Search This Blog

Sunday, December 29, 2013

GMOs May Feed the World Using Fewer Pesticides (and Bring Back the Bees)

By on
De Jong produced the plants in the same old, laborious way that his father did before him. He collected pollen from a plant that produces potatoes that fry as potato chips should and then sprinkled the pollen on the flower of a potato plant that resists viruses. If the resulting potatoes bear their parents’ finest features—and none of the bad ones—De Jong will bury them in the ground next year and test their mettle against a common potato virus. If they survive—and are good for frying and eating—he and his team will repeat this for 13 years to ensure that problematic genes did not creep in during the initial cross.

Walter_field
Walter De Jong, a second-generation potato breeder, walks the fields in upstate New York.

Each year, the chance of failure is high. Potatoes that resist viruses, for example, often have genes that make them taste bitter. Others turn an unappetizing shade of brown when fried. If anything like that happens, De Jong will have to start from scratch. Tedious as it is, he loves the work. Kicking up dirt in the furrows that cascade along the hillsides of upstate New York, he says, “I’m never stressed in the potato fields.”

De Jong has some serious cred in the agriculture world. Not only was his father a potato breeder, he’s also descended from a long line of farmers. The potato farmers he works with appreciate this deeply, along with his commitment to the age-old craft of producing new potato varieties through selective breeding. They even advocated on his behalf during his hiring and when he was up for tenure at Cornell, a school with a long history of agriculture research. “All of our farmers like Walter,” says Melanie Wickham, the executive secretary of the Empire State Growers organization in Stanley, New York. Often, he’s in the fields in a big hat, she says. Other times “you’ll see him in the grocery store, looking over the potatoes.”

De Jong has been working with farmers long enough to know that our food supply is never more than a step ahead of devastating insect infestations and disease. Selective breeders like De Jong work hard to develop resistant crops, but farmers still have to turn to chemical pesticides, some of which are toxic to human health and the environment. De Jong enjoys dabbing pollen from plant-to-plant the old-fashioned way, but he knows that selective breeding can only do so much.

seedlings
Seedlings from De Jong's selective breeding experiments poke their shoots above the soil in a greenhouse.
 
So while De Jong still devotes most of his time to honing his craft, he has recently begun to experiment in an entirely different way, with genetic engineering. To him, genetic engineering represents a far more exact way to produce new varieties, rather than simply scrambling the potato genome’s 39,000 genes the way traditional breeding does. By inserting a specific fungus-defeating gene into a tasty potato, for example, De Jong knows he could offer farmers a product that requires fewer pesticides.

“We want to make food production truly sustainable,” De Jong says, “and right now I cannot pretend that it is.”

The need to protect crops from ruin grows more vital every day. By 2050, farmers must produce 40% more food to feed an estimated 9 billion people on the planet. Either current yields will have to increase or farmland will expand farther into forests and jungles. In some cases, genetically modified organisms (GMOs) would offer an alternative way to boost yields without sacrificing more land or using more pesticides, De Jong says. But he fears this approach won’t blossom if the public rejects GMOs out of hand.

When It All Began

In the late 1990s, the agriculture corporation Monsanto began to sell corn engineered to include a protein from the bacteria Bacillus thuringiensis, better known as Bt. The bacteria wasn’t new to agriculture—organic farmers spray it on their crops to kill certain insects. Today more than 60% of the corn grown within the United States is Bt corn. Farmers have adopted it in droves because it saves them money that they would otherwise spend on insecticide and the fuel and labor needed to apply it.
They also earn more money for an acre of Bt corn compared with a conventional variety because fewer kernels are damaged. Between 1996 and 2011, Bt corn reduced insecticide use in corn production by 45% worldwide (110 million pounds, or roughly the equivalent of 20,000 Olympic swimming pools).

Between 1996 and 2001, Monsanto also produced Bt potato plants. Farmers like Duane Grant of Grant 4D Farms in Rupert, Idaho, welcomed the new variety. Grant grew up on his family’s farm, and his distaste for insecticides started at a young age. As a teenager, he recalls feeling so nauseous and fatigued after spraying the fields that he could hardly move until the next day. Today, pesticides are safer than those used 40 years ago, and stiffer U.S. federal regulations require that employees take more precautionary measures when applying them, but Grant occasionally tells his workers to head home early when they feel dizzy after spraying the fields. He was relieved when GM potatoes were introduced because he didn’t have to spray them with insecticide. He was warned that pests might overcome the modification in 15 to 20 years, but that didn’t deter him—he says the same thing happens with chemicals, too.

Unlike Bt corn, you can’t find any fields planted today with Bt potatoes. Soon after the breed hit the market, protestors began to single out McDonald’s restaurants, which collectively are the biggest buyer of potatoes worldwide. In response, McDonald’s, Wendy’s, and Frito-Lay stopped purchasing GM potatoes. In 2001, Monsanto dropped the product and Grant returned to conventional potatoes and the handful of insecticides he sprays on them throughout the summer.

“There is not a single documented case of anyone being hurt by genetically modified food, and yet this is a bigger problem for people than pesticides, which we know have caused harm,” he says. “I just shake my head in bewilderment at the folks who take these stringent positions that biotech should be banned.”
In the decade after Monsanto pulled their GM potatoes from the market, dozens of long-term animal feeding studies concluded that various GM crops were as safe as traditional varieties. And statements from science policy bodies, such as those issued by the American Association for the Advancement of Science, the U.S. National Academy of Sciences, the World Health Organization, and the European Commission, uphold that conclusion. Secondly, techniques to tweak genomes have become remarkably precise. Specific genes can be switched off without lodging foreign material into a plant’s genome. Scientists don’t necessarily have to mix disparate organisms with one another, either. In cisgenic engineering, organisms are engineered by transferring genes between individuals that could breed naturally.

Even some organic farmers bristle when asked about the anti-GMO movement. Under the U.S. Organic Foods Production Act, they are not allowed to grow GMOs, despite their ability to reduce pesticide applications. Organic farmers still spray their crops, just with different chemicals, such as sulfur and copper. Amy Hepworth, an organic farmer at Hepworth Farms in Milton, New York, says that they, too, can take a toll on the environment.

Hepworth would like to continuously evaluate new avenues towards sustainable agriculture as technology advances. However, her views often clash with her customers’ in the affluent Brooklyn, New York, neighborhood of Park Slope. Many of them see no benefit in GMOs’ ability to reduce pesticides because they say farmers should rely strictly on traditional farming methods.

“What people don’t understand is that without pesticides there is not enough food for the masses,” Hepworth says. “The fact is that GM is a tool that can help us use less pesticide.”

Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_group In mathematics , a Lie gro...