A database is an organized collection of data,
generally stored and accessed electronically from a computer system.
Where databases are more complex they are often developed using formal design and modeling techniques.
The database management system (DBMS) is the software that interacts with end users,
applications, and the database itself to capture and analyze the data.
The DBMS software additionally encompasses the core facilities provided
to administer the database. The sum total of the database, the DBMS
and the associated applications can be referred to as a "database
system". Often the term "database" is also used to loosely refer to any
of the DBMS, the database system or an application associated with the
database.
Computer scientists may classify database-management systems according to the database models that they support. Relational databases became dominant in the 1980s. These model data as rows and columns in a series of tables, and the vast majority use SQL for writing and querying data. In the 2000s, non-relational databases became popular, referred to as NoSQL because they use different query languages.
Terminology and overview
Formally, a "database" refers to a set of related data and the way it
is organized. Access to this data is usually provided by a "database
management system" (DBMS) consisting of an integrated set of computer
software that allows users
to interact with one or more databases and provides access to all of
the data contained in the database (although restrictions may exist that
limit access to particular data). The DBMS provides various functions
that allow entry, storage and retrieval of large quantities of
information and provides ways to manage how that information is
organized.
Because of the close relationship between them, the term
"database" is often used casually to refer to both a database and the
DBMS used to manipulate it.
Outside the world of professional information technology, the term database is often used to refer to any collection of related data (such as a spreadsheet or a card index) as size and usage requirements typically necessitate use of a database management system.
Existing DBMSs provide various functions that allow management of
a database and its data which can be classified into four main
functional groups:
- Data definition – Creation, modification and removal of definitions that define the organization of the data.
- Update – Insertion, modification, and deletion of the actual data.
- Retrieval – Providing information in a form directly usable or for further processing by other applications. The retrieved data may be made available in a form basically the same as it is stored in the database or in a new form obtained by altering or combining existing data from the database.
- Administration – Registering and monitoring users, enforcing data security, monitoring performance, maintaining data integrity, dealing with concurrency control, and recovering information that has been corrupted by some event such as an unexpected system failure.
Both a database and its DBMS conform to the principles of a particular database model. "Database system" refers collectively to the database model, database management system, and database.
Physically, database servers
are dedicated computers that hold the actual databases and run only the
DBMS and related software. Database servers are usually multiprocessor computers, with generous memory and RAID
disk arrays used for stable storage. RAID is used for recovery of data
if any of the disks fail. Hardware database accelerators, connected to
one or more servers via a high-speed channel, are also used in large
volume transaction processing environments. DBMSs are found at the heart
of most database applications. DBMSs may be built around a custom multitasking kernel with built-in networking support, but modern DBMSs typically rely on a standard operating system to provide these functions.
Since DBMSs comprise a significant market, computer and storage vendors often take into account DBMS requirements in their own development plans.
Databases and DBMSs can be categorized according to the database
model(s) that they support (such as relational or XML), the type(s) of
computer they run on (from a server cluster to a mobile phone), the query language(s) used to access the database (such as SQL or XQuery), and their internal engineering, which affects performance, scalability, resilience, and security.
History
The sizes, capabilities, and performance of databases and their
respective DBMSs have grown in orders of magnitude. These performance
increases were enabled by the technology progress in the areas of processors, computer memory, computer storage, and computer networks. The development of database technology can be divided into three eras based on data model or structure: navigational, SQL/relational, and post-relational.
The two main early navigational data models were the hierarchical model and the CODASYL model (network model)
The relational model, first proposed in 1970 by Edgar F. Codd,
departed from this tradition by insisting that applications should
search for data by content, rather than by following links. The
relational model employs sets of ledger-style tables, each used for a
different type of entity. Only in the mid-1980s did computing hardware
become powerful enough to allow the wide deployment of relational
systems (DBMSs plus applications). By the early 1990s, however,
relational systems dominated in all large-scale data processing applications, and as of 2018 they remain dominant: IBM DB2, Oracle, MySQL, and Microsoft SQL Server are the most searched DBMS.
The dominant database language, standardised SQL for the relational
model, has influenced database languages for other data models.
Object databases were developed in the 1980s to overcome the inconvenience of object-relational impedance mismatch, which led to the coining of the term "post-relational" and also the development of hybrid object-relational databases.
The next generation of post-relational databases in the late 2000s became known as NoSQL databases, introducing fast key-value stores and document-oriented databases. A competing "next generation" known as NewSQL
databases attempted new implementations that retained the
relational/SQL model while aiming to match the high performance of NoSQL
compared to commercially available relational DBMSs.
The introduction of the term database coincided with the
availability of direct-access storage (disks and drums) from the
mid-1960s onwards. The term represented a contrast with the tape-based
systems of the past, allowing shared interactive use rather than daily batch processing. The Oxford English Dictionary
cites a 1962 report by the System Development Corporation of California
as the first to use the term "data-base" in a specific technical sense.
