A grow light or plant light is an artificial light source, generally an electric light, designed to stimulate plant growth by emitting a light appropriate for photosynthesis. Grow lights are used in applications where there is either no naturally occurring light, or where supplemental light is required. For example, in the winter months when the available hours of daylight may be insufficient for the desired plant growth, lights are used to extend the time the plants receive light. If plants do not receive enough light, they will grow long and spindly.
Grow lights either attempt to provide a light spectrum similar to that of the sun, or to provide a spectrum that is more tailored to the needs of the plants being cultivated. Outdoor conditions are mimicked with varying colour, temperatures and spectral outputs from the grow light, as well as varying the lumen output (intensity) of the lamps. Depending on the type of plant being cultivated, the stage of cultivation (e.g. the germination/vegetative phase or the flowering/fruiting phase), and the photoperiod required by the plants, specific ranges of spectrum, luminous efficacy and colour temperature are desirable for use with specific plants and time periods.
Russian botanist Andrei Famintsyn was the first to use artificial light for plant growing and research (1868).
Typical usage
Grow lights are used for horticulture, indoor gardening, plant propagation and food production, including indoor hydroponics and aquatic plants. Although most grow lights are used on an industrial level, they can also be used in households.
According to the inverse-square law,
the intensity of light radiating from a point source (in this case a
bulb) that reaches a surface is inversely proportional to the square of
the surface's distance from the source (if an object is twice as far
away, it receives only a quarter the light) which is a serious hurdle
for indoor growers, and many techniques are employed to use light as
efficiently as possible. Reflectors are thus often used in the lights to
maximize light efficiency. Plants or lights are moved as close together
as possible so that they receive equal lighting and that all light
coming from the lights falls on the plants rather than on the
surrounding area.
A range of bulb types can be used as grow lights, such as incandescents, fluorescent lights, high-intensity discharge lamps (HID), and light-emitting diodes
(LED). Today, the most widely used lights for professional use are HIDs
and fluorescents. Indoor flower and vegetable growers typically use high-pressure sodium (HPS/SON) and metal halide (MH) HID lights, but fluorescents and LEDs are replacing metal halides due to their efficiency and economy.
Metal halide lights are regularly used for the vegetative phase
of plant growth, as they emit larger amounts of blue and ultraviolet
radiation.
With the introduction of ceramic metal halide lighting and
full-spectrum metal halide lighting, they are increasingly being
utilized as an exclusive source of light for both vegetative and
reproductive growth stages. Blue spectrum light may trigger a greater
vegetative response in plants.
High-pressure sodium lights are also used as a single source of
light throughout the vegetative and reproductive stages. As well, they
may be used as an amendment to full-spectrum lighting during the
reproductive stage. Red spectrum light may trigger a greater flowering
response in plants.
If high-pressure sodium lights are used for the vegetative phase,
plants grow slightly more quickly, but will have longer internodes, and
may be longer overall.
In recent years LED technology has been introduced into the grow
light market. By designing an indoor grow light using diodes, specific
wavelengths of light can be produced. NASA has tested LED grow lights
for their high efficiency in growing food in space for extraterrestrial colonization. Findings showed that plants are affected by light in the red, green and blue parts of the visible light spectrum.
Common types
High Intensity Discharge (HID) lights
While fluorescent lighting used to be the most common type of indoor grow light, HID lights are now the most popular. High intensity discharge lamps have a high lumen-per-watt efficiency.
There are several different types of HID lights including mercury
vapor, metal halide, high pressure sodium and conversion bulbs. Metal
halide and HPS lamps produce a color spectrum that is somewhat
comparable to the sun and can be used to grow plants. Mercury vapor
lamps were the first type of HIDs and were widely used for street
lighting, but when it comes to indoor gardening they produce a
relatively poor spectrum for plant growth so they have been mostly
replaced by other types of HIDs for growing plants.
