Risk management is the identification, evaluation, and prioritization of risks (defined in ISO 31000 as the effect of uncertainty on objectives)
followed by coordinated and economical application of resources to
minimize, monitor, and control the probability or impact of unfortunate
events or to maximize the realization of opportunities.
Risks can come from various sources including uncertainty in
financial markets, threats from project failures (at any phase in
design, development, production, or sustainment life-cycles), legal
liabilities, credit risk, accidents, natural causes and disasters, deliberate attack from an adversary, or events of uncertain or unpredictable root-cause.
There are two types of events i.e. negative events can be classified as
risks while positive events are classified as opportunities. Several
risk management standards have been developed including the Project Management Institute, the National Institute of Standards and Technology, actuarial societies, and ISO standards.
Methods, definitions and goals vary widely according to whether the
risk management method is in the context of project management,
security, engineering, industrial processes, financial portfolios, actuarial assessments, or public health and safety.
Strategies to manage threats (uncertainties with negative
consequences) typically include avoiding the threat, reducing the
negative effect or probability of the threat, transferring all or part
of the threat to another party, and even retaining some or all of the
potential or actual consequences of a particular threat, and the
opposites for opportunities (uncertain future states with benefits).
Certain aspects of many of the risk management standards have
come under criticism for having no measurable improvement on risk;
whereas the confidence in estimates and decisions seem to increase. For example, one study found that one in six IT projects were "black swans" with gigantic overruns (cost overruns averaged 200%, and schedule overruns 70%).
Introduction
A widely used vocabulary for risk management is defined by ISO Guide 73:2009, "Risk management. Vocabulary."
In ideal risk management, a prioritization process is followed
whereby the risks with the greatest loss (or impact) and the greatest probability
of occurring are handled first, and risks with lower probability of
occurrence and lower loss are handled in descending order. In practice
the process of assessing overall risk can be difficult, and balancing
resources used to mitigate between risks with a high probability of
occurrence but lower loss versus a risk with high loss but lower
probability of occurrence can often be mishandled.
Intangible risk management identifies a new type of a risk that
has a 100% probability of occurring but is ignored by the organization
due to a lack of identification ability. For example, when deficient
knowledge is applied to a situation, a knowledge
risk materializes. Relationship risk appears when ineffective
collaboration occurs. Process-engagement risk may be an issue when
ineffective operational procedures are applied. These risks directly
reduce the productivity of knowledge workers, decrease
cost-effectiveness, profitability, service, quality, reputation, brand
value, and earnings quality. Intangible risk management allows risk
management to create immediate value from the identification and
reduction of risks that reduce productivity.
Risk management also faces difficulties in allocating resources. This is the idea of opportunity cost.
Resources spent on risk management could have been spent on more
profitable activities. Again, ideal risk management minimizes spending
(or manpower or other resources) and also minimizes the negative effects
of risks.
According to the definition to the risk, the risk is the
possibility that an event will occur and adversely affect the
achievement of an objective. Therefore, risk itself has the uncertainty.
Risk management such as COSO ERM, can help managers have a good
control for their risk. Each company may have different internal
control components, which leads to different outcomes. For example, the
framework for ERM components includes Internal Environment, Objective
Setting, Event Identification, Risk Assessment, Risk Response, Control
Activities, Information and Communication, and Monitoring.
Method
For the most part, these methods consist of the following elements, performed, more or less, in the following order.
- identify, characterize threats
- assess the vulnerability of critical assets to specific threats
- determine the risk (i.e. the expected likelihood and consequences of specific types of attacks on specific assets)
- identify ways to reduce those risks
- prioritize risk reduction measures
Principles
The International Organization for Standardization (ISO) identifies the following principles of risk management:
Risk management should:
- create value – resources expended to mitigate risk should be less than the consequence of inaction
- be an integral part of organizational processes
- be part of decision making process
- explicitly address uncertainty and assumptions
- be a systematic and structured process
- be based on the best available information
- be tailorable
- take human factors into account
- be transparent and inclusive
- be dynamic, iterative and responsive to change
- be capable of continual improvement and enhancement
- be continually or periodically re-assessed.
Process
According to the standard ISO 31000 "Risk management – Principles and guidelines on implementation," the process of risk management consists of several steps as follows:
Establishing the context
This involves:
-
- the social scope of risk management
- the identity and objectives of stakeholders
- the basis upon which risks will be evaluated, constraints.
