. The use of any fossil-fuel-generated electricity would end up releasing more CO2 to the atmosphere than it would capture. Moreover, using DAC for enhanced oil recovery would cancel any supposed climate mitigation benefits.

Applications

Practical applications of DAC include:

These applications require different concentrations of CO2 product formed from the captured gas. Forms of carbon sequestration such as geological storage require pure CO2 products (concentration > 99%), while other applications such as agriculture can function with more dilute products (~ 5%). Since the air that is processed through DAC originally contains 0.04% CO2 (or 400 ppm), creating a pure product requires more energy than a dilute product and is thus typically more expensive.

DAC is not an alternative to traditional, point-source carbon capture and storage (CCS), rather it is a complementary technology that could be utilized to manage carbon emissions from distributed sources, fugitive emissions from the CCS network, and leakage from geological formations. Because DAC can be deployed far from the source of pollution, synthetic fuel produced with this method can use already existing fuel transport infrastructure.

Cost

One of the largest hurdles to implementing DAC is a cost required to separate CO2 and air. A study from 2011 estimated that a plant designed to capture 1 megatonne of CO2 a year would cost $2.2 billion. Other studies from the same period put the cost of DAC at $200–1000 per tonne of CO2 and $600 per tonne.

It is estimated that the total system cost is $1,000 per tonne of CO2, according to an economic and energetic analysis from 2011.

An economic study of a pilot plant in British Columbia, Canada, conducted from 2015 to 2018, estimated the cost at $94–232 per tonne of atmospheric CO2 removed. It is worth noting that the study was done by Carbon Engineering, which has financial interest in commercializing DAC technology.

Large-scale DAC deployment can be accelerated by policy incentives.

Development

Carbon Engineering

Carbon Engineering is a commercial DAC company founded in 2009 and backed, among others, by Bill Gates and Murray Edwards. As of 2018, it runs a pilot plant in British Columbia, Canada, that has been in use since 2015 and is able to extract about a tonne of CO2 a day. An economic study of its pilot plant conducted from 2015 to 2018 estimated the cost at $94–232 per tonne of atmospheric CO2 removed.

Partnering with California energy company Greyrock, Carbon Engineering converts a portion of its concentrated CO2 into synthetic fuel, including gasoline, diesel, and jet fuel.

The company uses a potassium hydroxide solution. It reacts with CO2 to form potassium carbonate, which removes a certain amount of CO2 from the air.

Climeworks

Climeworks's first industrial-scale DAC plant, which started operation in May 2017 in Hinwil, in the canton of Zurich, Switzerland, can capture 900 tonnes of CO2 per year. To lower its energy requirements, the plant uses heat from a local waste incineration plant. The CO2 is used to increase vegetable yields in a nearby greenhouse.

The company stated that it costs around $600 to capture one tonne of CO2 from the air.

Climeworks partnered with Reykjavik Energy in Carbfix, a project launched in 2007. In 2017, the CarbFix2 project was started and received funding from European Union's Horizon 2020 research program. The CarbFix2 pilot plant project runs alongside a geothermal power plant in Hellisheidi, Iceland. In this approach, CO2 is injected 700 meters under the ground and mineralizes into basaltic bedrock forming carbonate minerals. The DAC plant uses low-grade waste heat from the plant, effectively eliminating more CO2 than they both produce.

Global Thermostat

Global Thermostat is private company founded in 2010, located in Manhattan, New York, with a plant in Huntsville, Alabama. Global Thermostat uses amine-based sorbents bound to carbon sponges to remove CO2 from the atmosphere. The company has projects ranging from 40 to 50,000 tonnes per year.

The company claims to remove CO2 for $120 per tonne at its facility in Huntsville.

Global Thermostat has closed deals with Coca-Cola (which aims to use DAC to source CO2 for its carbonated beverages) and ExxonMobil which intends to start a DAC‑to‑fuel business using Global Thermostat's technology.

Soletair Power

Soletair Power is a startup founded in 2016, located in Lappeenranta, Finland, operating in the fields of DAC and Power-to-X. The startup is primarily backed by the Finnish technology group Wärtsilä. According to Soletair Power, its technology is the first to combine DAC with building integration. It absorbs CO2 from ventilation units inside buildings and captures it to improve air quality. Soletair focuses on the fact that DAC can improve employees' cognitive function by 20% per 400 ppm indoor CO2 removed, according to one study.

The company uses the captured CO2 in creating synthetic renewable fuel and as raw material for industrial applications. In 2020, Wärtsilä, together with Soletair Power and Q Power, created their first demonstration unit of Power-to-X for Dubai Expo 2020, that can produce synthetic methane from captured CO2 from buildings.

Prometheus Fuels

Is a start-up company based in Santa Cruz which launched out of Y Combinator in 2019 to remove CO2 from the air and turn it into zero-net-carbon gasoline and jet fuel. The company uses a DAC technology, adsorbing CO2 from the air directly into process electrolytes, where it is converted into alcohols by electrocatalysis. The alcohols are then separated from the electrolytes using carbon nanotube membranes, and upgraded to gasoline and jet fuels. Since the process uses only electricity from renewable sources, the fuels are carbon neutral when used, emitting no net CO2 to the atmosphere.

Other companies

  • Infinitree – earlier known as Kilimanjaro Energy and Global Research Technology. Part of US-based Carbon Sink. Demonstrated a pre-prototype of economically viable DAC technology in 2007
  • Skytree – a company from Netherlands
  • UK Carbon Capture and Storage Research Centre
  • Center for Negative Carbon Emissions of Arizona State University
  • Carbyon – a startup company in Eindhoven, the Netherlands
  • TerraFixing – a startup in Ottawa, Canada
  • Carbfix – a subsidiary of Reykjavik Energy, Iceland
  • Energy Impact Center – a research institute that advocates for the use nuclear energy to power direct air capture technologies.
  • Mission Zero Technologies — a startup in London, UK.

Lie point symmetry

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_point_symmetry     ...