A Medley of Potpourri

A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.

Search This Blog

Thursday, June 23, 2022

Analytic geometry

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Analytic_geometry 

Geometry
Stereographic projection in 3D.svg
Projecting a sphere to a plane
  • Outline
  • History

Branches
  • Concepts
  • Features
Zero-dimensional
One-dimensional
Two-dimensional
Three-dimensional
Four- / other-dimensional
Geometers
by name
by period

In classical mathematics, analytic geometry, also known as coordinate geometry or Cartesian geometry, is the study of geometry using a coordinate system. This contrasts with synthetic geometry.

Analytic geometry is used in physics and engineering, and also in aviation, rocketry, space science, and spaceflight. It is the foundation of most modern fields of geometry, including algebraic, differential, discrete and computational geometry.

Usually the Cartesian coordinate system is applied to manipulate equations for planes, straight lines, and circles, often in two and sometimes three dimensions. Geometrically, one studies the Euclidean plane (two dimensions) and Euclidean space. As taught in school books, analytic geometry can be explained more simply: it is concerned with defining and representing geometric shapes in a numerical way and extracting numerical information from shapes' numerical definitions and representations. That the algebra of the real numbers can be employed to yield results about the linear continuum of geometry relies on the Cantor–Dedekind axiom.

History

Ancient Greece

The Greek mathematician Menaechmus solved problems and proved theorems by using a method that had a strong resemblance to the use of coordinates and it has sometimes been maintained that he had introduced analytic geometry.

Apollonius of Perga, in On Determinate Section, dealt with problems in a manner that may be called an analytic geometry of one dimension; with the question of finding points on a line that were in a ratio to the others. Apollonius in the Conics further developed a method that is so similar to analytic geometry that his work is sometimes thought to have anticipated the work of Descartes by some 1800 years. His application of reference lines, a diameter and a tangent is essentially no different from our modern use of a coordinate frame, where the distances measured along the diameter from the point of tangency are the abscissas, and the segments parallel to the tangent and intercepted between the axis and the curve are the ordinates. He further developed relations between the abscissas and the corresponding ordinates that are equivalent to rhetorical equations (expressed in words) of curves. However, although Apollonius came close to developing analytic geometry, he did not manage to do so since he did not take into account negative magnitudes and in every case the coordinate system was superimposed upon a given curve a posteriori instead of a priori. That is, equations were determined by curves, but curves were not determined by equations. Coordinates, variables, and equations were subsidiary notions applied to a specific geometric situation.

Persia

The 11th-century Persian mathematician Omar Khayyam saw a strong relationship between geometry and algebra and was moving in the right direction when he helped close the gap between numerical and geometric algebra with his geometric solution of the general cubic equations, but the decisive step came later with Descartes. Omar Khayyam is credited with identifying the foundations of algebraic geometry, and his book Treatise on Demonstrations of Problems of Algebra (1070), which laid down the principles of analytic geometry, is part of the body of Persian mathematics that was eventually transmitted to Europe. Because of his thoroughgoing geometrical approach to algebraic equations, Khayyam can be considered a precursor to Descartes in the invention of analytic geometry.

Western Europe

Part of a series on
René Descartes
Portrait of René Descartes, bust, three-quarter facing left in an oval border, (white background removed).png

Philosophy
Works
People

Analytic geometry was independently invented by René Descartes and Pierre de Fermat, although Descartes is sometimes given sole credit. Cartesian geometry, the alternative term used for analytic geometry, is named after Descartes.

Descartes made significant progress with the methods in an essay titled La Géométrie (Geometry), one of the three accompanying essays (appendices) published in 1637 together with his Discourse on the Method for Rightly Directing One's Reason and Searching for Truth in the Sciences, commonly referred to as Discourse on Method. La Geometrie, written in his native French tongue, and its philosophical principles, provided a foundation for calculus in Europe. Initially the work was not well received, due, in part, to the many gaps in arguments and complicated equations. Only after the translation into Latin and the addition of commentary by van Schooten in 1649 (and further work thereafter) did Descartes's masterpiece receive due recognition.