As computers grew in speed and capability, a number of
general-purpose database systems emerged; by the mid-1960s a number of
such systems had come into commercial use. Interest in a standard began
to grow, and Charles Bachman, author of one such product, the Integrated Data Store (IDS), founded the "Database Task Group" within CODASYL, the group responsible for the creation and standardization of COBOL.
In 1971, the Database Task Group delivered their standard, which
generally became known as the "CODASYL approach", and soon a number of
commercial products based on this approach entered the market.
The CODASYL approach relied on the "manual" navigation of a
linked data set which was formed into a large network. Applications
could find records by one of three methods:
- Use of a primary key (known as a CALC key, typically implemented by hashing)
- Navigating relationships (called sets) from one record to another
- Scanning all the records in a sequential order
Later systems added B-trees
to provide alternate access paths. Many CODASYL databases also added a
very straightforward query language. However, in the final tally,
CODASYL was very complex and required significant training and effort to
produce useful applications.
IBM also had their own DBMS in 1966, known as Information Management System (IMS). IMS was a development of software written for the Apollo program on the System/360.
IMS was generally similar in concept to CODASYL, but used a strict
hierarchy for its model of data navigation instead of CODASYL's network
model. Both concepts later became known as navigational databases due to
the way data was accessed, and Bachman's 1973 Turing Award presentation was The Programmer as Navigator. IMS is classified as a hierarchical database. IDMS and Cincom Systems' TOTAL database are classified as network databases. IMS remains in use as of 2014.
1970s, relational DBMS
Edgar Codd worked at IBM in San Jose, California, in one of their offshoot offices that was primarily involved in the development of hard disk
systems. He was unhappy with the navigational model of the CODASYL
approach, notably the lack of a "search" facility. In 1970, he wrote a
number of papers that outlined a new approach to database construction
that eventually culminated in the groundbreaking A Relational Model of Data for Large Shared Data Banks.
In this paper, he described a new system for storing and working
with large databases. Instead of records being stored in some sort of linked list of free-form records as in CODASYL, Codd's idea was to use a "table"
of fixed-length records, with each table used for a different type of
entity. A linked-list system would be very inefficient when storing
"sparse" databases where some of the data for any one record could be
left empty. The relational model solved this by splitting the data into a
series of normalized tables (or relations), with optional
elements being moved out of the main table to where they would take up
room only if needed. Data may be freely inserted, deleted and edited in
these tables, with the DBMS doing whatever maintenance needed to present
a table view to the application/user.
The relational model also allowed the content of the database to
evolve without constant rewriting of links and pointers. The relational
part comes from entities referencing other entities in what is known as
one-to-many relationship, like a traditional hierarchical model, and
many-to-many relationship, like a navigational (network) model. Thus, a
relational model can express both hierarchical and navigational models,
as well as its native tabular model, allowing for pure or combined
modeling in terms of these three models, as the application requires.
For instance, a common use of a database system is to track
information about users, their name, login information, various
addresses and phone numbers. In the navigational approach, all of this
data would be placed in a single record, and unused items would simply
not be placed in the database. In the relational approach, the data
would be normalized into a user table, an address table and a
phone number table (for instance). Records would be created in these
optional tables only if the address or phone numbers were actually
provided.
Linking the information back together is the key to this system.
In the relational model, some bit of information was used as a "key",
uniquely defining a particular record. When information was being
collected about a user, information stored in the optional tables would
be found by searching for this key. For instance, if the login name of a
user is unique, addresses and phone numbers for that user would be
recorded with the login name as its key. This simple "re-linking" of
related data back into a single collection is something that traditional
computer languages are not designed for.
Just as the navigational approach would require programs to loop
in order to collect records, the relational approach would require loops
to collect information about any one record. Codd's suggestions was a set-oriented language, that would later spawn the ubiquitous SQL. Using a branch of mathematics known as tuple calculus,
he demonstrated that such a system could support all the operations of
normal databases (inserting, updating etc.) as well as providing a
simple system for finding and returning sets of data in a single operation.
Codd's paper was picked up by two people at Berkeley, Eugene Wong and Michael Stonebraker. They started a project known as INGRES
using funding that had already been allocated for a geographical
database project and student programmers to produce code. Beginning in
1973, INGRES delivered its first test products which were generally
ready for widespread use in 1979. INGRES was similar to System R in a number of ways, including the use of a "language" for data access, known as QUEL. Over time, INGRES moved to the emerging SQL standard.
IBM itself did one test implementation of the relational model, PRTV, and a production one, Business System 12, both now discontinued. Honeywell wrote MRDS for Multics, and now there are two new implementations: Alphora Dataphor and Rel. Most other DBMS implementations usually called relational are actually SQL DBMSs.
