In physics, the Bekenstein bound is an upper limit on the entropy S, or information I, that can be contained within a given finite region of space which has a finite amount of energy—or conversely, the maximum amount of information required to perfectly describe a given physical system down to the quantum level.[1] It implies that the information of a physical system, or the information necessary to perfectly describe that system, must be finite if the region of space and the energy is finite. In computer science, this implies that there is a maximum information-processing rate (Bremermann's limit) for a physical system that has a finite size and energy, and that a Turing machine with finite physical dimensions and unbounded memory is not physically possible.
Upon exceeding the Bekenstein bound a storage medium would collapse into a black hole.[2] This finds parallels with the concept of a kugelblitz, a concentration of light or radiation so intense that its energy forms an event horizon and becomes self-trapped: according to general relativity and the equivalence of mass and energy.
Equations
In informational terms, the bound is given by
Origins
Bekenstein derived the bound from heuristic arguments involving black holes. If a system exists that violates the bound, i.e., by having too much entropy, Bekenstein argued that it would be possible to violate the second law of thermodynamics by lowering it into a black hole. In 1995, Ted Jacobson demonstrated that the Einstein field equations (i.e., general relativity) can be derived by assuming that the Bekenstein bound and the laws of thermodynamics are true.[6][7] However, while a number of arguments have been devised which show that some form of the bound must exist in order for the laws of thermodynamics and general relativity to be mutually consistent, the precise formulation of the bound has been a matter of debate.[3][4][8][9][10][11][12][13][14][15][16]Examples
Black holes
It happens that the Bekenstein-Hawking Boundary Entropy of three-dimensional black holes exactly saturates the boundThe bound is closely associated with black hole thermodynamics, the holographic principle and the covariant entropy bound of quantum gravity, and can be derived from a conjectured strong form of the latter.
Human brain
An average human brain has a mass of 1.5 kg and a volume of 1260 cm³. If the brain is approximated by a sphere, then the radius will be 6.7 cm.The informational Bekenstein bound will be bits and represents the maximum information needed to perfectly recreate an average human brain down to the quantum level. This means that the number of states of the human brain must be less than .