Pierre de Fermat also pioneered the development of analytic geometry. Although not published in his lifetime, a manuscript form of Ad locos planos et solidos isagoge (Introduction to Plane and Solid Loci) was circulating in Paris in 1637, just prior to the publication of Descartes' Discourse. Clearly written and well received, the Introduction also laid the groundwork for analytical geometry. The key difference between Fermat's and Descartes' treatments is a matter of viewpoint: Fermat always started with an algebraic equation and then described the geometric curve that satisfied it, whereas Descartes started with geometric curves and produced their equations as one of several properties of the curves. As a consequence of this approach, Descartes had to deal with more complicated equations and he had to develop the methods to work with polynomial equations of higher degree. It was Leonhard Euler who first applied the coordinate method in a systematic study of space curves and surfaces.

Coordinates

Main article: Coordinate systems
 
Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2,3) in green, (−3,1) in red, (−1.5,−2.5) in blue, and the origin (0,0) in purple.

In analytic geometry, the plane is given a coordinate system, by which every point has a pair of real number coordinates. Similarly, Euclidean space is given coordinates where every point has three coordinates. The value of the coordinates depends on the choice of the initial point of origin. There are a variety of coordinate systems used, but the most common are the following:

Cartesian coordinates (in a plane or space)

Main article: Cartesian coordinate system

The most common coordinate system to use is the Cartesian coordinate system, where each point has an x-coordinate representing its horizontal position, and a y-coordinate representing its vertical position. These are typically written as an ordered pair (x, y). This system can also be used for three-dimensional geometry, where every point in Euclidean space is represented by an ordered triple of coordinates (x, y, z).

Polar coordinates (in a plane)

Main article: Polar coordinates

In polar coordinates, every point of the plane is represented by its distance r from the origin and its angle θ, with θ normally measured counterclockwise from the positive x-axis. Using this notation, points are typically written as an ordered pair (r, θ). One may transform back and forth between two-dimensional Cartesian and polar coordinates by using these formulae:

x = r cos ⁡ θ , y = r sin ⁡ θ ; r = x 2 + y 2 , θ = arctan ⁡ ( y / x ) . {\displaystyle x=r\,\cos \theta ,\,y=r\,\sin \theta ;\,r={\sqrt {x^{2}+y^{2}}},\,\theta =\arctan(y/x).}
{\displaystyle x=r\,\cos \theta ,\,y=r\,\sin \theta ;\,r={\sqrt {x^{2}+y^{2}}},\,\theta =\arctan(y/x).}
This system may be generalized to three-dimensional space through the use of cylindrical or spherical coordinates.

Cylindrical coordinates (in a space)

Main article: Cylindrical coordinates

In cylindrical coordinates, every point of space is represented by its height z, its radius r from the z-axis and the angle θ its projection on the xy-plane makes with respect to the horizontal axis.

Spherical coordinates (in a space)

Main article: Spherical coordinate system

In spherical coordinates, every point in space is represented by its distance ρ from the origin, the angle θ its projection on the xy-plane makes with respect to the horizontal axis, and the angle φ that it makes with respect to the z-axis. The names of the angles are often reversed in physics.

Equations and curves

Main articles: Solution set and Locus (mathematics)

In analytic geometry, any equation involving the coordinates specifies a subset of the plane, namely the solution set for the equation, or locus. For example, the equation y = x corresponds to the set of all the points on the plane whose x-coordinate and y-coordinate are equal. These points form a line, and y = x is said to be the equation for this line. In general, linear equations involving x and y specify lines, quadratic equations specify conic sections, and more complicated equations describe more complicated figures.

Usually, a single equation corresponds to a curve on the plane. This is not always the case: the trivial equation x = x specifies the entire plane, and the equation x2 + y2 = 0 specifies only the single point (0, 0). In three dimensions, a single equation usually gives a surface, and a curve must be specified as the intersection of two surfaces (see below), or as a system of parametric equations. The equation x2 + y2 = r2 is the equation for any circle centered at the origin (0, 0) with a radius of r.