In 1970, the University of Michigan began development of the MICRO Information Management System based on D.L. Childs' Set-Theoretic Data model. MICRO was used to manage very large data sets by the US Department of Labor, the U.S. Environmental Protection Agency, and researchers from the University of Alberta, the University of Michigan, and Wayne State University. It ran on IBM mainframe computers using the Michigan Terminal System. The system remained in production until 1998.
Integrated approach
In the 1970s and 1980s, attempts were made to build database systems
with integrated hardware and software. The underlying philosophy was
that such integration would provide higher performance at lower cost.
Examples were IBM System/38, the early offering of Teradata, and the Britton Lee, Inc. database machine.
Another approach to hardware support for database management was ICL's CAFS
accelerator, a hardware disk controller with programmable search
capabilities. In the long term, these efforts were generally
unsuccessful because specialized database machines could not keep pace
with the rapid development and progress of general-purpose computers.
Thus most database systems nowadays are software systems running on
general-purpose hardware, using general-purpose computer data storage.
However this idea is still pursued for certain applications by some
companies like Netezza and Oracle (Exadata).
Late 1970s, SQL DBMS
IBM started working on a prototype system loosely based on Codd's concepts as System R
in the early 1970s. The first version was ready in 1974/5, and work
then started on multi-table systems in which the data could be split so
that all of the data for a record (some of which is optional) did not
have to be stored in a single large "chunk". Subsequent multi-user
versions were tested by customers in 1978 and 1979, by which time a
standardized query language – SQL
– had been added. Codd's ideas were establishing themselves as both
workable and superior to CODASYL, pushing IBM to develop a true
production version of System R, known as SQL/DS, and, later, Database 2 (DB2).
Larry Ellison's
Oracle Database (or more simply, Oracle) started from a different
chain, based on IBM's papers on System R. Though Oracle V1
implementations were completed in 1978, it wasn't until Oracle Version 2
when Ellison beat IBM to market in 1979.
Stonebraker went on to apply the lessons from INGRES to develop a
new database, Postgres, which is now known as PostgreSQL. PostgreSQL is
often used for global mission critical applications (the .org and .info
domain name registries use it as their primary data store, as do many large companies and financial institutions).
In Sweden, Codd's paper was also read and Mimer SQL was developed from the mid-1970s at Uppsala University. In 1984, this project was consolidated into an independent enterprise.
Another data model, the entity–relationship model, emerged in 1976 and gained popularity for database design
as it emphasized a more familiar description than the earlier
relational model. Later on, entity–relationship constructs were
retrofitted as a data modeling construct for the relational model, and
the difference between the two have become irrelevant.
1980s, on the desktop
The 1980s ushered in the age of desktop computing. The new computers empowered their users with spreadsheets like Lotus 1-2-3 and database software like dBASE. The dBASE product was lightweight and easy for any computer user to understand out of the box. C. Wayne Ratliff,
the creator of dBASE, stated: "dBASE was different from programs like
BASIC, C, FORTRAN, and COBOL in that a lot of the dirty work had already
been done. The data manipulation is done by dBASE instead of by the
user, so the user can concentrate on what he is doing, rather than
having to mess with the dirty details of opening, reading, and closing
files, and managing space allocation." dBASE was one of the top selling software titles in the 1980s and early 1990s.
1990s, object-oriented
The 1990s, along with a rise in object-oriented programming,
saw a growth in how data in various databases were handled. Programmers
and designers began to treat the data in their databases as objects.
That is to say that if a person's data were in a database, that person's
attributes, such as their address, phone number, and age, were now
considered to belong to that person instead of being extraneous data.
This allows for relations between data to be relations to objects and
their attributes and not to individual fields. The term "object-relational impedance mismatch" described the inconvenience of translating between programmed objects and database tables. Object databases and object-relational databases
attempt to solve this problem by providing an object-oriented language
(sometimes as extensions to SQL) that programmers can use as alternative
to purely relational SQL. On the programming side, libraries known as object-relational mappings (ORMs) attempt to solve the same problem.
2000s, NoSQL and NewSQL
XML databases are a type of structured document-oriented database that allows querying based on XML
document attributes. XML databases are mostly used in applications
where the data is conveniently viewed as a collection of documents, with
a structure that can vary from the very flexible to the highly rigid:
examples include scientific articles, patents, tax filings, and
personnel records.
NoSQL databases are often very fast, do not require fixed table schemas, avoid join operations by storing denormalized data, and are designed to scale horizontally.