- defining a framework for the activity and an agenda for identification
- developing an analysis of risks involved in the process
- mitigation or solution of risks using available technological, human and organizational resources
Identification
After
establishing the context, the next step in the process of managing risk
is to identify potential risks. Risks are about events that, when
triggered, cause problems or benefits. Hence, risk identification can
start with the source of our problems and those of our competitors
(benefit), or with the problem itself.
- Source analysis – Risk sources may be internal or external to the system that is the target of risk management (use mitigation instead of management since by its own definition risk deals with factors of decision-making that cannot be managed).
Examples of risk sources are: stakeholders of a project, employees of a company or the weather over an airport.
- Problem analysis – Risks are related to identified threats. For example: the threat of losing money, the threat of abuse of confidential information or the threat of human errors, accidents and casualties. The threats may exist with various entities, most important with shareholders, customers and legislative bodies such as the government.
When either source or problem is known, the events that a source may
trigger or the events that can lead to a problem can be investigated.
For example: stakeholders withdrawing during a project may endanger
funding of the project; confidential information may be stolen by
employees even within a closed network; lightning striking an aircraft
during takeoff may make all people on board immediate casualties.
The chosen method of identifying risks may depend on culture,
industry practice and compliance. The identification methods are formed
by templates or the development of templates for identifying source,
problem or event. Common risk identification methods are:
- Objectives-based risk identification – Organizations and project teams have objectives. Any event that may endanger achieving an objective partly or completely is identified as risk.
- Scenario-based risk identification – In scenario analysis different scenarios are created. The scenarios may be the alternative ways to achieve an objective, or an analysis of the interaction of forces in, for example, a market or battle. Any event that triggers an undesired scenario alternative is identified as risk.
- Taxonomy-based risk identification – The taxonomy in taxonomy-based risk identification is a breakdown of possible risk sources. Based on the taxonomy and knowledge of best practices, a questionnaire is compiled. The answers to the questions reveal risks.
- Common-risk checking – In several industries, lists with known risks are available. Each risk in the list can be checked for application to a particular situation.
- Risk charting – This method combines the above approaches by listing resources at risk, threats to those resources, modifying factors which may increase or decrease the risk and consequences it is wished to avoid. Creating a matrix under these headings enables a variety of approaches. One can begin with resources and consider the threats they are exposed to and the consequences of each. Alternatively one can start with the threats and examine which resources they would affect, or one can begin with the consequences and determine which combination of threats and resources would be involved to bring them about.
Assessment
Once risks have been identified, they must then be assessed as to
their potential severity of impact (generally a negative impact, such as
damage or loss) and to the probability of occurrence. These quantities
can be either simple to measure, in the case of the value of a lost
building, or impossible to know for sure in the case of an unlikely
event, the probability of occurrence of which is unknown. Therefore, in
the assessment process it is critical to make the best educated
decisions in order to properly prioritize the implementation of the risk management plan.
Even a short-term positive improvement can have long-term
negative impacts. Take the "turnpike" example. A highway is widened to
allow more traffic. More traffic capacity leads to greater development
in the areas surrounding the improved traffic capacity. Over time,
traffic thereby increases to fill available capacity. Turnpikes thereby
need to be expanded in a seemingly endless cycles. There are many other
engineering examples where expanded capacity (to do any function) is
soon filled by increased demand. Since expansion comes at a cost, the
resulting growth could become unsustainable without forecasting and
management.
The fundamental difficulty in risk assessment is determining the
rate of occurrence since statistical information is not available on all
kinds of past incidents and is particularly scanty in the case of
catastrophic events, simply because of their infrequency. Furthermore,
evaluating the severity of the consequences (impact) is often quite
difficult for intangible assets. Asset valuation is another question
that needs to be addressed. Thus, best educated opinions and available
statistics are the primary sources of information. Nevertheless, risk
assessment should produce such information for senior executives of the
organization that the primary risks are easy to understand and that the
risk management decisions may be prioritized within overall company
goals. Thus, there have been several theories and attempts to quantify
risks. Numerous different risk formulae exist, but perhaps the most
widely accepted formula for risk quantification is: "Rate (or
probability) of occurrence multiplied by the impact of the event equals
risk magnitude."
Risk options
Risk mitigation measures are usually formulated according to one or more of the following major risk options, which are:
- Design a new business process with adequate built-in risk control and containment measures from the start.
- Periodically re-assess risks that are accepted in ongoing processes as a normal feature of business operations and modify mitigation measures.