All HID grow lights require a ballast to operate, and each
ballast has a particular wattage. Popular HID wattages include 150W,
250W, 400W, 600W and 1000W. Of all the sizes, 600W HID lights are the
most electrically efficient as far as light produced, followed by 1000W.
A 600W HPS produces 7% more light (watt-for-watt) than a 1000W HPS.
Although all HID lamps work on the same principle, the different
types of bulbs have different starting and voltage requirements, as well
as different operating characteristics and physical shape. Because of
this a bulb won't work properly unless it's using a matching ballast,
even if the bulb will physically screw in. In addition to producing
lower levels of light, mismatched bulbs and ballasts will stop working
early, or may even burn out immediately.
Metal Halide (MH)
Metal halide
bulbs are a type of HID light that emit light in the blue and violet
parts of the light spectrum, which is similar to the light that is
available outdoors during spring.
Because their light mimics the color spectrum of the sun, some growers
find that plants look more pleasing under a metal halide than other
types of HID lights such as the HPS which distort the color of plants.
Therefore, it's more common for a metal halide to be used when the
plants are on display in the home (for example with ornamental plants)
and natural color is preferred. Metal halide bulbs need to be replaced about once a year, compared to HPS lights which last twice as long.
Metal halide lamps are widely used in the horticultural industry
and are well-suited to supporting plants in earlier developmental stages
by promoting stronger roots, better resistance against disease and more
compact growth.
The blue spectrum of light encourages compact, leafy growth and may be
better suited to growing vegetative plants with lots of foliage.
A metal halide bulb produces 60-125 lumens/watt, depending on the wattage of the bulb.
They are now being made for digital ballasts in a pulse start
version, which have higher electrical efficiency (up to 110 lumens per
watt) and faster warmup.
One common example of a pulse start metal halide is the ceramic metal
halide (CMH). Pulse start metal halide bulbs can come in any desired
spectrum from cool white (7000 K) to warm white (3000 K) and even
ultraviolet-heavy (10,000 K).
Ceramic Metal Halide (CMH, CDM)
Ceramic metal halide
(CMH) lamps are a relatively new type of HID lighting, and the
technology is referred to by a few names when it comes to grow lights,
including ceramic discharge metal halide (CDM), ceramic arc metal halide.
Ceramic metal halide lights are started with a pulse-starter, just like other "pulse-start" metal halides. The discharge of a ceramic metal halide bulb is contained in a type of ceramic material known as polycrystalline alumina
(PCA), which is similar to the material used for an HPS. PCA reduces
sodium loss, which in turn reduces color shift and variation compared to
standard MH bulbs.
Horticultural CDM offerings from companies such as Philips have proven
to be effective sources of growth light for medium-wattage applications.
Combination MH and HPS ("Dual arc")
Combination
HPS/MH lights combine a metal halide and a high-pressure sodium in the
same bulb, providing both red and blue spectra in a single HID lamp.
The combination of blue metal halide light and red high-pressure sodium
light is an attempt to provide a very wide spectrum within a single
lamp. This allows for a single bulb solution throughout the entire life
cycle of the plant, from vegetative growth through flowering. There are
potential trade-offs for the convenience of a single bulb in terms of
yield. There are however some qualitative benefits that come for the
wider light spectrum.
High-Pressure Sodium (HPS)
High-pressure sodium lights
are a more efficient type of HID lighting than metal halides. HPS bulbs
emit light in the yellow/red visible light as well as small portions of
all other visible light. Since HPS grow lights deliver more energy in
the red part of the light spectrum, they may promote blooming and
fruiting.
They are used as a supplement to natural daylight in greenhouse
lighting and full-spectrum lighting(metal halide) or, as a standalone
source of light for indoors/grow chambers.
HPS grow lights are sold in the following sizes: 150W, 250W, 400W, 600W and 1000W.
Of all the sizes, 600W HID lights are the most electrically efficient
as far as light produced, followed by 1000W. A 600W HPS produces 7% more
light (watt-for-watt) than a 1000W HPS.