In recent years, there has been a strong demand for massively
distributed databases with high partition tolerance, but according to
the CAP theorem it is impossible for a distributed system to simultaneously provide consistency,
availability, and partition tolerance guarantees. A distributed system
can satisfy any two of these guarantees at the same time, but not all
three. For that reason, many NoSQL databases are using what is called eventual consistency to provide both availability and partition tolerance guarantees with a reduced level of data consistency.
NewSQL
is a class of modern relational databases that aims to provide the same
scalable performance of NoSQL systems for online transaction processing
(read-write) workloads while still using SQL and maintaining the ACID guarantees of a traditional database system.
Use cases
Databases are used to support internal operations of organizations
and to underpin online interactions with customers and suppliers.
Databases are used to hold administrative information and more
specialized data, such as engineering data or economic models. Examples
include computerized library systems, flight reservation systems, computerized parts inventory systems, and many content management systems that store websites as collections of webpages in a database.
Classification
One way to classify databases involves the type of their contents, for example: bibliographic,
document-text, statistical, or multimedia objects. Another way is by
their application area, for example: accounting, music compositions,
movies, banking, manufacturing, or insurance. A third way is by some
technical aspect, such as the database structure or interface type. This
section lists a few of the adjectives used to characterize different
kinds of databases.
- An in-memory database is a database that primarily resides in main memory, but is typically backed-up by non-volatile computer data storage. Main memory databases are faster than disk databases, and so are often used where response time is critical, such as in telecommunications network equipment.
- An active database includes an event-driven architecture which can respond to conditions both inside and outside the database. Possible uses include security monitoring, alerting, statistics gathering and authorization. Many databases provide active database features in the form of database triggers.
- A cloud database relies on cloud technology. Both the database and most of its DBMS reside remotely, "in the cloud", while its applications are both developed by programmers and later maintained and used by end-users through a web browser and Open APIs.
- Data warehouses archive data from operational databases and often from external sources such as market research firms. The warehouse becomes the central source of data for use by managers and other end-users who may not have access to operational data. For example, sales data might be aggregated to weekly totals and converted from internal product codes to use UPCs so that they can be compared with ACNielsen data. Some basic and essential components of data warehousing include extracting, analyzing, and mining data, transforming, loading, and managing data so as to make them available for further use.
- A deductive database combines logic programming with a relational database.
- A distributed database is one in which both the data and the DBMS span multiple computers.
- A document-oriented database is designed for storing, retrieving, and managing document-oriented, or semi structured, information. Document-oriented databases are one of the main categories of NoSQL databases.
- An embedded database system is a DBMS which is tightly integrated with an application software that requires access to stored data in such a way that the DBMS is hidden from the application's end-users and requires little or no ongoing maintenance.
- End-user databases consist of data developed by individual end-users. Examples of these are collections of documents, spreadsheets, presentations, multimedia, and other files. Several products exist to support such databases. Some of them are much simpler than full-fledged DBMSs, with more elementary DBMS functionality.
- A federated database system comprises several distinct databases, each with its own DBMS. It is handled as a single database by a federated database management system (FDBMS), which transparently integrates multiple autonomous DBMSs, possibly of different types (in which case it would also be a heterogeneous database system), and provides them with an integrated conceptual view.
- Sometimes the term multi-database is used as a synonym to federated database, though it may refer to a less integrated (e.g., without an FDBMS and a managed integrated schema) group of databases that cooperate in a single application. In this case, typically middleware is used for distribution, which typically includes an atomic commit protocol (ACP), e.g., the two-phase commit protocol, to allow distributed (global) transactions across the participating databases.
- A graph database is a kind of NoSQL database that uses graph structures with nodes, edges, and properties to represent and store information. General graph databases that can store any graph are distinct from specialized graph databases such as triplestores and network databases.
- An array DBMS is a kind of NoSQL DBMS that allows modeling, storage, and retrieval of (usually large) multi-dimensional arrays such as satellite images and climate simulation output.
- In a hypertext or hypermedia database, any word or a piece of text representing an object, e.g., another piece of text, an article, a picture, or a film, can be hyperlinked to that object. Hypertext databases are particularly useful for organizing large amounts of disparate information. For example, they are useful for organizing online encyclopedias, where users can conveniently jump around the text. The World Wide Web is thus a large distributed hypertext database.
- A knowledge base (abbreviated KB, kb or Δ) is a special kind of database for knowledge management, providing the means for the computerized collection, organization, and retrieval of knowledge. Also a collection of data representing problems with their solutions and related experiences.
- A mobile database can be carried on or synchronized from a mobile computing device.
- Operational databases store detailed data about the operations of an organization. They typically process relatively high volumes of updates using transactions. Examples include customer databases that record contact, credit, and demographic information about a business's customers, personnel databases that hold information such as salary, benefits, skills data about employees, enterprise resource planning systems that record details about product components, parts inventory, and financial databases that keep track of the organization's money, accounting and financial dealings.