- Transfer risks to an external agency (e.g. an insurance company)
- Avoid risks altogether (e.g. by closing down a particular high-risk business area)
Later research
has shown that the financial benefits of risk management are less
dependent on the formula used but are more dependent on the frequency
and how risk assessment is performed.
In business it is imperative to be able to present the findings
of risk assessments in financial, market, or schedule terms. Robert
Courtney Jr. (IBM, 1970) proposed a formula for presenting risks in
financial terms. The Courtney formula was accepted as the official risk
analysis method for the US governmental agencies. The formula proposes
calculation of ALE (annualized loss expectancy) and compares the
expected loss value to the security control implementation costs.
Potential risk treatments
Once
risks have been identified and assessed, all techniques to manage the
risk fall into one or more of these four major categories:
- Avoidance (eliminate, withdraw from or not become involved)
- Reduction (optimize – mitigate)
- Sharing (transfer – outsource or insure)
- Retention (accept and budget)
Ideal use of these risk control strategies
may not be possible. Some of them may involve trade-offs that are not
acceptable to the organization or person making the risk management
decisions. Another source, from the US Department of Defense (see link),
Defense Acquisition University,
calls these categories ACAT, for Avoid, Control, Accept, or Transfer.
This use of the ACAT acronym is reminiscent of another ACAT (for
Acquisition Category) used in US Defense industry procurements, in which
Risk Management figures prominently in decision making and planning.
Risk avoidance
This includes not performing an activity that could carry risk. An example would be not buying a property or business in order to not take on the legal liability that comes with it. Another would be not flying in order not to take the risk that the airplane were to be hijacked.
Avoidance may seem the answer to all risks, but avoiding risks also
means losing out on the potential gain that accepting (retaining) the
risk may have allowed. Not entering a business to avoid the risk of
loss also avoids the possibility of earning profits. Increasing risk
regulation in hospitals has led to avoidance of treating higher risk
conditions, in favor of patients presenting with lower risk.
Risk reduction
Risk
reduction or "optimization" involves reducing the severity of the loss
or the likelihood of the loss from occurring. For example, sprinklers are designed to put out a fire to reduce the risk of loss by fire. This method may cause a greater loss by water damage and therefore may not be suitable. Halon fire suppression systems may mitigate that risk, but the cost may be prohibitive as a strategy.
Acknowledging that risks can be positive or negative, optimizing
risks means finding a balance between negative risk and the benefit of
the operation or activity; and between risk reduction and effort
applied. By an offshore drilling contractor effectively applying Health, Safety and Environment (HSE) management in its organization, it can optimize risk to achieve levels of residual risk that are tolerable.
Modern software development methodologies reduce risk by
developing and delivering software incrementally. Early methodologies
suffered from the fact that they only delivered software in the final
phase of development; any problems encountered in earlier phases meant
costly rework and often jeopardized the whole project. By developing in
iterations, software projects can limit effort wasted to a single
iteration.
Outsourcing could be an example of risk sharing strategy if the outsourcer can demonstrate higher capability at managing or reducing risks.
For example, a company may outsource only its software development, the
manufacturing of hard goods, or customer support needs to another
company, while handling the business management itself. This way, the
company can concentrate more on business development without having to
worry as much about the manufacturing process, managing the development
team, or finding a physical location for a center.
Risk sharing
Briefly
defined as "sharing with another party the burden of loss or the
benefit of gain, from a risk, and the measures to reduce a risk."
The term of 'risk transfer' is often used in place of risk
sharing in the mistaken belief that you can transfer a risk to a third
party through insurance or outsourcing. In practice if the insurance
company or contractor go bankrupt or end up in court, the original risk
is likely to still revert to the first party. As such in the terminology
of practitioners and scholars alike, the purchase of an insurance
contract is often described as a "transfer of risk." However,
technically speaking, the buyer of the contract generally retains legal
responsibility for the losses "transferred", meaning that insurance may
be described more accurately as a post-event compensatory mechanism. For
example, a personal injuries insurance policy does not transfer the
risk of a car accident to the insurance company. The risk still lies
with the policy holder namely the person who has been in the accident.
The insurance policy simply provides that if an accident (the event)
occurs involving the policy holder then some compensation may be payable
to the policy holder that is commensurate with the suffering/damage.