An HPS bulb produces 60-140 lumens/watt, depending on the wattage of the bulb.
Plants grown under HPS lights tend to elongate from the lack of
blue/ultraviolet radiation. Modern horticultural HPS lamps have a much
better adjusted spectrum for plant growth. The majority of HPS lamps
while providing good growth, offer poor color rendering index
(CRI) rendering. As a result, the yellowish light of an HPS can make
monitoring plant health indoors more difficult. CRI isn't an issue when
HPS lamps are used as supplemental lighting in greenhouses which make
use of natural daylight (which offsets the yellow light of the HPS).
High-pressure sodium lights have a long usable bulb life, and six
times more light output per watt of energy consumed than a standard
incandescent grow light. Due to their high efficiency and the fact that
plants grown in greenhouses get all the blue light they need naturally,
these lights are the preferred supplemental greenhouse lights. But, in
the higher latitudes, there are periods of the year where sunlight is
scarce, and additional sources of light are indicated for proper growth.
HPS lights may cause distinctive infrared and optical signatures, which
can attract insects or other species of pests; these may in turn
threaten the plants being grown. High-pressure sodium lights emit a lot
of heat, which can cause leggier growth, although this can be controlled
by using special air-cooled bulb reflectors or enclosures.
Conversion bulbs
Conversion
bulbs are manufactured so they work with either a MH or HPS ballast. A
grower can run an HPS conversion bulb on a MH ballast, or a MH
conversion bulb on a HPS ballast. The difference between the ballasts is
an HPS ballast has an igniter which ignites the sodium in an HPS bulb,
while a MH ballast does not. Because of this, all electrical ballasts
can fire MH bulbs, but only a Switchable or HPS ballast can fire an HPS
bulb without a conversion bulb. Usually a metal halide conversion bulb will be used in an HPS ballast since the MH conversion bulbs are more common.
Switchable ballasts
A
switchable ballast is an HID ballast can be used with either a metal
halide or an HPS bulb of equivalent wattage. So a 600W Switchable
ballast would work with either a 600W MH or HPS.
Growers use these fixtures for propagating and vegetatively growing
plants under the metal halide, then switching to a high-pressure sodium
bulb for the fruiting or flowering stage of plant growth. To change
between the lights, only the bulb needs changing and a switch needs to
be set to the appropriate setting.
LEDs (Light Emitting Diodes)
LED grow lights are composed of light-emitting diodes, usually in a casing with a heat sink
and built-in fans. LED grow lights do not usually require a separate
ballast and can be plugged directly into a standard electrical socket.
LED grow lights vary in color depending on the intended use. It is known from the study of photomorphogenesis
that green, red, far-red and blue light spectra have an effect on root
formation, plant growth, and flowering, but there are not enough
scientific studies or field-tested trials using LED grow lights to
recommended specific color ratios for optimal plant growth under LED
grow lights. It has been shown that many plants will grow normally if given both red and blue light.
However, many studies indicate that red and blue light only provides
the most cost efficient method of growth, plant growth is still better
under light supplemented with green.
White LED grow lights provide a full spectrum of light designed
to mimic natural light, providing plants a balanced spectrum of red,
blue and green. The spectrum used varies, however, white LED grow lights
are designed to emit similar amounts of red and blue light with the
added green light to appear white. White LED grow lights are often used
for supplemental lighting in home and office spaces.
A large number of plant species have been assessed in greenhouse
trials to make sure plants have higher quality in biomass and
biochemical ingredients even higher or comparable with field conditions.
Plant performance of mint, basil, lentil, lettuce, cabbage, parsley,
carrot were measured by assessing health and vigor of plants and success
in promoting growth. Promoting in profuse flowering of select
ornamentals including primula, marigold, stock were also noticed.