- A parallel database seeks to improve performance through parallelization for tasks such as loading data, building indexes and evaluating queries.
-
- The major parallel DBMS architectures which are induced by the underlying hardware architecture are:
- Shared memory architecture, where multiple processors share the main memory space, as well as other data storage.
- Shared disk architecture, where each processing unit (typically consisting of multiple processors) has its own main memory, but all units share the other storage.
- Shared nothing architecture, where each processing unit has its own main memory and other storage.
- The major parallel DBMS architectures which are induced by the underlying hardware architecture are:
- Probabilistic databases employ fuzzy logic to draw inferences from imprecise data.
- Real-time databases process transactions fast enough for the result to come back and be acted on right away.
- A spatial database can store the data with multidimensional features. The queries on such data include location-based queries, like "Where is the closest hotel in my area?".
- A temporal database has built-in time aspects, for example a temporal data model and a temporal version of SQL. More specifically the temporal aspects usually include valid-time and transaction-time.
- A terminology-oriented database builds upon an object-oriented database, often customized for a specific field.
- An unstructured data database is intended to store in a manageable and protected way diverse objects that do not fit naturally and conveniently in common databases. It may include email messages, documents, journals, multimedia objects, etc. The name may be misleading since some objects can be highly structured. However, the entire possible object collection does not fit into a predefined structured framework. Most established DBMSs now support unstructured data in various ways, and new dedicated DBMSs are emerging.
Database interaction
Database management system
Connolly and Begg define Database Management System (DBMS) as a
"software system that enables users to define, create, maintain and
control access to the database".
The DBMS acronym is sometime extended to indicated the underlying database model, with RDBMS for relational, OODBMS or ORDBMS for the object (orientated) model
and ORDBMS for Object-Relational. Other extensions can indicate some
other characteristic, such as DDBMS for a distributed database
management systems.
The functionality provided by a DBMS can vary enormously. The
core functionality is the storage, retrieval and update of data. Codd proposed the following functions and services a fully-fledged general purpose DBMS should provide:
- Data storage, retrieval and update
- User accessible catalog or data dictionary describing the metadata
- Support for transactions and concurrency
- Facilities for recovering the database should it become damaged
- Support for authorization of access and update of data
- Access support from remote locations
- Enforcing constraints to ensure data in the database abides by certain rules
It is also generally to be expected the DBMS will provide a set of
utilities for such purposes as may be necessary to administer the
database effectively, including import, export, monitoring,
defragmentation and analysis utilities. The core part of the DBMS interacting between the database and the application interface sometimes referred to as the database engine.
Often DBMSs will have configuration parameters that can be
statically and dynamically tuned, for example the maximum amount of main
memory on a server the database can use. The trend is to minimise the
amount of manual configuration, and for cases such as embedded databases the need to target zero-administration is paramount.
The large major enterprise DBMSs have tended to increase in size
and functionality and can have involved thousands of human years of
development effort through their lifetime.
Early multi-user DBMS typically only allowed for the application to reside on the same computer with access via terminals or terminal emulation software. The client–server architecture
was a development where the application resided on a client desktop and
the database on a server allowing the processing to be distributed.
This evolved into a multitier architecture incorporating application servers and web servers with the end user interface via a web browser with the database only directly connected to the adjacent tier.
A general-purpose DBMS will provide public application programming interfaces (API) and optionally a processor for database languages such as SQL
to allow applications to be written to interact with the database. A
special purpose DBMS may use a private API and be specifically
customised and linked to a single application. For example an email
system performing many of the functions of a general-purpose DBMS such
as message insertion, message deletion, attachment handling, blocklist
lookup, associating messages an email address and so forth however these
functions are limited to what is required to handle email.
Application
External interaction with the database will be via an application program that interfaces with the DBMS. This can range from a database tool
that allows users to execute SQL queries textually or graphically, to a
web site that happens to use a database to store and search
information.
Application Program Interface
A programmer will code interactions to the database (sometimes referred to as a datasource) via an application program interface (API) or via a database language. The particular API or language chosen will need to be supported by DBMS, possible indirectly via a pre-processor or a bridging API. Some API's aim to be database independent, ODBC being a commonly known example. Other common API's include JDBC and ADO.NET.
Database languages
Database languages are special-purpose languages, which allow one or more of the following tasks, sometimes distinguished as sublanguages:
- Data control language (DCL) – controls access to data;
- Data definition language (DDL) – defines data types such as creating, altering, or dropping and the relationships among them;
- Data manipulation language (DML) – performs tasks such as inserting, updating, or deleting data occurrences;
- Data query language (DQL) – allows searching for information and computing derived information.