Lines and planes

Main articles: Line (geometry) and Plane (geometry)

Lines in a Cartesian plane, or more generally, in affine coordinates, can be described algebraically by linear equations. In two dimensions, the equation for non-vertical lines is often given in the slope-intercept form:

y = m x + b {\displaystyle y=mx+b}
{\displaystyle y=mx+b}
where:

  • m is the slope or gradient of the line.
  • b is the y-intercept of the line.
  • x is the independent variable of the function y = f(x).

In a manner analogous to the way lines in a two-dimensional space are described using a point-slope form for their equations, planes in a three dimensional space have a natural description using a point in the plane and a vector orthogonal to it (the normal vector) to indicate its "inclination".

Specifically, let r 0 {\displaystyle \mathbf {r} _{0}} \mathbf {r} _{0} be the position vector of some point P 0 = ( x 0 , y 0 , z 0 ) {\displaystyle P_{0}=(x_{0},y_{0},z_{0})} P_{0}=(x_{0},y_{0},z_{0}), and let n = ( a , b , c ) {\displaystyle \mathbf {n} =(a,b,c)} \mathbf {n} =(a,b,c) be a nonzero vector. The plane determined by this point and vector consists of those points P {\displaystyle P} P, with position vector r {\displaystyle \mathbf {r} } \mathbf {r} , such that the vector drawn from P 0 {\displaystyle P_{0}} P_{0} to P {\displaystyle P} P is perpendicular to n {\displaystyle \mathbf {n} } \mathbf {n} . Recalling that two vectors are perpendicular if and only if their dot product is zero, it follows that the desired plane can be described as the set of all points r {\displaystyle \mathbf {r} } \mathbf {r} such that

n ⋅ ( r − r 0 ) = 0. {\displaystyle \mathbf {n} \cdot (\mathbf {r} -\mathbf {r} _{0})=0.}
{\displaystyle \mathbf {n} \cdot (\mathbf {r} -\mathbf {r} _{0})=0.}
(The dot here means a dot product, not scalar multiplication.) Expanded this becomes
a ( x − x 0 ) + b ( y − y 0 ) + c ( z − z 0 ) = 0 , {\displaystyle a(x-x_{0})+b(y-y_{0})+c(z-z_{0})=0,}
{\displaystyle a(x-x_{0})+b(y-y_{0})+c(z-z_{0})=0,}
which is the point-normal form of the equation of a plane.[citation needed] This is just a linear equation:
a x + b y + c z + d = 0 ,  where  d = − ( a x 0 + b y 0 + c z 0 ) . {\displaystyle ax+by+cz+d=0,{\text{ where }}d=-(ax_{0}+by_{0}+cz_{0}).}
{\displaystyle ax+by+cz+d=0,{\text{ where }}d=-(ax_{0}+by_{0}+cz_{0}).}
Conversely, it is easily shown that if a, b, c and d are constants and a, b, and c are not all zero, then the graph of the equation
a x + b y + c z + d = 0 , {\displaystyle ax+by+cz+d=0,}
{\displaystyle ax+by+cz+d=0,}
is a plane having the vector n = ( a , b , c ) {\displaystyle \mathbf {n} =(a,b,c)} \mathbf {n} =(a,b,c) as a normal. This familiar equation for a plane is called the general form of the equation of the plane.

In three dimensions, lines can not be described by a single linear equation, so they are frequently described by parametric equations:

x = x 0 + a t {\displaystyle x=x_{0}+at}
{\displaystyle x=x_{0}+at}
y = y 0 + b t {\displaystyle y=y_{0}+bt}
{\displaystyle y=y_{0}+bt}
z = z 0 + c t {\displaystyle z=z_{0}+ct}
{\displaystyle z=z_{0}+ct}
where:

  • x, y, and z are all functions of the independent variable t which ranges over the real numbers.
  • (x0, y0, z0) is any point on the line.
  • a, b, and c are related to the slope of the line, such that the vector (a, b, c) is parallel to the line.