In tests conducted by Philips Lighting on LED grow lights to find
an optimal light recipe for growing various vegetables in greenhouses,
they found that the following aspects of light affects both plant growth
(photosynthesis) and plant development (morphology): light intensity,
total light over time, light at which moment of the day, light/dark
period per day, light quality (spectrum), light direction and light
distribution over the plants. However it's noted that in tests between
tomatoes, mini cucumbers and bell peppers, the optimal light recipe was
not the same for all plants, and varied depending on both the crop and
the region, so currently they must optimize LED lighting in greenhouses
based on trial and error. They've shown that LED light affects disease
resistance, taste and nutritional levels, but as of 2014 they haven't
found a practical way to use that information.
The diodes used in initial LED grow light designs were usually 1/3
watt to 1 watt in power. However, higher wattage diodes such as 3 watt
and 5 watt diodes are now commonly used in LED grow lights. for highly
compacted areas, COB chips between 10 watts and 100 watts can be used.
Because of heat dissipation, these chips are often less efficient.
LED grow lights should be kept at least 12 inches (30 cm) away from plants to prevent leaf burn.
Historically, LED lighting was very expensive, but costs have
greatly reduced over time, and their longevity has made them more
popular. LED grow lights are often priced higher, watt-for-watt, than
other LED lighting, due to design features that help them to be more
energy efficient and last longer. In particular, because LED grow lights
are relatively high power, LED grow lights are often equipped with
cooling systems, as low temperature improves both the brightness and
longevity. LEDs usually last for 50,000 - 90,000 hours until LM-70 is
reached.
Fluorescent
Fluorescent lights come in many form factors, including long, thin
bulbs as well as smaller spiral shaped bulbs (compact fluorescent
lights). Fluorescent lights are available in color temperatures ranging
from 2700 K to 10,000 K. The luminous efficacy
ranges from 30 lm/W to 90 lm/W. The two main types of fluorescent
lights used for growing plants are the tube-style lights and compact
fluorescent lights.
Tube-style fluorescent lights
Fluorescent grow lights are not as intense as HID lights and are usually used for growing vegetables
and herbs indoors, or for starting seedlings to get a jump start on
spring plantings. A ballast is needed to run these types of fluorescent
lights.
Standard fluorescent lighting comes in multiple form factors,
including the T5, T8 and T12. The brightest version is the T5. The T8
and T12 are less powerful and are more suited to plants with lower light
needs. High-output fluorescent lights produce twice as much light as
standard fluorescent lights. A high-output fluorescent fixture has a
very thin profile, making it useful in vertically limited areas.
Fluorescents have an average usable life span of up to 20,000
hours. A fluorescent grow light produces 33-100 lumens/watt, depending
on the form factor and wattage.
Compact Fluorescent Lights (CFLs)
Compact Fluorescent lights (CFLs) are smaller versions of fluorescent
lights that were originally designed as pre-heat lamps, but are now
available in rapid-start form. CFLs have largely replaced incandescent light bulbs in households because they last longer and are much more electrically efficient.
In some cases, CFLs are also used as grow lights. Like standard
fluorescent lights, they are useful for propagation and situations where
relatively low light levels are needed.
While standard CFLs in small sizes can be used to grow plants,
there are also now CFL lamps made specifically for growing plants. Often
these larger compact fluorescent bulbs are sold with specially designed
reflectors that direct light to plants, much like HID lights. Common
CFL grow lamp sizes include 125W, 200W, 250W and 300W.
Unlike HID lights, CFLs fit in a standard mogul light socket and don't need a separate ballast.
Compact fluorescent bulbs are available in warm/red (2700 K),
full spectrum or daylight (5000 K) and cool/blue (6500 K) versions. Warm
red spectrum is recommended for flowering, and cool blue spectrum is
recommended for vegetative growth.
Usable life span for compact fluorescent grow lights is about 10,000 hours. A CFL produces 44-80 lumens/watt, depending on the wattage of the bulb.