Database languages are specific to a particular data model. Notable examples include:
- SQL combines the roles of data definition, data manipulation, and query in a single language. It was one of the first commercial languages for the relational model, although it departs in some respects from the relational model as described by Codd (for example, the rows and columns of a table can be ordered). SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of the International Organization for Standardization (ISO) in 1987. The standards have been regularly enhanced since and is supported (with varying degrees of conformance) by all mainstream commercial relational DBMSs.
- OQL is an object model language standard (from the Object Data Management Group). It has influenced the design of some of the newer query languages like JDOQL and EJB QL.
- XQuery is a standard XML query language implemented by XML database systems such as MarkLogic and eXist, by relational databases with XML capability such as Oracle and DB2, and also by in-memory XML processors such as Saxon.
- SQL/XML combines XQuery with SQL.
A database language may also incorporate features like:
- DBMS-specific configuration and storage engine management
- Computations to modify query results, like counting, summing, averaging, sorting, grouping, and cross-referencing
- Constraint enforcement (e.g. in an automotive database, only allowing one engine type per car)
- Application programming interface version of the query language, for programmer convenience
Storage
Database storage is the container of the physical materialization of a database. It comprises the internal (physical) level in the database architecture. It also contains all the information needed (e.g., metadata, "data about the data", and internal data structures) to reconstruct the conceptual level and external level from the internal level when needed. Putting data into permanent storage is generally the responsibility of the database engine
a.k.a. "storage engine". Though typically accessed by a DBMS through
the underlying operating system (and often using the operating systems' file systems
as intermediates for storage layout), storage properties and
configuration setting are extremely important for the efficient
operation of the DBMS, and thus are closely maintained by database
administrators. A DBMS, while in operation, always has its database
residing in several types of storage (e.g., memory and external
storage). The database data and the additional needed information,
possibly in very large amounts, are coded into bits. Data typically
reside in the storage in structures that look completely different from
the way the data look in the conceptual and external levels, but in ways
that attempt to optimize (the best possible) these levels'
reconstruction when needed by users and programs, as well as for
computing additional types of needed information from the data (e.g.,
when querying the database).
Some DBMSs support specifying which character encoding was used to store data, so multiple encodings can be used in the same database.
Various low-level database storage structures
are used by the storage engine to serialize the data model so it can be
written to the medium of choice. Techniques such as indexing may be
used to improve performance. Conventional storage is row-oriented, but
there are also column-oriented and correlation databases.
Materialized views
Often storage redundancy is employed to increase performance. A common example is storing materialized views, which consist of frequently needed external views
or query results. Storing such views saves the expensive computing of
them each time they are needed. The downsides of materialized views are
the overhead incurred when updating them to keep them synchronized with
their original updated database data, and the cost of storage
redundancy.
Replication
Occasionally a database employs storage redundancy by database
objects replication (with one or more copies) to increase data
availability (both to improve performance of simultaneous multiple
end-user accesses to a same database object, and to provide resiliency
in a case of partial failure of a distributed database). Updates of a
replicated object need to be synchronized across the object copies. In
many cases, the entire database is replicated.
Security
Database security
deals with all various aspects of protecting the database content, its
owners, and its users. It ranges from protection from intentional
unauthorized database uses to unintentional database accesses by
unauthorized entities (e.g., a person or a computer program).
Database access control deals with controlling who (a person or a
certain computer program) is allowed to access what information in the
database. The information may comprise specific database objects (e.g.,
record types, specific records, data structures), certain computations
over certain objects (e.g., query types, or specific queries), or using
specific access paths to the former (e.g., using specific indexes or
other data structures to access information). Database access controls
are set by special authorized (by the database owner) personnel that
uses dedicated protected security DBMS interfaces.
This may be managed directly on an individual basis, or by the assignment of individuals and privileges
to groups, or (in the most elaborate models) through the assignment of
individuals and groups to roles which are then granted entitlements.
Data security prevents unauthorized users from viewing or updating the
database. Using passwords, users are allowed access to the entire
database or subsets of it called "subschemas". For example, an employee
database can contain all the data about an individual employee, but one
group of users may be authorized to view only payroll data, while others
are allowed access to only work history and medical data. If the DBMS
provides a way to interactively enter and update the database, as well
as interrogate it, this capability allows for managing personal
databases.
Data security
in general deals with protecting specific chunks of data, both
physically (i.e., from corruption, or destruction, or removal; e.g., see
physical security),
or the interpretation of them, or parts of them to meaningful
information (e.g., by looking at the strings of bits that they comprise,
concluding specific valid credit-card numbers).
Change and access logging records who accessed which attributes,
what was changed, and when it was changed. Logging services allow for a
forensic database audit
later by keeping a record of access occurrences and changes. Sometimes
application-level code is used to record changes rather than leaving
this to the database. Monitoring can be set up to attempt to detect
security breaches.
Transactions and concurrency
Database transactions can be used to introduce some level of fault tolerance and data integrity after recovery from a crash.
