A nutrient cycle (or ecological recycling) is the movement and exchange of organic and inorganic matter back into the production of matter. Energy flow is a unidirectional and noncyclic pathway, whereas the movement of mineral nutrients is cyclic. Mineral cycles include the carbon cycle, sulfur cycle, nitrogen cycle, water cycle, phosphorus cycle, oxygen cycle, among others that continually recycle along with other mineral nutrients into productive ecological nutrition.
Outline
The nutrient cycle is nature's recycling system. All forms of
recycling have feedback loops that use energy in the process of putting
material resources back into use. Recycling in ecology is regulated to a
large extent during the process of decomposition. Ecosystems employ biodiversity in the food webs that recycle natural materials, such as mineral nutrients, which includes water. Recycling in natural systems is one of the many ecosystem services that sustain and contribute to the well-being of human societies.
There is much overlap between the terms for the biogeochemical cycle and nutrient cycle. Most textbooks integrate the two and seem to treat them as synonymous terms.
However, the terms often appear independently. Nutrient cycle is more
often used in direct reference to the idea of an intra-system cycle,
where an ecosystem functions as a unit. From a practical point, it does
not make sense to assess a terrestrial ecosystem by considering the full
column of air above it as well as the great depths of Earth below it.
While an ecosystem often has no clear boundary, as a working model it is
practical to consider the functional community where the bulk of matter
and energy transfer occurs.
Nutrient cycling occurs in ecosystems that participate in the "larger
biogeochemical cycles of the earth through a system of inputs and
outputs."
Complete and closed loop
All systems recycle. The biosphere is a network of continually recycling materials and information in alternating cycles of convergence and divergence. As materials converge or become more concentrated they gain in quality, increasing their potentials to drive useful work in proportion to their concentrations relative to the environment. As their potentials are used, materials diverge, or become more dispersed in the landscape, only to be concentrated again at another time and place.
Ecosystems are capable of complete recycling. Complete recycling
means that 100% of the waste material can be reconstituted indefinitely.
This idea was captured by Howard T. Odum
when he penned that "it is thoroughly demonstrated by ecological
systems and geological systems that all the chemical elements and many
organic substances can be accumulated by living systems from background
crustal or oceanic concentrations without limit as to concentration so
long as there is available solar or another source of potential energy" In 1979 Nicholas Georgescu-Roegen proposed the fourth law of entropy
stating that complete recycling is impossible. Despite
Georgescu-Roegen's extensive intellectual contributions to the science
of ecological economics, the fourth law has been rejected in line with observations of ecological recycling. However, some authors state that complete recycling is impossible for technological waste.
Ecosystems execute closed loop recycling where demand for the nutrients that adds to the growth of biomass
exceeds supply within that system. There are regional and spatial
differences in the rates of growth and exchange of materials, where some
ecosystems may be in nutrient debt (sinks) where others will have extra
supply (sources). These differences relate to climate, topography, and
geological history leaving behind different sources of parent material.
In terms of a food web, a cycle or loop is defined as "a directed
sequence of one or more links starting from, and ending at, the same
species."
An example of this is the microbial food web in the ocean, where
"bacteria are exploited, and controlled, by protozoa, including heterotrophic
microflagellates which are in turn exploited by ciliates. This grazing
activity is accompanied by excretion of substances which are in turn
used by the bacteria so that the system more or less operates in a
closed circuit."
Ecological recycling
A large fraction of the elements composing living matter reside at any instant of time in the world’s biota. Because the earthly pool of these elements is limited and the rates of exchange among the various components of the biota are extremely fast with respect to geological time, it is quite evident that much of the same material is being incorporated again and again into different biological forms. This observation gives rise to the notion that, on the average, matter (and some amounts of energy) are involved in cycles.
An example of ecological recycling occurs in the enzymatic digestion of cellulose. "Cellulose, one of the most abundant organic compounds on Earth, is the major polysaccharide in plants where it is part of the cell walls. Cellulose-degrading enzymes participate in the natural, ecological recycling of plant material."
Different ecosystems can vary in their recycling rates of litter, which
creates a complex feedback on factors such as the competitive dominance
of certain plant species. Different rates and patterns of ecological
recycling leaves a legacy of environmental effects with implications for
the future evolution of ecosystems.