Examples of lumens and lumens/watt for different size CFLs:
CFL Wattage | Initial Lumens | Lumens/watt |
---|---|---|
23W | 1,600 | 70 |
42W | 2,800 | 67 |
85W | 4,250 | 50 |
125W | 7,000 | 56 |
200W | 10,000 | 50 |
Cold Cathode Fluorescent Light (CCFL)
A cold cathode is a cathode that is not electrically heated by a filament. A cathode may be considered "cold" if it emits more electrons than can be supplied by thermionic emissionalone. It is used in gas-discharge lamps, such as neon lamps, discharge tubes, and some types of vacuum tube. The other type of cathode is a hot cathode, which is heated by electric current passing through a filament. A cold cathode does not necessarily operate at a low temperature: it is often heated to its operating temperature by other methods, such as the current passing from the cathode into the gas.
Color spectrum
Different grow lights produce different spectrums of light. Plant growth patterns can respond to the color spectrum of light, a process completely separate from photosynthesis known as photomorphogenesis.
Natural daylight has a high color temperature
(approximately 5000-5800 K). Visible light color varies according to
the weather and the angle of the Sun, and specific quantities of light
(measured in lumens) stimulate photosynthesis. Distance from the sun has
little effect on seasonal changes in the quality and quantity of light
and the resulting plant behavior during those seasons. The axial tilt of the Earth is not perpendicular to the plane of its orbit around the sun. During half of the year the north pole is tilted
towards sun so the northern hemisphere gets nearly direct sunlight and
the southern hemisphere gets oblique sunlight that must travel through
more atmosphere before it reaches the Earth's surface. In the other half
of the year, this is reversed. The color spectrum of visible light that
the sun emits does not change, only the quantity (more during the
summer and less in winter) and quality of overall light reaching the
Earth's surface. Some supplemental LED grow lights in vertical
greenhouses produce a combination of only red and blue wavelengths. The color rendering index facilitates comparison of how closely the light matches the natural color of regular sunlight.
The ability of a plant to absorb light varies with species and
environment, however, the general measurement for the light quality as
it affects plants is the PAR value, or Photosynthetically Active Radiation.
There have been several experiments using LEDs to grow plants,
and it has been shown that plants need both red and blue light for
healthy growth. From experiments it has been consistently found that the
plants that are growing only under LEDs red (660 nm, long waves)
spectrum growing poorly with leaf deformities, though adding a small
amount of blue allows most plants to grow normally.
Several reports suggest that a minimum blue light requirement of 15-30 µmol·m−2·s−1 is necessary for normal development in several plant species.
Many studies indicate that even with blue light added to red LEDs,
plant growth is still better under white light, or light supplemented
with green. Neil C Yorio demonstrated that by adding 10% blue light (400 to 500 nm) to the red light (660 nm) in LEDs, certain plants like lettuce and wheat grow normally, producing the same dry weight as control plants grown under full spectrum light. However, other plants like radish and spinach
grow poorly, and although they did better under 10% blue light than
red-only light, they still produced significantly lower dry weights
compared to control plants under a full spectrum light. Yorio speculates
there may be additional spectra of light that some plants need for
optimal growth.
Greg D. Goins examined the growth and seed yield of Arabidopsis plants grown from seed to seed under red LED lights with 0%, 1%, or 10% blue spectrum light. Arabidopsis
plants grown under only red LEDS alone produced seeds, but had
unhealthy leaves, and plants took twice as long to start flowering
compared to the other plants in the experiment that had access to blue
light. Plants grown with 10% blue light produced half the seeds of those
grown under full spectrum, and those with 0% or 1% blue light produced
one-tenth the seeds of the full spectrum plants. The seeds all
germinated at a high rate under all light types tested.
Hyeon-Hye Kim demonstrated that the addition of 24% green light
(500-600 nm) to red and blue LEDs enhanced the growth of lettuce plants.