Some ways of managing risk fall into multiple categories. Risk
retention pools are technically retaining the risk for the group, but
spreading it over the whole group involves transfer among individual
members of the group. This is different from traditional insurance, in
that no premium is exchanged between members of the group up front, but
instead losses are assessed to all members of the group.
Risk retention
Risk retention involves accepting the loss, or benefit of gain, from a risk when the incident occurs. True self-insurance
falls in this category. Risk retention is a viable strategy for small
risks where the cost of insuring against the risk would be greater over
time than the total losses sustained. All risks that are not avoided or
transferred are retained by default. This includes risks that are so
large or catastrophic that either they cannot be insured against or the
premiums would be infeasible. War
is an example since most property and risks are not insured against
war, so the loss attributed to war is retained by the insured. Also any
amounts of potential loss (risk) over the amount insured is retained
risk. This may also be acceptable if the chance of a very large loss is
small or if the cost to insure for greater coverage amounts is so great
that it would hinder the goals of the organization too much.
Risk management plan
Select appropriate controls or countermeasures to mitigate each risk.
Risk mitigation needs to be approved by the appropriate level of
management. For instance, a risk concerning the image of the
organization should have top management decision behind it whereas IT
management would have the authority to decide on computer virus risks.
The risk management plan should propose applicable and effective
security controls for managing the risks. For example, an observed high
risk of computer viruses could be mitigated by acquiring and
implementing antivirus software. A good risk management plan should
contain a schedule for control implementation and responsible persons
for those actions.
According to ISO/IEC 27001, the stage immediately after completion of the risk assessment
phase consists of preparing a Risk Treatment Plan, which should
document the decisions about how each of the identified risks should be
handled. Mitigation of risks often means selection of security controls,
which should be documented in a Statement of Applicability, which
identifies which particular control objectives and controls from the
standard have been selected, and why.
Implementation
Implementation
follows all of the planned methods for mitigating the effect of the
risks. Purchase insurance policies for the risks that it has been
decided to transferred to an insurer, avoid all risks that can be
avoided without sacrificing the entity's goals, reduce others, and
retain the rest.
Review and evaluation of the plan
Initial
risk management plans will never be perfect. Practice, experience, and
actual loss results will necessitate changes in the plan and contribute
information to allow possible different decisions to be made in dealing
with the risks being faced.
Risk analysis results and management plans should be updated periodically. There are two primary reasons for this:
- to evaluate whether the previously selected security controls are still applicable and effective
- to evaluate the possible risk level changes in the business environment. For example, information risks are a good example of rapidly changing business environment.
Limitations
Prioritizing the risk management processes
too highly could keep an organization from ever completing a project or
even getting started. This is especially true if other work is
suspended until the risk management process is considered complete.
It is also important to keep in mind the distinction between risk and uncertainty. Risk can be measured by impacts × probability.
If risks are improperly assessed and prioritized, time can be
wasted in dealing with risk of losses that are not likely to occur.
Spending too much time assessing and managing unlikely risks can divert
resources that could be used more profitably. Unlikely events do occur
but if the risk is unlikely enough to occur it may be better to simply
retain the risk and deal with the result if the loss does in fact occur.
Qualitative risk assessment is subjective and lacks consistency. The
primary justification for a formal risk assessment process is legal and
bureaucratic.
Areas
As applied to corporate finance, risk management is the technique for measuring, monitoring and controlling the financial or operational risk on a firm's balance sheet, a traditional measure is the value at risk (VaR), but there also other measures like profit at risk (PaR) or margin at risk. The Basel II framework breaks risks into market risk (price risk), credit risk and operational risk and also specifies methods for calculating capital requirements for each of these components.
In Information Technology, Risk management includes "Incident
Handling", an action plan for dealing with intrusions, cyber-theft,
denial of service, fire, floods, and other security-related events.
According to the SANS Institute, it is a six step process: Preparation, Identification, Containment, Eradication, Recovery, and Lessons Learned.
Enterprise
In enterprise risk management, a risk is defined as a possible event
or circumstance that can have negative influences on the enterprise in
question. Its impact can be on the very existence, the resources (human
and capital), the products and services, or the customers of the
enterprise, as well as external impacts on society, markets, or the
environment. In a financial institution, enterprise risk management is
normally thought of as the combination of credit risk, interest rate risk or asset liability management, liquidity risk, market risk, and operational risk.
In the more general case, every probable risk can have a pre-formulated plan to deal with its possible consequences (to ensure contingency if the risk becomes a liability).