A database transaction is a unit of work, typically encapsulating a
number of operations over a database (e.g., reading a database object,
writing, acquiring lock,
etc.), an abstraction supported in database and also other systems.
Each transaction has well defined boundaries in terms of which
program/code executions are included in that transaction (determined by
the transaction's programmer via special transaction commands).
The acronym ACID describes some ideal properties of a database transaction: atomicity, consistency, isolation, and durability.
Migration
A database built with one DBMS is not portable to another DBMS (i.e.,
the other DBMS cannot run it). However, in some situations, it is
desirable to move, migrate a database from one DBMS to another. The
reasons are primarily economical (different DBMSs may have different total costs of ownership
or TCOs), functional, and operational (different DBMSs may have
different capabilities). The migration involves the database's
transformation from one DBMS type to another. The transformation should
maintain (if possible) the database related application (i.e., all
related application programs) intact. Thus, the database's conceptual
and external architectural levels should be maintained in the
transformation. It may be desired that also some aspects of the
architecture internal level are maintained. A complex or large database
migration may be a complicated and costly (one-time) project by itself,
which should be factored into the decision to migrate. This in spite of
the fact that tools may exist to help migration between specific DBMSs.
Typically, a DBMS vendor provides tools to help importing databases from
other popular DBMSs.
Building, maintaining, and tuning
After designing a database for an application, the next stage is building the database. Typically, an appropriate general-purpose DBMS can be selected to be used for this purpose. A DBMS provides the needed user interfaces
to be used by database administrators to define the needed
application's data structures within the DBMS's respective data model.
Other user interfaces are used to select needed DBMS parameters (like
security related, storage allocation parameters, etc.).
When the database is ready (all its data structures and other
needed components are defined), it is typically populated with initial
application's data (database initialization, which is typically a
distinct project; in many cases using specialized DBMS interfaces that
support bulk insertion) before making it operational. In some cases, the
database becomes operational while empty of application data, and data
are accumulated during its operation.
After the database is created, initialised and populated it needs
to be maintained. Various database parameters may need changing and the
database may need to be tuned (tuning)
for better performance; application's data structures may be changed or
added, new related application programs may be written to add to the
application's functionality, etc.
Backup and restore
Sometimes it is desired to bring a database back to a previous state
(for many reasons, e.g., cases when the database is found corrupted due
to a software error, or if it has been updated with erroneous data). To
achieve this, a backup operation is done occasionally or continuously,
where each desired database state (i.e., the values of its data and
their embedding in database's data structures) is kept within dedicated
backup files (many techniques exist to do this effectively). When this
state is needed, i.e., when it is decided by a database administrator to
bring the database back to this state (e.g., by specifying this state
by a desired point in time when the database was in this state), these
files are used to restore that state.
Static analysis
Static analysis techniques for software verification can be applied
also in the scenario of query languages. In particular, the *Abstract interpretation
framework has been extended to the field of query languages for
relational databases as a way to support sound approximation techniques.
The semantics of query languages can be tuned according to suitable
abstractions of the concrete domain of data. The abstraction of
relational database system has many interesting applications, in
particular, for security purposes, such as fine grained access control,
watermarking, etc.
Miscellaneous features
Other DBMS features might include:
- Database logs – This helps in keeping a history of the executed functions.
- Graphics component for producing graphs and charts, especially in a data warehouse system.
- Query optimizer – Performs query optimization on every query to choose an efficient query plan (a partial order (tree) of operations) to be executed to compute the query result. May be specific to a particular storage engine.
- Tools or hooks for database design, application programming, application program maintenance, database performance analysis and monitoring, database configuration monitoring, DBMS hardware configuration (a DBMS and related database may span computers, networks, and storage units) and related database mapping (especially for a distributed DBMS), storage allocation and database layout monitoring, storage migration, etc.
Increasingly, there are calls for a single system that incorporates
all of these core functionalities into the same build, test, and
deployment framework for database management and source control.
Borrowing from other developments in the software industry, some market
such offerings as "DevOps for database".
Design and modeling
The first task of a database designer is to produce a conceptual data model
that reflects the structure of the information to be held in the
database. A common approach to this is to develop an entity-relationship
model, often with the aid of drawing tools. Another popular approach is
the Unified Modeling Language.
A successful data model will accurately reflect the possible state of
the external world being modeled: for example, if people can have more
than one phone number, it will allow this information to be captured.
Designing a good conceptual data model requires a good understanding of
the application domain; it typically involves asking deep questions
about the things of interest to an organization, like "can a customer
also be a supplier?", or "if a product is sold with two different forms
of packaging, are those the same product or different products?", or "if
a plane flies from New York to Dubai via Frankfurt, is that one flight
or two (or maybe even three)?". The answers to these questions establish
definitions of the terminology used for entities (customers, products,
flights, flight segments) and their relationships and attributes.
