From Wikipedia, the free encyclopedia

In biology, altruism refers to behaviour by an individual that increases the fitness of another individual while decreasing the fitness of the actor.[1] Altruism in this sense is different from the philosophical concept of altruism, in which an action would only be called "altruistic" if it was done with the conscious intention of helping another. But in the behavioural sense, there is no such requirement. It is the consequences of an action for reproductive fitness that determine whether the action is considered altruistic, not the intentions, if any, with which the action is performed.[2]
The term altruism was coined by the French philosopher Auguste Comte in French, as altruisme, for an antonym of egoism.[3][4] He derived it from an Italian altrui, which in turn was derived from Latin alteri, meaning "other people" or "somebody else".[5]

Altruistic behaviours appear most obviously in kin relationships, such as in parenting, but may also be evident among wider social groups, such as in social insects. They allow an individual to increase the success of its genes by helping relatives that share those genes.[6]

Overview

In the science of ethology (the study of behavior), and more generally in the study of social evolution, on occasion, some animals do behave in ways that reduce their individual fitness but increase the fitness of other individuals in the population; this is a functional definition of altruism.[7] Research in evolutionary theory has been applied to social behaviour, including altruism. Cases of animals helping individuals to whom they are closely related can be explained by kin selection, and are not considered true altruism. Beyond the physical exertions that in some species mothers and in some species fathers undertake to protect their young, extreme examples of sacrifice may occur. One example is matriphagy (the consumption of the mother by her offspring) in the spider Stegodyphus; another example is a male spider allowing a female fertilized by him to eat him. Hamilton's rule describes the benefit of such altruism in terms of Wright's coefficient of relationship to the beneficiary and the benefit granted to the beneficiary minus the cost to the sacrificer. Should this sum be greater than zero a fitness gain will result from the sacrifice.

When apparent altruism is not between kin, it may be based on reciprocity. A monkey will present its back to another monkey, who will pick out parasites; after a time the roles will be reversed. Such reciprocity will pay off, in evolutionary terms, as long as the costs of helping are less than the benefits of being helped and as long as animals will not gain in the long run by "cheating" – that is to say, by receiving favours without returning them. This is elaborated on in evolutionary game theory and specifically the prisoner's dilemma as social theory.

Implications in evolutionary theory


Olive baboons grooming

The existence of altruism in nature is at first sight puzzling, because altruistic behaviour reduces the likelihood that an individual will reproduce. The idea that group selection might explain the evolution of altruism was first broached by Darwin himself in The Descent of Man, and Selection in Relation to Sex, (1871). The concept of group selection has a chequered and controversial history in evolutionary biology but the uncritical 'good of the species' tradition came to an abrupt halt in the 1960s, due largely to the work of George C. Williams and John Maynard Smith. In the 1960s and 1970s the rival theory of kin selection emerged, due originally to W. D. Hamilton.[8] Kin selection is an instance of inclusive fitness, which combines the number of offspring produced with the number an individual can produce by supporting others, such as siblings. This theory showed how altruistic behaviour could evolve without the need for group-level selection, and quickly gained prominence among biologists interested in the evolution of social behaviour.[2]

In a study by Sebastien Lion et al. , the aspects of life history traits, population density within a habitat, fecundity and survivals’ effect on altruism are observed simultaneously. It is stated that there is a feedback between life history traits, demography, kin selection and the selective pressures on altruism. This study suggests that survival is affected by both age structure of the population and habitat saturation. Survivorship is a life history trait that will affect the selective pressures on social traits which will then in turn affect the population dynamics, creating a feedback on the evolution of altruism. Cooperative breeding comes into play here by individuals helping others to raise offspring thereby increasing fecundity which is known to support altruism behavior and the genes that code for such behaviors.[9]

Recent developments in game theory have provided some explanations for apparent altruism, as have traditional evolutionary analyses. Among the proposed mechanisms are:
The study of altruism was the initial impetus behind George R. Price's development of the Price equation, which is a mathematical equation used to study genetic evolution.

Social behavior and altruism share many similarities to the interactions between the many parts (cells, genes) of an organism, but are distinguished by the ability of each individual to reproduce indefinitely without an absolute requirement for its neighbors.

Altruist theories in evolutionary biology were contested by Amotz Zahavi, the inventor of the signalling theory and its correlative, the handicap principle, based mainly on his observations of the Arabian babbler, a bird commonly known for its surprising (alleged) altruistic behaviours.

Researchers in Switzerland have developed an algorithm based on Hamilton's rule of kin selection. The algorithm shows how altruism in a swarm of entities can, over time, evolve and result in more effective swarm behaviour.[11][12]

The evolution of altruistic behavior could be the result of ecological constraints. Two traits of altruistic behavior, “resource-efficiency” and “resource-enhancement” evolved to overcome the limitations of resources for a given population. When a population is viable and there is increased fecundity and survival which keep a population going, but puts strains on the resources of the habitat. By developing the resource traits the increased competition for resources in overcome. “Resource-efficiency” traits better the ways in which individuals obtain resources. Pack hunting is one example. “Resource-enhancement” traits ensue a kind of “help me, help you” behavior with the individuals’ habitat. Farming is one example of this.[13]

Reciprocity mechanisms

Altruism in animals describes a range of behaviors performed by animals that may be to their own disadvantage but which benefit others.[14] The costs and benefits are measured in terms of reproductive fitness, or expected number of offspring. So by behaving altruistically, an organism reduces the number of offspring it is likely to produce itself, but boosts the likelihood that other organisms are to produce offspring. There are other forms of altruism in nature other than risk-taking behavior, such as reciprocal altruism. This biological notion of altruism is not identical to the everyday human concept. For humans, an action would only be called 'altruistic' if it was done with the conscious intention of helping another. Yet in the biological sense there is no such requirement.
Instead, until we can communicate directly with other species, an accurate theory to describe altruistic acts between species is Biological Market Theory. Humans and other animals exchange benefits in several ways, known technically as reciprocity mechanism. No matter what the mechanism, the common thread is that benefits find their way back to the original giver.