These RGB treated plants not only produced higher dry and wet weight
and greater leaf area than plants grown under just red and blue LEDs,
they also produced more than control plants grown under cool white
fluorescent lamps, which are the typical standard for full spectrum
light in plant research.
She reported that the addition of green light also makes it easier to
see if the plant is healthy since leaves appear green and normal.
However, giving nearly all green light (86%) to lettuce produced lower
yields than all the other groups.
The National Aeronautics and Space Administration’s (NASA)
Biological Sciences research group has concluded that light sources
consisting of more than 50% green cause reductions in plant growth,
whereas combinations including up to 24% green enhance growth for some
species.
Green light has been shown to affect plant processes via both
cryptochrome-dependent and cryptochrome-independent means. Generally,
the effects of green light are the opposite of those directed by red and
blue wavebands, and it's speculated that green light works in
orchestration with red and blue.
Light requirements of plants
A plant's specific needs determine which lighting is most appropriate
for optimum growth. If a plant does not get enough light, it will not
grow, regardless of other conditions. Most plants use chlorophyll which
mostly reflects green light, but absorbs red and blue light well. Vegetables grow best in strong sunlight, and to flourish indoors they need sufficient light levels, whereas foliage plants (e.g. Philodendron) grow in full shade and can grow normally with much lower light levels.
Grow lights usage is dependent on the plant's phase of growth.
Generally speaking, during the seedling/clone phase, plants should
receive 16+ hours on, 8- hours off. The vegetative phase typically
requires 18 hours on, and 6 hours off. During the final, flower stage of
growth, keeping grow lights on for 12 hours on and 12 hours off is
recommended.
Photoperiodism
In addition, many plants also require both dark and light periods, an effect known as photoperiodism, to trigger flowering. Therefore, lights may be turned on or off at set times.
The optimum photo/dark period ratio depends on the species and variety
of plant, as some prefer long days and short nights and others prefer
the opposite or intermediate "day lengths".
Much emphasis is placed on photoperiod when discussing plant
development. However, it is the number of hours of darkness that affects
a plant’s response to day length.
In general, a “short-day” is one in which the photoperiod is no more
than 12 hours. A “long-day” is one in which the photoperiod is no less
than 14 hours. Short-day plants are those that flower when the day
length is less than a critical duration. Long-day plants are those that
only flower when the photoperiod is greater than a critical duration.
Day-neutral plants are those that flower regardless of photoperiod.
Plants that flower in response to photoperiod may have a
facultative or obligate response. A facultative response means that a
plant will eventually flower regardless of photoperiod, but will flower
faster if grown under a particular photoperiod. An obligate response
means that the plant will only flower if grown under a certain
photoperiod.
Photosynthetically Active Radiation (PAR)
Lux and lumens are commonly used to measure light levels, but they are photometric units which measure the intensity of light as perceived by the human eye.
The spectral levels of light that can be used by plants for
photosynthesis is similar to, but not the same as what's measured by
lumens. Therefore, when it comes to measuring the amount of light
available to plants for photosynthesis, biologists often measure the
amount of photosynthetically active radiation (PAR) received by a plant. PAR designates the spectral range of solar radiation from 400 to 700 nanometers, which generally corresponds to the spectral range that photosynthetic organisms are able to use in the process of photosynthesis.
The irradiance of PAR can be expressed in units of energy flux (W/m2), which is relevant in energy-balance considerations for photosynthetic organisms. However, photosynthesis is a quantum process and the chemical reactions of photosynthesis are more dependent on the number of photons than the amount of energy contained in the photons.
Therefore, plant biologists often quantify PAR using the number of
photons in the 400-700 nm range received by a surface for a specified
amount of time, or the Photosynthetic Photon Flux Density (PPFD). This is normally measured using mol m−2s−1.
According to one manufacturer of grow lights, plants require at least light levels between 100 and 800 μmol m−2s−1. For daylight-spectrum (5800 K) lamps, this would be equivalent to 5800 to 46,000 lm/m2.