Ecological recycling is common in organic farming, where nutrient management is fundamentally different
compared to agri-business styles of soil management. Organic farms that
employ ecosystem recycling to a greater extent support more species
(increased levels of biodiversity) and have a different food web structure.
Organic agricultural ecosystems rely on the services of biodiversity
for the recycling of nutrients through soils instead of relying on the
supplementation of synthetic fertilizers. The model for ecological recycling agriculture adheres to the following principals:
- Protection of biodiversity.
- Use of renewable energy.
- Recycling of plant nutrients.
Where produce from an organic farm leaves the farm gate for the
market the system becomes an open cycle and nutrients may need to be
replaced through alternative methods.
Ecosystem engineers
The persistent legacy of environmental feedback that is left behind
by or as an extension of the ecological actions of organisms is known as
niche construction
or ecosystem engineering. Many species leave an effect even after their
death, such as coral skeletons or the extensive habitat modifications
to a wetland by a beaver, whose components are recycled and re-used by
descendants and other species living under a different selective regime
through the feedback and agency of these legacy effects. Ecosystem engineers can influence nutrient cycling efficiency rates through their actions.
Earthworms,
for example, passively and mechanically alter the nature of soil
environments. Bodies of dead worms passively contribute mineral
nutrients to the soil. The worms also mechanically modify the physical
structure of the soil as they crawl about (bioturbation), digest on the molds of organic matter they pull from the soil litter. These activities transport nutrients into the mineral layers of soil. Worms discard wastes that create worm castings
containing undigested materials where bacteria and other decomposers
gain access to the nutrients. The earthworm is employed in this process
and the production of the ecosystem depends on their capability to
create feedback loops in the recycling process.
Shellfish
are also ecosystem engineers because they: 1) Filter suspended
particles from the water column; 2) Remove excess nutrients from coastal
bays through denitrification;
3) Serve as natural coastal buffers, absorbing wave energy and reducing
erosion from boat wakes, sea level rise and storms; 4) Provide nursery
habitat for fish that are valuable to coastal economies.
Fungi contribute to nutrient cycling and nutritionally rearrange patches of ecosystem creating niches for other organisms. In that way fungi in growing dead wood allow xylophages to grow and develop and xylophages, in turn, affect dead wood, contributing to wood decomposition and nutrient cycling in the forest floor.
History
Nutrient cycling has a historical foothold in the writings of Charles Darwin
in reference to the decomposition actions of earthworms. Darwin wrote
about "the continued Following the Greeks, the idea of a hydrological
cycle (water is considered a nutrient) was validated and quantified by Halley in 1687.
Variations in terminology
In 1926 Vernadsky coined the term biogeochemistry as a sub-discipline of geochemistry. However, the term nutrient cycle
pre-dates biogeochemistry in a pamphlet on silviculture in 1899: "These
demands by no means pass over the fact that at places where sufficient
quantities of humus are available and where, in case of continuous
decomposition of litter, a stable, nutrient humus is present,
considerable quantities of nutrients are also available from the
biogenic nutrient cycle for the standing timber. In 1898 there is a reference to the nitrogen cycle in relation to nitrogen fixing microorganisms. Other uses and variations on the terminology relating to the process of nutrient cycling appear throughout history:
- The term mineral cycle appears early in a 1935 in reference to the importance of minerals in plant physiology: "...ash is probably either built up into its permanent structure, or deposited in some way as waste in the cells, and so may not be free to re-enter the mineral cycle."
- The term nutrient recycling appears in a 1964 paper on the food ecology of the wood stork: "While the periodic drying up and reflooding of the marshes creates special survival problems for organisms in the community, the fluctuating water levels favor rapid nutrient recycling and subsequent high rates of primary and secondary production"
- The term natural cycling appears in a 1968 paper on the transportation of leaf litter and its chemical elements for consideration in fisheries management: "Fluvial transport of tree litter from drainage basins is a factor in natural cycling of chemical elements and in degradation of the land."
- The term ecological recycling appears in a 1968 publication on future applications of ecology for the creation of different modules designed for living in extreme environments, such as space or under sea: "For our basic requirement of recycling vital resources, the oceans provide much more frequent ecological recycling than the land area. Fish and other organic populations have higher growth rates, vegetation has less capricious weather problems for sea harvesting."
