Chelation (US: /kiːˈleɪʃən/, UK: /tʃɪ-/) is a type of bonding of ions and molecules to metal ions. It involves the formation or presence of two or more separate coordinate bonds between a polydentate (multiple bonded) ligand and a single central atom.[1][2] Usually these ligands are organic compounds, and are called chelants, chelators, chelating agents, or sequestering agents.
Chelation is useful in applications such as providing nutritional supplements, in chelation therapy to remove toxic metals from the body, as contrast agents in MRI scanning, in manufacturing using homogeneous catalysts, in chemical water treatment to assist in the removal of metals, and in fertilizers.
Chelation is useful in applications such as providing nutritional supplements, in chelation therapy to remove toxic metals from the body, as contrast agents in MRI scanning, in manufacturing using homogeneous catalysts, in chemical water treatment to assist in the removal of metals, and in fertilizers.
Chelate effect
The thermodynamic principles underpinning the chelate effect are illustrated by the contrasting affinities of copper(II) for ethylenediamine (en) vs. methylamine.
-
Cu2+ + en ⇌ [Cu(en)]2+(1)
-
Cu2+ + 2 MeNH2 ⇌ [Cu(MeNH2)2]2+(2)
The thermodynamic approach to describing the chelate effect considers the equilibrium constant for the reaction: the larger the equilibrium constant, the higher the concentration of the complex.
-
[Cu(en)] = β11[Cu][en](3)
-
[Cu(MeNH2)2] = β12[Cu][MeNH2]2(4)
An equilibrium constant, K, is related to the standard Gibbs free energy, by
Since the enthalpy should be approximately the same for the two reactions, the difference between the two stability constants is due to the effects of entropy. In equation (1) there are two particles on the left and one on the right, whereas in equation (2) there are three particles on the left and one on the right. This difference means that less entropy of disorder is lost when the chelate complex is formed than when the complex with monodentate ligands is formed. This is one of the factors contributing to the entropy difference. Other factors include solvation changes and ring formation. Some experimental data to illustrate the effect are shown in the following table.[3]
-
Equilibrium log β Cu2+ + 4 MeNH2 ⇌ Cu(MeNH2)42+ 6.55 -37.4 -57.3 19.9 Cu2+ + 2 en ⇌ Cu(en)22+ 10.62 -60.67 -56.48 -4.19
Other explanations, including that of Schwarzenbach,[4] are discussed in Greenwood and Earnshaw (loc.cit).
In nature
Numerous biomolecules exhibit the ability to dissolve certain metal cations. Thus, proteins, polysaccharides, and polynucleic acids are excellent polydentate ligands for many metal ions. Organic compounds such as the amino acids glutamic acid and histidine, organic diacids such as malate, and polypeptides such as phytochelatin are also typical chelators. In addition to these adventitious chelators, several biomolecules are specifically produced to bind certain metals (see next section).[5][6][7][8]In biochemistry and microbiology
Virtually all metalloenzymes feature metals that are chelated, usually to peptides or cofactors and prosthetic groups.[8] Such chelating agents include the porphyrin rings in hemoglobin and chlorophyll. Many microbial species produce water-soluble pigments that serve as chelating agents, termed siderophores. For example, species of Pseudomonas are known to secrete pyochelin and pyoverdine that bind iron. Enterobactin, produced by E. coli, is the strongest chelating agent known. The marine mussels use metal chelation esp. Fe3+ chelation with the Dopa residues in mussel foot protein-1 to improve the strength of the threads that it uses to secure itself to surfaces.[9][10][11]In geology
In earth science, hot chemical weathering is attributed to organic chelating agents (e.g., peptides and sugars) that extract metal ions from minerals and rocks.[12] Some metal complexes in the environment and in nature are not found in some form of chelate ring (e.g., with a humic acid or a protein). Thus, metal chelates are relevant to the mobilization of metals in the soil, the uptake and the accumulation of metals into plants and microorganisms. Selective chelation of heavy metals is relevant to bioremediation (e.g., removal of 137Cs from radioactive waste).[13]Medical applications
Nutritional supplements