Conic sections

Main article: Conic section

In the Cartesian coordinate system, the graph of a quadratic equation in two variables is always a conic section – though it may be degenerate, and all conic sections arise in this way. The equation will be of the form

A x 2 + B x y + C y 2 + D x + E y + F = 0  with  A , B , C  not all zero. {\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with }}A,B,C{\text{ not all zero.}}}
{\displaystyle Ax^{2}+Bxy+Cy^{2}+Dx+Ey+F=0{\text{ with }}A,B,C{\text{ not all zero.}}}
As scaling all six constants yields the same locus of zeros, one can consider conics as points in the five-dimensional projective space P 5 . {\displaystyle \mathbf {P} ^{5}.} \mathbf {P} ^{5}.

The conic sections described by this equation can be classified using the discriminant

B 2 − 4 A C . {\displaystyle B^{2}-4AC.}
{\displaystyle B^{2}-4AC.}
If the conic is non-degenerate, then:

  • if B 2 − 4 A C < 0 {\displaystyle B^{2}-4AC<0} B^{2}-4AC<0, the equation represents an ellipse;
    • if A = C {\displaystyle A=C} A=C and B = 0 {\displaystyle B=0} B=0, the equation represents a circle, which is a special case of an ellipse;
  • if B 2 − 4 A C = 0 {\displaystyle B^{2}-4AC=0} B^{2}-4AC=0, the equation represents a parabola;
  • if B 2 − 4 A C > 0 {\displaystyle B^{2}-4AC>0} B^{2}-4AC>0, the equation represents a hyperbola;
    • if we also have A + C = 0 {\displaystyle A+C=0} A+C=0, the equation represents a rectangular hyperbola.

Quadric surfaces

Main article: Quadric surface

A quadric, or quadric surface, is a 2-dimensional surface in 3-dimensional space defined as the locus of zeros of a quadratic polynomial. In coordinates x1, x2,x3, the general quadric is defined by the algebraic equation

∑ i , j = 1 3 x i Q i j x j + ∑ i = 1 3 P i x i + R = 0. {\displaystyle \sum _{i,j=1}^{3}x_{i}Q_{ij}x_{j}+\sum _{i=1}^{3}P_{i}x_{i}+R=0.}
{\displaystyle \sum _{i,j=1}^{3}x_{i}Q_{ij}x_{j}+\sum _{i=1}^{3}P_{i}x_{i}+R=0.}

Quadric surfaces include ellipsoids (including the sphere), paraboloids, hyperboloids, cylinders, cones, and planes.

Distance and angle

Main articles: Distance and Angle
 
The distance formula on the plane follows from the Pythagorean theorem.

In analytic geometry, geometric notions such as distance and angle measure are defined using formulas. These definitions are designed to be consistent with the underlying Euclidean geometry. For example, using Cartesian coordinates on the plane, the distance between two points (x1, y1) and (x2, y2) is defined by the formula

d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 , {\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}},}
{\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}}},}
which can be viewed as a version of the Pythagorean theorem. Similarly, the angle that a line makes with the horizontal can be defined by the formula
θ = arctan ⁡ ( m ) , {\displaystyle \theta =\arctan(m),}
{\displaystyle \theta =\arctan(m),}
where m is the slope of the line.

In three dimensions, distance is given by the generalization of the Pythagorean theorem:

d = ( x 2 − x 1 ) 2 + ( y 2 − y 1 ) 2 + ( z 2 − z 1 ) 2 , {\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}},}
{\displaystyle d={\sqrt {(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}+(z_{2}-z_{1})^{2}}},}
while the angle between two vectors is given by the dot product. The dot product of two Euclidean vectors A and B is defined by
A ⋅ B = d e f ‖ A ‖ ‖ B ‖ cos ⁡ θ , {\displaystyle \mathbf {A} \cdot \mathbf {B} {\stackrel {\mathrm {def} }{=}}\left\|\mathbf {A} \right\|\left\|\mathbf {B} \right\|\cos \theta ,}
{\displaystyle \mathbf {A} \cdot \mathbf {B} {\stackrel {\mathrm {def} }{=}}\left\|\mathbf {A} \right\|\left\|\mathbf {B} \right\|\cos \theta ,}
where θ is the angle between A and B.