Producing the conceptual data model sometimes involves input from business processes, or the analysis of workflow
in the organization. This can help to establish what information is
needed in the database, and what can be left out. For example, it can
help when deciding whether the database needs to hold historic data as
well as current data.
Having produced a conceptual data model that users are happy with, the next stage is to translate this into a schema
that implements the relevant data structures within the database. This
process is often called logical database design, and the output is a logical data model
expressed in the form of a schema. Whereas the conceptual data model is
(in theory at least) independent of the choice of database technology,
the logical data model will be expressed in terms of a particular
database model supported by the chosen DBMS. (The terms data model and database model are often used interchangeably, but in this article we use data model for the design of a specific database, and database model for the modeling notation used to express that design.)
The most popular database model for general-purpose databases is
the relational model, or more precisely, the relational model as
represented by the SQL language. The process of creating a logical
database design using this model uses a methodical approach known as normalization.
The goal of normalization is to ensure that each elementary "fact" is
only recorded in one place, so that insertions, updates, and deletions
automatically maintain consistency.
The final stage of database design is to make the decisions that
affect performance, scalability, recovery, security, and the like, which
depend on the particular DBMS. This is often called physical database design, and the output is the physical data model. A key goal during this stage is data independence,
meaning that the decisions made for performance optimization purposes
should be invisible to end-users and applications. There are two types
of data independence: Physical data independence and logical data
independence. Physical design is driven mainly by performance
requirements, and requires a good knowledge of the expected workload and
access patterns, and a deep understanding of the features offered by
the chosen DBMS.
Another aspect of physical database design is security. It involves both defining access control to database objects as well as defining security levels and methods for the data itself.
Models
A database model is a type of data model that determines the logical
structure of a database and fundamentally determines in which manner data
can be stored, organized, and manipulated. The most popular example of a
database model is the relational model (or the SQL approximation of
relational), which uses a table-based format.
Common logical data models for databases include:
- Navigational databases
- Relational model
- Entity–relationship model
- Object model
- Document model
- Entity–attribute–value model
- Star schema
An object-relational database combines the two related structures.
Physical data models include:
Other models include:
Specialized models are optimized for particular types of data:
External, conceptual, and internal views
A database management system provides three views of the database data:
- The external level defines how each group of end-users sees the organization of data in the database. A single database can have any number of views at the external level.
- The conceptual level unifies the various external views into a compatible global view. It provides the synthesis of all the external views. It is out of the scope of the various database end-users, and is rather of interest to database application developers and database administrators.
- The internal level (or physical level) is the internal organization of data inside a DBMS. It is concerned with cost, performance, scalability and other operational matters. It deals with storage layout of the data, using storage structures such as indexes to enhance performance. Occasionally it stores data of individual views (materialized views), computed from generic data, if performance justification exists for such redundancy. It balances all the external views' performance requirements, possibly conflicting, in an attempt to optimize overall performance across all activities.
While there is typically only one conceptual (or logical) and
physical (or internal) view of the data, there can be any number of
different external views. This allows users to see database information
in a more business-related way rather than from a technical, processing
viewpoint. For example, a financial department of a company needs the
payment details of all employees as part of the company's expenses, but
does not need details about employees that are the interest of the human resources department. Thus different departments need different views of the company's database.
The three-level database architecture relates to the concept of data independence
which was one of the major initial driving forces of the relational
model. The idea is that changes made at a certain level do not affect
the view at a higher level. For example, changes in the internal level
do not affect application programs written using conceptual level
interfaces, which reduces the impact of making physical changes to
improve performance.
The conceptual view provides a level of indirection between
internal and external. On one hand it provides a common view of the
database, independent of different external view structures, and on the
other hand it abstracts away details of how the data are stored or
managed (internal level). In principle every level, and even every
external view, can be presented by a different data model. In practice
usually a given DBMS uses the same data model for both the external and
the conceptual levels (e.g., relational model). The internal level,
which is hidden inside the DBMS and depends on its implementation,
requires a different level of detail and uses its own types of data
structure types.
Separating the external, conceptual and internal levels was a major feature of the relational database model implementations that dominate 21st century databases.
Research
Database technology has been an active research topic since the 1960s, both in academia and in the research and development groups of companies (for example IBM Research). Research activity includes theory and development of prototypes. Notable research topics have included models, the atomic transaction concept, and related concurrency control techniques, query languages and query optimization methods, RAID, and more.
The database research area has several dedicated academic journals (for example, ACM Transactions on Database Systems-TODS, Data and Knowledge Engineering-DKE) and annual conferences (e.g., ACM SIGMOD, ACM PODS, VLDB, IEEE ICDE).