From the information above and the average cost per employee over time, or cost accrual ratio, a project manager can estimate:
- the cost associated with the risk if it arises, estimated by multiplying employee costs per unit time by the estimated time lost (cost impact, C where C = cost accrual ratio * S).
- the probable increase in time associated with a risk (schedule variance due to risk, Rs where Rs = P * S):
- Sorting on this value puts the highest risks to the schedule first. This is intended to cause the greatest risks to the project to be attempted first so that risk is minimized as quickly as possible.
- This is slightly misleading as schedule variances with a large P and small S and vice versa are not equivalent. (The risk of the RMS Titanic sinking vs. the passengers' meals being served at slightly the wrong time).
- the probable increase in cost associated with a risk (cost variance due to risk, Rc where Rc = P*C = P*CAR*S = P*S*CAR)
- sorting on this value puts the highest risks to the budget first.
- see concerns about schedule variance as this is a function of it, as illustrated in the equation above.
Risk in a project or process can be due either to Special Cause Variation or Common Cause Variation
and requires appropriate treatment. That is to re-iterate the concern
about extreme cases not being equivalent in the list immediately above.
Enterprise Security
ESRM
is a security program management approach that links security
activities to an enterprise's mission and business goals through risk
management methods. The security leader's role in ESRM is to manage
risks of harm to enterprise assets in partnership with the business
leaders whose assets are exposed to those risks. ESRM involves educating
business leaders on the realistic impacts of identified risks,
presenting potential strategies to mitigate those impacts, then enacting
the option chosen by the business in line with accepted levels of
business risk tolerance
Medical device
For
medical devices, risk management is a process for identifying,
evaluating and mitigating risks associated with harm to people and
damage to property or the environment. Risk management is an integral
part of medical device design and development, production processes and
evaluation of field experience, and is applicable to all types of
medical devices. The evidence of its application is required by most
regulatory bodies such as the US FDA.
The management of risks for medical devices is described by the
International Organization for Standardization (ISO) in ISO 14971:2007,
Medical Devices—The application of risk management to medical devices, a
product safety standard. The standard provides a process framework and
associated requirements for management responsibilities, risk analysis
and evaluation, risk controls and lifecycle risk management.
The European version of the risk management standard was updated
in 2009 and again in 2012 to refer to the Medical Devices Directive
(MDD) and Active Implantable Medical Device Directive (AIMDD) revision
in 2007, as well as the In Vitro Medical Device Directive (IVDD). The
requirements of EN 14971:2012 are nearly identical to ISO 14971:2007.
The differences include three "(informative)" Z Annexes that refer to
the new MDD, AIMDD, and IVDD. These annexes indicate content deviations
that include the requirement for risks to be reduced as far as possible,
and the requirement that risks be mitigated by design and not by
labeling on the medical device (i.e., labeling can no longer be used to
mitigate risk).
Typical risk analysis and evaluation techniques adopted by the medical device industry include hazard analysis, fault tree analysis (FTA), failure mode and effects analysis (FMEA), hazard and operability study (HAZOP),
and risk traceability analysis for ensuring risk controls are
implemented and effective (i.e. tracking risks identified to product
requirements, design specifications, verification and validation results
etc.). FTA analysis requires diagramming software. FMEA analysis can be
done using a spreadsheet program. There are also integrated medical device risk management solutions.
Through a draft guidance,
the FDA has introduced another method named "Safety Assurance Case" for
medical device safety assurance analysis. The safety assurance case is
structured argument reasoning about systems appropriate for scientists
and engineers, supported by a body of evidence, that provides a
compelling, comprehensible and valid case that a system is safe for a
given application in a given environment. With the guidance, a safety
assurance case is expected for safety critical devices (e.g. infusion
devices) as part of the pre-market clearance submission, e.g. 510(k). In
2013, the FDA introduced another draft guidance expecting medical
device manufacturers to submit cybersecurity risk analysis information.
Project management
Project risk management must be considered at the different phases of
acquisition. In the beginning of a project, the advancement of
technical developments, or threats presented by a competitor's projects,
may cause a risk or threat assessment and subsequent evaluation of
alternatives. Once a decision is made, and the project begun, more familiar project management applications can be used:
- Planning how risk will be managed in the particular project. Plans should include risk management tasks, responsibilities, activities and budget.
- Assigning a risk officer – a team member other than a project manager who is responsible for foreseeing potential project problems. Typical characteristic of risk officer is a healthy skepticism.
