From Wikipedia, the free encyclopedia

Plutonium,  94Pu
Two shiny pellets of plutonium of about 3 cm in diameter
Plutonium
Pronunciation/plˈtniəm/ (ploo-TOH-nee-əm)
Appearancesilvery white, tarnishing to dark gray in air
Mass number244 (most stable isotope)
Plutonium in the periodic table
Hydrogen
Helium
Lithium Beryllium
Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium
Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium
Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium

Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Sm

Pu

(Uqo)
neptuniumplutoniumamericium
Atomic number (Z)94
Groupgroup n/a
Periodperiod 7
Blockf-block
Element category  actinide
Electron configuration[Rn] 5f6 7s2
Electrons per shell
2, 8, 18, 32, 24, 8, 2
Physical properties
Phase at STPsolid
Melting point912.5 K ​(639.4 °C, ​1182.9 °F)
Boiling point3505 K ​(3228 °C, ​5842 °F)
Density (near r.t.)19.816 g/cm3
when liquid (at m.p.)16.63 g/cm3
Heat of fusion2.82 kJ/mol
Heat of vaporization333.5 kJ/mol
Molar heat capacity35.5 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 1756 1953 2198 2511 2926 3499
Atomic properties
Oxidation states+1, +2, +3, +4, +5, +6, +7 (an amphoteric oxide)
ElectronegativityPauling scale: 1.28
Ionization energies
  • 1st: 584.7 kJ/mol
Atomic radiusempirical: 159 pm
Covalent radius187±1 pm
Color lines in a spectral range
Spectral lines of plutonium
Other properties
Natural occurrencefrom decay
Crystal structuremonoclinic
Monoclinic crystal structure for plutonium
Speed of sound2260 m/s
Thermal expansion46.7 µm/(m·K) (at 25 °C)
Thermal conductivity6.74 W/(m·K)
Electrical resistivity1.460 µΩ·m (at 0 °C)
Magnetic orderingparamagnetic
Young's modulus96 GPa
Shear modulus43 GPa
Poisson ratio0.21
CAS Number7440-07-5
History
Namingafter dwarf planet Pluto, itself named after classical god of the underworld Pluto
DiscoveryGlenn T. Seaborg, Arthur Wahl, Joseph W. Kennedy, Edwin McMillan (1940–1)

Plutonium is a radioactive chemical element with symbol Pu and atomic number 94. It is an actinide metal of silvery-gray appearance that tarnishes when exposed to air, and forms a dull coating when oxidized. The element normally exhibits six allotropes and four oxidation states. It reacts with carbon, halogens, nitrogen, silicon, and hydrogen. When exposed to moist air, it forms oxides and hydrides that can expand the sample up to 70% in volume, which in turn flake off as a powder that is pyrophoric. It is radioactive and can accumulate in bones, which makes the handling of plutonium dangerous.

Plutonium was first produced and isolated on December 14, 1940, by a deuteron bombardment of uranium-238 in the 1.5 metre (60 in) cyclotron at the University of California, Berkeley. First neptunium-238 (half-life 2.1 days) was synthesized which subsequently beta-decayed to form this new element with atomic number 94 and atomic weight 238 (half-life 87.7 years). Since uranium had been named after the planet Uranus and neptunium after the planet Neptune, element 94 was named after Pluto, which at the time was considered to be a planet as well. Wartime secrecy prevented its discovery being announced until 1948. Plutonium is the element with the highest atomic number to occur in nature. Trace quantities arise in natural uranium-238 deposits when U-238 captures neutrons emitted by decay of other U-238 atoms. Plutonium is much more common on Earth since 1945 as a product of neutron capture and beta decay, where some of the neutrons released by the fission process convert uranium-238 nuclei into plutonium-239.

Both plutonium-239 and plutonium-241 are fissile, meaning that they can sustain a nuclear chain reaction, leading to applications in nuclear weapons and nuclear reactors. Plutonium-240 exhibits a high rate of spontaneous fission, raising the neutron flux of any sample containing it. The presence of plutonium-240 limits a plutonium sample's usability for weapons or its quality as reactor fuel, and the percentage of plutonium-240 determines its grade (weapons-grade, fuel-grade, or reactor-grade). Plutonium-238 has a half-life of 88 years and emits alpha particles. It is a heat source in radioisotope thermoelectric generators, which are used to power some spacecraft. Plutonium isotopes are expensive and inconvenient to separate, so particular isotopes are usually manufactured in specialized reactors.

Producing plutonium in useful quantities for the first time was a major part of the Manhattan Project during World War II that developed the first atomic bombs. The Fat Man bombs used in the Trinity nuclear test in July 1945, and in the bombing of Nagasaki in August 1945, had plutonium cores. Human radiation experiments studying plutonium were conducted without informed consent, and several criticality accidents, some lethal, occurred after the war. Disposal of plutonium waste from nuclear power plants and dismantled nuclear weapons built during the Cold War is a nuclear-proliferation and environmental concern. Other sources of plutonium in the environment are fallout from numerous above-ground nuclear tests, now banned.

Characteristics

Physical properties

Plutonium, like most metals, has a bright silvery appearance at first, much like nickel, but it oxidizes very quickly to a dull gray, although yellow and olive green are also reported. At room temperature plutonium is in its α (alpha) form. This, the most common structural form of the element (allotrope), is about as hard and brittle as gray cast iron unless it is alloyed with other metals to make it soft and ductile. Unlike most metals, it is not a good conductor of heat or electricity. It has a low melting point (640 °C) and an unusually high boiling point (3,228 °C).

Alpha decay, the release of a high-energy helium nucleus, is the most common form of radioactive decay for plutonium. A 5 kg mass of 239Pu contains about 12.5×1024 atoms. With a half-life of 24,100 years, about 11.5×1012 of its atoms decay each second by emitting a 5.157 MeV alpha particle. This amounts to 9.68 watts of power. Heat produced by the deceleration of these alpha particles makes it warm to the touch.

Resistivity is a measure of how strongly a material opposes the flow of electric current. The resistivity of plutonium at room temperature is very high for a metal, and it gets even higher with lower temperatures, which is unusual for metals. This trend continues down to 100 K, below which resistivity rapidly decreases for fresh samples. Resistivity then begins to increase with time at around 20 K due to radiation damage, with the rate dictated by the isotopic composition of the sample.

Because of self-irradiation, a sample of plutonium fatigues throughout its crystal structure, meaning the ordered arrangement of its atoms becomes disrupted by radiation with time. Self-irradiation can also lead to annealing which counteracts some of the fatigue effects as temperature increases above 100 K.

Unlike most materials, plutonium increases in density when it melts, by 2.5%, but the liquid metal exhibits a linear decrease in density with temperature. Near the melting point, the liquid plutonium has very high viscosity and surface tension compared to other metals.

Allotropes

A graph showing change in density with increasing temperature upon sequential phase transitions between alpha, beta, gamma, delta, delta' and epsilon phases