- The term bio-recycling appears in a 1976 paper on the recycling of organic carbon in oceans: "Following the actualistic assumption, then, that biological activity is responsible for the source of dissolved organic material in the oceans, but is not important for its activities after death of the organisms and subsequent chemical changes which prevent its bio-recycling, we can see no major difference in the behavior of dissolved organic matter between the prebiotic and post-biotic oceans."
Water is also a nutrient.
In this context, some authors also refer to precipitation recycling,
which "is the contribution of evaporation within a region to
precipitation in that same region."
These variations on the theme of nutrient cycling continue to be used
and all refer to processes that are part of the global biogeochemical
cycles. However, authors tend to refer to natural, organic, ecological,
or bio-recycling in reference to the work of nature, such as it is used
in organic farming or ecological agricultural systems.
Recycling in novel ecosystems
An endless stream of technological waste accumulates in different
spatial configurations across the planet and turns into a predator in
our soils, our streams, and our oceans. This idea was similarly expressed in 1954 by ecologist Paul Sears:
"We do not know whether to cherish the forest as a source of essential
raw materials and other benefits or to remove it for the space it
occupies. We expect a river to serve as both vein and artery carrying
away waste but bringing usable material in the same channel. Nature long
ago discarded the nonsense of carrying poisonous wastes and nutrients
in the same vessels." Ecologists use population ecology to model contaminants as competitors or predators. Rachel Carson was an ecological pioneer in this area as her book Silent Spring
inspired research into biomagification and brought to the worlds
attention the unseen pollutants moving into the food chains of the
planet.
In contrast to the planets natural ecosystems, technology (or technoecosystems) is not reducing its impact on planetary resources. Only 7% of total plastic waste
(adding up to millions upon millions of tons) is being recycled by
industrial systems; the 93% that never makes it into the industrial
recycling stream is presumably absorbed by natural recycling systems In contrast and over extensive lengths of time (billions of years) ecosystems have maintained a consistent balance with production roughly equaling respiratory consumption
rates. The balanced recycling efficiency of nature means that
production of decaying waste material has exceeded rates of recyclable
consumption into food chains equal to the global stocks of fossilized fuels that escaped the chain of decomposition.
Pesticides soon spread through everything in the ecosphere-both human technosphere and nonhuman biosphere-returning from the 'out there' of natural environments back into plant, animal, and human bodies situated at the 'in here' of artificial environments with unintended, unanticipated, and unwanted effects. By using zoological, toxicological, epidemiological, and ecological insights, Carson generated a new sense of how 'the environment' might be seen.
Microplastics and nanosilver
materials flowing and cycling through ecosystems from pollution and
discarded technology are among a growing list of emerging ecological
concerns. For example, unique assemblages of marine microbes have been found to digest plastic accumulating in the worlds oceans. Discarded technology is absorbed into soils and creates a new class of soils called technosols. Human wastes in the Anthropocene are creating new systems of ecological recycling, novel ecosystems that have to contend with the mercury cycle and other synthetic materials that are streaming into the biodegradation chain.
Microorganisms have a significant role in the removal of synthetic
organic compounds from the environment empowered by recycling mechanisms
that have complex biodegradation pathways. The effect of synthetic
materials, such as nanoparticles and microplastics, on ecological recycling systems is listed as one of the major concerns for ecosystem in this century.
Technological recycling
Recycling in human industrial systems (or technoecosystems)
differs from ecological recycling in scale, complexity, and
organization. Industrial recycling systems do not focus on the
employment of ecological food webs to recycle waste back into different
kinds of marketable goods, but primarily employ people and technodiversity
instead. Some researchers have questioned the premise behind these and
other kinds of technological solutions under the banner of
'eco-efficiency' are limited in their capability, harmful to ecological
processes, and dangerous in their hyped capabilities. Many technoecosystems are competitive and parasitic toward natural ecosystems. Food web or biologically based "recycling includes metabolic recycling
(nutrient recovery, storage, etc.) and ecosystem recycling (leaching and
in situ organic matter mineralization, either in the water column, in the sediment surface, or within the sediment."