Transformations

a) y = f(x) = |x|       b) y = f(x+3)       c) y = f(x)-3       d) y = 1/2 f(x)

Transformations are applied to a parent function to turn it into a new function with similar characteristics.

The graph of R ( x , y ) {\displaystyle R(x,y)} R(x,y) is changed by standard transformations as follows:

  • Changing x {\displaystyle x} x to x − h {\displaystyle x-h} x-h moves the graph to the right h {\displaystyle h} h units.
  • Changing y {\displaystyle y} y to y − k {\displaystyle y-k} y-k moves the graph up k {\displaystyle k} k units.
  • Changing x {\displaystyle x} x to x / b {\displaystyle x/b} x/b stretches the graph horizontally by a factor of b {\displaystyle b} b. (think of the x {\displaystyle x} x as being dilated)
  • Changing y {\displaystyle y} y to y / a {\displaystyle y/a} y/a stretches the graph vertically.
  • Changing x {\displaystyle x} x to x cos ⁡ A + y sin ⁡ A {\displaystyle x\cos A+y\sin A} x\cos A+y\sin A and changing y {\displaystyle y} y to − x sin ⁡ A + y cos ⁡ A {\displaystyle -x\sin A+y\cos A} -x\sin A+y\cos A rotates the graph by an angle A {\displaystyle A} A.

There are other standard transformation not typically studied in elementary analytic geometry because the transformations change the shape of objects in ways not usually considered. Skewing is an example of a transformation not usually considered. For more information, consult the Wikipedia article on affine transformations.

For example, the parent function y = 1 / x {\displaystyle y=1/x} y=1/x has a horizontal and a vertical asymptote, and occupies the first and third quadrant, and all of its transformed forms have one horizontal and vertical asymptote, and occupies either the 1st and 3rd or 2nd and 4th quadrant. In general, if y = f ( x ) {\displaystyle y=f(x)} y=f(x), then it can be transformed into y = a f ( b ( x − k ) ) + h {\displaystyle y=af(b(x-k))+h} y=af(b(x-k))+h. In the new transformed function, a {\displaystyle a} a is the factor that vertically stretches the function if it is greater than 1 or vertically compresses the function if it is less than 1, and for negative a {\displaystyle a} a values, the function is reflected in the x {\displaystyle x} x-axis. The b {\displaystyle b} b value compresses the graph of the function horizontally if greater than 1 and stretches the function horizontally if less than 1, and like a {\displaystyle a} a, reflects the function in the y {\displaystyle y} y-axis when it is negative. The k {\displaystyle k} k and h {\displaystyle h} h values introduce translations, h {\displaystyle h} h, vertical, and k {\displaystyle k} k horizontal. Positive h {\displaystyle h} h and k {\displaystyle k} k values mean the function is translated to the positive end of its axis and negative meaning translation towards the negative end.

Transformations can be applied to any geometric equation whether or not the equation represents a function. Transformations can be considered as individual transactions or in combinations.

Suppose that R ( x , y ) {\displaystyle R(x,y)} R(x,y) is a relation in the x y {\displaystyle xy} xy plane. For example,

x 2 + y 2 − 1 = 0 {\displaystyle x^{2}+y^{2}-1=0}
{\displaystyle x^{2}+y^{2}-1=0}
is the relation that describes the unit circle.

Finding intersections of geometric objects

Main article: Intersection (geometry)

For two geometric objects P and Q represented by the relations P ( x , y ) {\displaystyle P(x,y)} P(x,y) and Q ( x , y ) {\displaystyle Q(x,y)} Q(x,y) the intersection is the collection of all points ( x , y ) {\displaystyle (x,y)} (x,y) which are in both relations.

