From Wikipedia, the free encyclopedia

In electromagnetism, one of the fundamental fields of physics, the introduction of Maxwell's equations (mainly in "A Dynamical Theory of the Electromagnetic Field") was one of the most important aggregations of empirical facts in the history of physics. It took place in the nineteenth century, starting from basic experimental observations, and leading to the formulations of numerous mathematical equations, notably by Charles-Augustin de Coulomb, Hans Christian Ørsted, Carl Friedrich Gauss, Jean-Baptiste Biot, Félix Savart, André-Marie Ampère, and Michael Faraday. The apparently disparate laws and phenomena of electricity and magnetism were integrated by James Clerk Maxwell, who published an early form of the equations, which modify Ampère's circuital law by introducing a displacement current term. He showed that these equations imply that light propagates as electromagnetic waves. His laws were reformulated by Oliver Heaviside in the more modern and compact vector calculus formalism he independently developed. Increasingly powerful mathematical descriptions of the electromagnetic field were developed, continuing into the twentieth century, enabling the equations to take on simpler forms by advancing more sophisticated mathematics.

Relationships among electricity, magnetism, and the speed of light