In the 1960s, scientists developed the concept of chelating a metal ion prior to feeding the element to the animal. They believed that this would create a neutral compound, protecting the mineral from being complexed with insoluble salts within the stomach, which would render the metal unavailable for absorption. Amino acids, being effective metal binders, were chosen as the prospective ligands, and research was conducted on the metal-amino acid combinations. The research supported that the metal-amino acid chelates were able to enhance mineral absorption.[citation needed]During this period, synthetic chelates such as ethylenediaminetetraacetic acid (EDTA) were being developed. These applied the same concept of chelation and did create chelated compounds; but these synthetics were too stable and not nutritionally viable. If the mineral was taken from the EDTA ligand, the ligand could not be used by the body and would be expelled. During the expulsion process the EDTA ligand randomly chelated and stripped another mineral from the body.[14]
According to the Association of American Feed Control Officials (AAFCO), a metal amino acid chelate is defined as the product resulting from the reaction of a metal ion from a soluble metal salt with a mole ratio of one to three (preferably two) moles of amino acids. The average weight of the hydrolyzed amino acids must be approximately 150 and the resulting molecular weight of the chelate must not exceed 800 Da.[citation needed]
Since the early development of these compounds, much more research has been conducted, and has been applied to human nutrition products in a similar manner to the animal nutrition experiments that pioneered the technology. Ferrous bis-glycinate is an example of one of these compounds that has been developed for human nutrition.[15]
Dental and Oral Application
First-Generation Dentin Adhesives were first designed and produced in the 1950s. These systems were based on a co-monomer chelate with calcium on the surface of the tooth and generated very weak water resistance chemical bonding (2-3 MPa).[16]Heavy-metal detoxification
Chelation therapy is used as antidotes for poisoning by mercury, arsenic, and lead. Chelating agents convert these metal ions into a chemically and biochemically inert form that can be excreted. Chelation using calcium disodium EDTA has been approved by the U.S. Food and Drug Administration (FDA) for serious cases of lead poisoning. It is not approved for treating "heavy metal toxicity".[17]Although beneficial in cases of serious lead poisoning, use of disodium EDTA (edetate disodium) instead of calcium disodium EDTA has resulted in fatalities due to hypocalcemia.[18] Disodium EDTA is not approved by the FDA for any use,[17] and all FDA-approved chelation therapy products require a prescription.[19]
Pharmaceuticals
Chelate complexes of gadolinium are often used as contrast agents in MRI scans, although iron particle and manganese chelate complexes have also been explored.[20][21] Bifunctional chelate complexes of zirconium, gallium, fluorine, copper, yttrium, bromine, or iodine are often used for conjugation to monoclonal antibodies for use in antibody-based PET imaging.[22] These chelate complexes often employ the usage of hexadentate ligands such as desferrioxamine B (DFO), according to Meijs et al.,[23] and the gadolinium complexes often employ the usage of octadentate ligands such as DTPA, according to Desreux et al.[24] Auranofin, a chelate complex of gold, is used in the treatment of rheumatoid arthritis, and penicillamine, which forms chelate complexes of copper, is used in the treatment of Wilson's disease and cystinuria, as well as refractory rheumatoid arthritis.[25][26]Other medical applications
Chelation in the intestinal tract is a cause of numerous interactions between drugs and metal ions (also known as "minerals" in nutrition). As examples, antibiotic drugs of the tetracycline and quinolone families are chelators of Fe2+, Ca2+, and Mg2+ ions.[27][28]EDTA, which binds to calcium, is used to alleviate the hypercalcimia that often results from band keratopathy. The calcium may then be removed from the cornea, allowing for some increase in clarity of vision for the patient.
Metal Chelation can be used as a carcinostatic agent. The anti-cancer drug, which is a metal complex, frees the drug on the cancer site and binds to the virus , which causes the cancer, eliminating it from the body.[29]