For example, P {\displaystyle P} P might be the circle with radius 1 and center ( 0 , 0 ) {\displaystyle (0,0)} (0,0): P = { ( x , y ) | x 2 + y 2 = 1 } {\displaystyle P=\{(x,y)|x^{2}+y^{2}=1\}} P=\{(x,y)|x^{2}+y^{2}=1\} and Q {\displaystyle Q} Q might be the circle with radius 1 and center ( 1 , 0 ) : Q = { ( x , y ) | ( x − 1 ) 2 + y 2 = 1 } {\displaystyle (1,0):Q=\{(x,y)|(x-1)^{2}+y^{2}=1\}} (1,0):Q=\{(x,y)|(x-1)^{2}+y^{2}=1\}. The intersection of these two circles is the collection of points which make both equations true. Does the point ( 0 , 0 ) {\displaystyle (0,0)} (0,0) make both equations true? Using ( 0 , 0 ) {\displaystyle (0,0)} (0,0) for ( x , y ) {\displaystyle (x,y)} (x,y), the equation for Q {\displaystyle Q} Q becomes ( 0 − 1 ) 2 + 0 2 = 1 {\displaystyle (0-1)^{2}+0^{2}=1} (0-1)^{2}+0^{2}=1 or ( − 1 ) 2 = 1 {\displaystyle (-1)^{2}=1} (-1)^{2}=1 which is true, so ( 0 , 0 ) {\displaystyle (0,0)} (0,0) is in the relation Q {\displaystyle Q} Q. On the other hand, still using ( 0 , 0 ) {\displaystyle (0,0)} (0,0) for ( x , y ) {\displaystyle (x,y)} (x,y) the equation for P {\displaystyle P} P becomes 0 2 + 0 2 = 1 {\displaystyle 0^{2}+0^{2}=1} 0^{2}+0^{2}=1 or 0 = 1 {\displaystyle 0=1} 0=1 which is false. ( 0 , 0 ) {\displaystyle (0,0)} (0,0) is not in P {\displaystyle P} P so it is not in the intersection.

The intersection of P {\displaystyle P} P and Q {\displaystyle Q} Q can be found by solving the simultaneous equations:

x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1}
{\displaystyle x^{2}+y^{2}=1}
( x − 1 ) 2 + y 2 = 1. {\displaystyle (x-1)^{2}+y^{2}=1.}
{\displaystyle (x-1)^{2}+y^{2}=1.}

Traditional methods for finding intersections include substitution and elimination.

Substitution: Solve the first equation for y {\displaystyle y} y in terms of x {\displaystyle x} x and then substitute the expression for y {\displaystyle y} y into the second equation:

x 2 + y 2 = 1 {\displaystyle x^{2}+y^{2}=1}
{\displaystyle x^{2}+y^{2}=1}
y 2 = 1 − x 2 . {\displaystyle y^{2}=1-x^{2}.}
{\displaystyle y^{2}=1-x^{2}.}

We then substitute this value for y 2 {\displaystyle y^{2}} y^{2} into the other equation and proceed to solve for x {\displaystyle x} x:

( x − 1 ) 2 + ( 1 − x 2 ) = 1 {\displaystyle (x-1)^{2}+(1-x^{2})=1}
{\displaystyle (x-1)^{2}+(1-x^{2})=1}
x 2 − 2 x + 1 + 1 − x 2 = 1 {\displaystyle x^{2}-2x+1+1-x^{2}=1}
{\displaystyle x^{2}-2x+1+1-x^{2}=1}
− 2 x = − 1 {\displaystyle -2x=-1}
{\displaystyle -2x=-1}
x = 1 / 2. {\displaystyle x=1/2.}
{\displaystyle x=1/2.}

Next, we place this value of x {\displaystyle x} x in either of the original equations and solve for y {\displaystyle y} y:

( 1 / 2 ) 2 + y 2 = 1 {\displaystyle (1/2)^{2}+y^{2}=1}
{\displaystyle (1/2)^{2}+y^{2}=1}
y 2 = 3 / 4 {\displaystyle y^{2}=3/4}
{\displaystyle y^{2}=3/4}
y = ± 3 2 . {\displaystyle y={\frac {\pm {\sqrt {3}}}{2}}.}
{\displaystyle y={\frac {\pm {\sqrt {3}}}{2}}.}