- Maintaining live project risk database. Each risk should have the following attributes: opening date, title, short description, probability and importance. Optionally a risk may have an assigned person responsible for its resolution and a date by which the risk must be resolved.
- Creating anonymous risk reporting channel. Each team member should have the possibility to report risks that he/she foresees in the project.
- Preparing mitigation plans for risks that are chosen to be mitigated. The purpose of the mitigation plan is to describe how this particular risk will be handled – what, when, by whom and how will it be done to avoid it or minimize consequences if it becomes a liability.
- Summarizing planned and faced risks, effectiveness of mitigation activities, and effort spent for the risk management.
Megaprojects (infrastructure)
Megaprojects
(sometimes also called "major programs") are large-scale investment
projects, typically costing more than $1 billion per project.
Megaprojects include major bridges, tunnels, highways, railways,
airports, seaports, power plants, dams, wastewater projects, coastal
flood protection schemes, oil and natural gas extraction projects,
public buildings, information technology systems, aerospace projects,
and defense systems. Megaprojects have been shown to be particularly
risky in terms of finance, safety, and social and environmental impacts.
Risk management is therefore particularly pertinent for megaprojects
and special methods and special education have been developed for such
risk management.
Natural disasters
It is important to assess risk in regard to natural disasters like floods, earthquakes,
and so on. Outcomes of natural disaster risk assessment are valuable
when considering future repair costs, business interruption losses and
other downtime, effects on the environment, insurance costs, and the
proposed costs of reducing the risk. The Sendai Framework for Disaster Risk Reduction is a 2015 international accord that has set goals and targets for disaster risk reduction in response to natural disasters. There are regular International Disaster and Risk Conferences in Davos to deal with integral risk management.
Wilderness
The management of risks to persons and property in wilderness
and remote natural areas has developed with increases in outdoor
recreation participation and decreased social tolerance for loss.
Organizations providing commercial wilderness experiences can now align
with national and international consensus standards for training and
equipment such as ANSI/NASBLA 101-2017 (boating), UIAA 152 (ice climbing tools), and European Norm 13089:2015 + A1:2015 (mountaineering equipment). The Association for Experiential Education offers accreditation for wilderness adventure programs. The Wilderness Risk Management Conference provides access to best practices, and specialist organizations provide wilderness risk management consulting and training.
Information technology
IT risk is a risk related to information technology. This is a relatively new term due to an increasing awareness that information security is simply one facet of a multitude of risks that are relevant to IT and the real world processes it supports.
Duty of Care Risk Analysis (DoCRA) evaluates risks and their safeguards and considers the interests of all parties potentially affected by those risks.
CIS RAM provides a method to design and evaluate the implementation of the CIS Controls™.
Petroleum and natural gas
For the offshore oil and gas industry, operational risk management is regulated by the safety case
regime in many countries. Hazard identification and risk assessment
tools and techniques are described in the international standard ISO
17776:2000, and organisations such as the IADC (International Association of Drilling Contractors) publish guidelines for Health, Safety and Environment
(HSE) Case development which are based on the ISO standard. Further,
diagrammatic representations of hazardous events are often expected by
governmental regulators as part of risk management in safety case
submissions; these are known as bow-tie diagrams (see Network theory in risk assessment). The technique is also used by organisations and regulators in mining, aviation, health, defence, industrial and finance.
Pharmaceutical sector
The
principles and tools for quality risk management are increasingly being
applied to different aspects of pharmaceutical quality systems. These
aspects include development, manufacturing, distribution, inspection,
and submission/review processes throughout the lifecycle of drug
substances, drug products, biological and biotechnological products
(including the use of raw materials, solvents, excipients, packaging and
labeling materials in drug products, biological and biotechnological
products). Risk management is also applied to the assessment of microbiological contamination in relation to pharmaceutical products and cleanroom manufacturing environments.
Risk communication
Risk communication is a complex cross-disciplinary academic field related to core values of the targeted audiences.
Problems for risk communicators involve how to reach the intended
audience, how to make the risk comprehensible and relatable to other
risks, how to pay appropriate respect to the audience's values related
to the risk, how to predict the audience's response to the
communication, etc. A main goal of risk communication is to improve
collective and individual decision making. Risk communication is
somewhat related to crisis communication.
Some experts coincide that risk is not only enrooted in the
communication process but also it cannot be dissociated from the use of
language. Though each culture develops its own fears and risks, these
construes apply only by the hosting culture.