In mathematics, certain kinds of mistaken proof are often exhibited, and sometimes collected, as illustrations of a concept of mathematical fallacy. There is a distinction between a simple mistake and a mathematical fallacy in a proof: a mistake in a proof leads to an invalid proof just in the same way, but in the best-known examples of mathematical fallacies, there is some concealment in the presentation of the proof. For example, the reason validity fails may be a division by zero that is hidden by algebraic notation. There is a certain quality of the mathematical fallacy: as typically presented, it leads not only to an absurd result, but does so in a crafty or clever way. Therefore, these fallacies, for pedagogic reasons, usually take the form of spurious proofs of obvious contradictions. Although the proofs are flawed, the errors, usually by design, are comparatively subtle, or designed to show that certain steps are conditional, and are not applicable in the cases that are the exceptions to the rules.
The traditional way of presenting a mathematical fallacy is to give an invalid step of deduction mixed in with valid steps, so that the meaning of fallacy is here slightly different from the logical fallacy. The latter applies normally to a form of argument that is not a genuine rule of logic, where the problematic mathematical step is typically a correct rule applied with a tacit wrong assumption. Beyond pedagogy, the resolution of a fallacy can lead to deeper insights into a subject (such as the introduction of Pasch's axiom of Euclidean geometry and the five colour theorem of graph theory). Pseudaria, an ancient lost book of false proofs, is attributed to Euclid.
Mathematical fallacies exist in many branches of mathematics. In elementary algebra, typical examples may involve a step where division by zero is performed, where a root is incorrectly extracted or, more generally, where different values of a multiple valued function are equated. Well-known fallacies also exist in elementary Euclidean geometry and calculus.
Howlers
Bogus proofs, calculations, or derivations constructed to produce a correct result in spite of incorrect logic or operations were termed "howlers" by Maxwell. Outside the field of mathematics the term howler has various meanings, generally less specific.
Division by zero
The division-by-zero fallacy has many variants. The following example uses division by zero to "prove" that , but can be modified to prove that any number equals any other number.- Let and be equal, non-zero quantities
- Multiply by
- Subtract
- Factor both sides: the left factors as a difference of squares, the right is factored by extracting from both terms
- Divide out
- Observing that
- Combine like terms on the left
- Divide by the non-zero
The fallacy is in line 5: the progression from line 4 to line 5 involves division by a − b, which is zero since a equals b. Since division by zero is undefined, the argument is invalid.
Multivalued functions
Many functions do not have a unique inverse. For instance, while squaring a number gives a unique value, there are two possible square roots of a positive number. The square root is multivalued. One value can be chosen by convention as the principal value; in the case of the square root the non-negative value is the principal value, but there is no guarantee that the square root given as the principal value of the square of a number will be equal to the original number; e.g. the principal square root of the square of −2 is 2.Calculus
Calculus as the mathematical study of infinitesimal change and limits can lead to mathematical fallacies if the properties of integrals and differentials are ignored. For instance, a naive use of integration by parts can be used to give a false proof that 0 = 1. Letting and , we may write:Power and root
Fallacies involving disregarding the rules of elementary arithmetic through an incorrect manipulation of the radical.Positive and negative roots
Care must be taken when taking the square root of both sides of an equality. Failing to do so results in a proof of- Start from
- Write this as
- Rewrite as
- Add on both sides:
- These are perfect squares:
- Take the square root of both sides:
- Add on both sides:
As another example of the danger of taking the square root of both sides of an equation, consider the fundamental identity
The error in each of these examples fundamentally lies in the fact that any equation of the form
Squaring both sides of an equation
When both sides of an equation are squared, sometimes solutions are induced that were not present in the original equation.An example of this kind of fallacy, is the following invalid proof that :
- Let
- Squaring gives
- whereupon taking a square root implies
- so that
- which is absurd.
Square roots of negative numbers
Invalid proofs utilizing powers and roots are often of the following kind:Alternatively, imaginary roots are obfuscated in the following:
Complex exponents
When a number is raised to a complex power, the result is not uniquely defined. If this property is not recognized, then errors such as the following can result:Geometry
Many mathematical fallacies in geometry arise from using in an additive equality involving oriented quantities (such adding vectors along a given line or adding oriented angles in the plane) a valid identity, but which fixes only the absolute value of (one of) these quantities. This quantity is then incorporated into the equation with the wrong orientation, so as to produce an absurd conclusion. This wrong orientation is usually suggested implicitly by supplying an imprecise diagram of the situation, where relative positions of points or lines are chosen in a way that is actually impossible under the hypotheses of the argument, but non-obviously so. Such a fallacy is easy to expose by drawing a precise picture of the situation, in which some relative positions will be different from those in the provided diagram. In order to avoid such fallacies, a correct geometric argument using addition or subtraction of distances or angles should always prove that quantities are being incorporated with their correct orientation.Fallacy of the isosceles triangle
The fallacy of the isosceles triangle, from (Maxwell 1959, Chapter II, § 1), purports to show that every triangle is isosceles, meaning that two sides of the triangle are congruent. This fallacy has been attributed to Lewis Carroll.Given a triangle △ABC, prove that AB = AC:
- Draw a line bisecting ∠A
- Draw the perpendicular bisector of segment BC, which bisects BC at a point D
- Let these two lines meet at a point O.
- Draw line OR perpendicular to AB, line OQ perpendicular to AC
- Draw lines OB and OC
- By AAS, △RAO ≅ △QAO (∠ORA = ∠OQA = 90°; ∠RAO = ∠QAO; AO = AO (common side))
- By RHS, △ROB ≅ △QOC (∠BRO = ∠CQO = 90°; BO = OC (hypotenuse); RO = OQ (leg))
- Thus, AR = AQ, RB = QC, and AB = AR + RB = AQ + QC = AC
As a corollary, one can show that all triangles are equilateral, by showing that AB = BC and AC = BC in the same way.
The error in the proof is the assumption in the diagram that the point O is inside the triangle. In fact, O always lies at the circumcircle of the △ABC (except for isosceles and equilateral triangles where AO and OD coincide). Furthermore, it can be shown that, if AB is longer than AC, then R will lie within AB, while Q will lie outside of AC (and vice versa). (Any diagram drawn with sufficiently accurate instruments will verify the above two facts.) Because of this, AB is still AR + RB, but AC is actually AQ − QC; and thus the lengths are not necessarily the same.
Proof by induction
There exist several fallacious proofs by induction in which one of the components, basis case or inductive step, is incorrect. Intuitively, proofs by induction work by arguing that, if a statement is true in one case, it is true in the next case, and hence by repeatedly applying this it can be shown to be true for all cases. This "proof" shows that all horses are the same colour.- Let us say that any group of N horses is all of the same colour.
- If we remove a horse from the group, we have a group of N - 1 horses of the same colour. If we add another horse, we have another group of N horses. By our previous assumption, all the horses are of the same colour in this new group, since it is a group of N horses.
- Thus we have constructed two groups of N horses all of the same colour, with N - 1 horses in common. Since these two groups have some horses in common, the two groups must be of the same colour as each other.
- Therefore, combining all the horses used, we have a group of N + 1 horses of the same colour.
- Thus if any N horses are all the same colour, any N + 1 horses are the same colour.
- This is clearly true for N = 1 (i.e. one horse is a group where all the horses are the same colour). Thus, by induction, N horses are the same colour for any positive integer N. i.e. all horses are the same colour.