So our intersection has two points:

( 1 / 2 , + 3 2 ) and ( 1 / 2 , − 3 2 ) . {\displaystyle \left(1/2,{\frac {+{\sqrt {3}}}{2}}\right)\;\;{\text{and}}\;\;\left(1/2,{\frac {-{\sqrt {3}}}{2}}\right).}
{\displaystyle \left(1/2,{\frac {+{\sqrt {3}}}{2}}\right)\;\;{\text{and}}\;\;\left(1/2,{\frac {-{\sqrt {3}}}{2}}\right).}

Elimination: Add (or subtract) a multiple of one equation to the other equation so that one of the variables is eliminated. For our current example, if we subtract the first equation from the second we get ( x − 1 ) 2 − x 2 = 0 {\displaystyle (x-1)^{2}-x^{2}=0} (x-1)^{2}-x^{2}=0. The y 2 {\displaystyle y^{2}} y^{2} in the first equation is subtracted from the y 2 {\displaystyle y^{2}} y^{2} in the second equation leaving no y {\displaystyle y} y term. The variable y {\displaystyle y} y has been eliminated. We then solve the remaining equation for x {\displaystyle x} x, in the same way as in the substitution method:

x 2 − 2 x + 1 + 1 − x 2 = 1 {\displaystyle x^{2}-2x+1+1-x^{2}=1}
{\displaystyle x^{2}-2x+1+1-x^{2}=1}
− 2 x = − 1 {\displaystyle -2x=-1}
{\displaystyle -2x=-1}
x = 1 / 2. {\displaystyle x=1/2.}
{\displaystyle x=1/2.}

We then place this value of x {\displaystyle x} x in either of the original equations and solve for y {\displaystyle y} y:

( 1 / 2 ) 2 + y 2 = 1 {\displaystyle (1/2)^{2}+y^{2}=1}
{\displaystyle (1/2)^{2}+y^{2}=1}
y 2 = 3 / 4 {\displaystyle y^{2}=3/4}
{\displaystyle y^{2}=3/4}
y = ± 3 2 . {\displaystyle y={\frac {\pm {\sqrt {3}}}{2}}.}
{\displaystyle y={\frac {\pm {\sqrt {3}}}{2}}.}

So our intersection has two points:

( 1 / 2 , + 3 2 ) and ( 1 / 2 , − 3 2 ) . {\displaystyle \left(1/2,{\frac {+{\sqrt {3}}}{2}}\right)\;\;{\text{and}}\;\;\left(1/2,{\frac {-{\sqrt {3}}}{2}}\right).}
{\displaystyle \left(1/2,{\frac {+{\sqrt {3}}}{2}}\right)\;\;{\text{and}}\;\;\left(1/2,{\frac {-{\sqrt {3}}}{2}}\right).}

For conic sections, as many as 4 points might be in the intersection.

Finding intercepts

Main articles: x-intercept and y-intercept

One type of intersection which is widely studied is the intersection of a geometric object with the x {\displaystyle x} x and y {\displaystyle y} y coordinate axes.

The intersection of a geometric object and the y {\displaystyle y} y-axis is called the y {\displaystyle y} y-intercept of the object. The intersection of a geometric object and the x {\displaystyle x} x-axis is called the x {\displaystyle x} x-intercept of the object.

For the line y = m x + b {\displaystyle y=mx+b} y=mx+b, the parameter b {\displaystyle b} b specifies the point where the line crosses the y {\displaystyle y} y axis. Depending on the context, either b {\displaystyle b} b or the point ( 0 , b ) {\displaystyle (0,b)} (0,b) is called the y {\displaystyle y} y-intercept.