Symmetry-based

Also known as the "buddy-system", mutual affection between two parties prompts similar behavior in both directions without need to track of daily give-and-take, so long as the overall relationship remains satisfactory. This is one of the most common mechanism of reciprocity in nature, this kind is present in humans, primates, and many other mammals.

Attitudinal

Also known as, "If you're nice, I'll be nice too." This mechanism of reciprocity is similar to the heuristic of the golden rule, "Treat others how you would like to be treated." Parties mirror one another's attitudes, exchanging favors on the spot. Instant attitudinal reciprocity occurs among monkeys, and people often rely on it with strangers and acquaintances.

Calculated

Also known as, "what have you done for me lately?" Individuals keep track of the benefits they exchange with particular partners, which helps them decide to whom to return favors. This mechanism is typical of chimpanzees and very common among human relationships.[15] Yet some opposing experimental research suggests that calculated or contingent reciprocity does not spontaneously arise in laboratory experimental settings, despite patterns of behavior.

Biological market theory

Biological market theory is an extension of the idea of reciprocal altruism, as a mechanism to explain altruistic acts between unrelated individuals in a more flexible system of exchanging commodities.
The term 'biological market' was first used by Ronald Noe and Hammerstein in 1994 to refer to all the interactions between organisms in which different organisms function as 'traders' that exchange goods and services such as food and water, grooming, warning calls, shelter, etc. Biological market theory consists of five formal characteristics which present a basis for altruism.
  1. Commodities are exchanged between individuals that differ in the degree of control over those commodities.
  2. Trading partners are chosen from a number of potential partners.
  3. There is competition among the members of the chosen class to be the most attractive partner. This competition by 'outbidding' causes an increase in the value of the commodity offered.
  4. Supply and demand determine the bartering value of commodities exchanged.
  5. Commodities on offer can be advertised. As in commercial advertisements there is a potential for false information.[16]

The applicability of biological market theory with its emphasis on partner choice is evident in the interactions between the cleaner wrasse and its "client" reef fish. Cleaners have small territories, which the majority of reef fish species actively visit to invite inspection of their surface, gills, and mouth. Clients benefit from the removal of parasites while cleaners benefit from the access to a food source. Some particularly choosy client species have large home ranges that cover several cleaning stations, whereas other clients have small ranges and have access to one cleaning station only (resident clients). Field observations, field manipulations, and laboratory experiments revealed that whether or not a client has choice options influences several aspects of both cleaner and client behaviour. Cleaners give choosy clients priority of access. Choosy clients switch partners if cheated by a cleaner by taking a bite of out of the cleaner, whereas resident clients punish cheats. Cleaners and resident clients, but not choosy clients, build up relationships before normal cleaning interactions take place. Cleaners are particularly cooperative if choosy clients are bystanders of an interaction but less so when resident clients are bystanders.[17]

Researchers tested whether wild white-handed gibbon males from Khao Yai National Park, Thailand, increased their grooming activity when the female partner was fertile. Adult females and males of our study population are codominant (in terms of aggression), they live in pairs or small multi male groups and mate promiscuously. They found that males groomed females more than vice versa and more grooming was exchanged when females were cycling than during pregnancy or lactation. The number of copulations/day was elevated when females were cycling, and females copulated more frequently with males on days when they received more grooming. When males increased their grooming efforts, females also increased their grooming of males, perhaps to equalize give and take. Although grooming might be reciprocated because of intrinsic benefits of receiving grooming, males also interchange grooming as a commodity for sexual opportunities during a female's fertile period.[clarification needed][citation needed]

Examples in vertebrates

Mammals

Birds

  • In numerous bird species, a breeding pair receives support in raising its young from other "helper" birds, including help with the feeding of its fledglings.[28] Some will even go as far as protecting an unrelated bird's young from predators.[29]

Fish

Harpagifer bispins a species of Antarctic fish lives in social groups in the harsh environment of the Arctic Circle. Males, that are unrelated to the parents of the eggs in nests, guard the nest from predators and prevent fungal growth that would kill off the brood. There is no clear benefit to the male so it is considered a true altruistic act.[30]

Examples in invertebrates

  • Some termites and ants release a sticky secretion by fatally rupturing a specialized gland. This autothysis altruistically aids the colony at the expense of the individual insect. For example, defending against invading ants by creating a tar baby effect.[31] This can be attributed to the fact that ants share their genes with the entire colony, and so this behaviour is evolutionarily beneficial (not necessarily for the individual ant but for the continuation of its specific genetic make-up).
  • Synalpheus regalis is a species of eusocial marine snapping shrimp that lives in sponges in coral reefs. They live in colonies of about 300 individuals with one reproductive female.[32] Other colony members defend the colony against intruders, forage, and care for the young.[32] Eusociality is this system entails an adaptive division of labor which results in enhanced reproductive output of the breeders and inclusive fitness benefits for the nonbreeding helpers.[33] S. regalis are exceptionally tolerant of conspecifics within their colonies due to close genetic relatedness among nestmates. Allozyme data reveals that relatedness within colonies is high, which is an indication that colonies in this species represent close kin groups.[34] The existence of such groups is an important prerequisite of explanations of social evolution based on kin selection.[33][35][36]

Examples in protists

An interesting example of altruism is found in the cellular slime moulds, such as Dictyostelium mucoroides. These protists live as individual amoebae until starved, at which point they aggregate and form a multicellular fruiting body in which some cells sacrifice themselves to promote the survival of other cells in the fruiting body.[37]