Tangents and normals

Tangent lines and planes

Main article: Tangent

In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Informally, it is a line through a pair of infinitely close points on the curve. More precisely, a straight line is said to be a tangent of a curve y = f(x) at a point x = c on the curve if the line passes through the point (c, f(c)) on the curve and has slope f'(c) where f' is the derivative of f. A similar definition applies to space curves and curves in n-dimensional Euclidean space.

As it passes through the point where the tangent line and the curve meet, called the point of tangency, the tangent line is "going in the same direction" as the curve, and is thus the best straight-line approximation to the curve at that point.

Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point. The concept of a tangent is one of the most fundamental notions in differential geometry and has been extensively generalized; see Tangent space.

Normal line and vector

Main article: Normal (geometry)

In geometry, a normal is an object such as a line or vector that is perpendicular to a given object. For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point.

In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P. The word "normal" is also used as an adjective: a line normal to a plane, the normal component of a force, the normal vector, etc. The concept of normality generalizes to orthogonality.

at June 23, 2022
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Post Older Post Home

Instrumentation

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Instrumentation Instrumentation is a co...

  • Islamic State and the Levant
    From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام   ( ...
  • Heart Sutra
    From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...
  • Environmental impact of fracking
    From Wikipedia, the free encyclopedia Fracking Shale gas drilling rig near Alvarado, Texas The environme...

Search This Blog

  • Home

About Me

My photo
David J Strumfels
View my complete profile

Blog Archive

  • ►  2025 (868)
    • ►  May (115)
      • ►  May 22 (2)
      • ►  May 21 (2)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (6)
      • ►  May 17 (7)
      • ►  May 16 (1)
      • ►  May 15 (5)
      • ►  May 14 (6)
      • ►  May 13 (12)
      • ►  May 12 (4)
      • ►  May 11 (2)
      • ►  May 10 (5)
      • ►  May 09 (3)
      • ►  May 08 (7)
      • ►  May 07 (3)
      • ►  May 06 (8)
      • ►  May 05 (9)
      • ►  May 04 (5)
      • ►  May 03 (6)
      • ►  May 02 (5)
      • ►  May 01 (10)
    • ►  April (193)
      • ►  Apr 30 (8)
      • ►  Apr 29 (6)
      • ►  Apr 28 (5)
      • ►  Apr 27 (10)
      • ►  Apr 26 (9)
      • ►  Apr 25 (4)
      • ►  Apr 24 (11)
      • ►  Apr 23 (3)
      • ►  Apr 22 (8)
      • ►  Apr 21 (10)
      • ►  Apr 20 (14)
      • ►  Apr 19 (6)
      • ►  Apr 18 (13)
      • ►  Apr 17 (10)
      • ►  Apr 16 (8)
      • ►  Apr 15 (4)
      • ►  Apr 14 (6)
      • ►  Apr 13 (7)
      • ►  Apr 12 (7)
      • ►  Apr 11 (9)
      • ►  Apr 10 (1)
      • ►  Apr 09 (5)
      • ►  Apr 08 (4)
      • ►  Apr 07 (5)
      • ►  Apr 06 (4)
      • ►  Apr 05 (4)
      • ►  Apr 04 (2)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (6)
    • ►  March (182)
      • ►  Mar 31 (5)
      • ►  Mar 30 (10)
      • ►  Mar 29 (12)
      • ►  Mar 28 (5)
      • ►  Mar 27 (7)
      • ►  Mar 26 (5)
      • ►  Mar 25 (7)
      • ►  Mar 24 (8)
      • ►  Mar 23 (6)
      • ►  Mar 22 (5)
      • ►  Mar 21 (5)
      • ►  Mar 20 (5)
      • ►  Mar 19 (6)
      • ►  Mar 18 (4)
      • ►  Mar 17 (7)
      • ►  Mar 16 (5)
      • ►  Mar 15 (7)
      • ►  Mar 14 (5)
      • ►  Mar 13 (2)
      • ►  Mar 12 (1)
      • ►  Mar 11 (1)
      • ►  Mar 10 (6)
      • ►  Mar 09 (8)
      • ►  Mar 08 (7)
      • ►  Mar 07 (6)
      • ►  Mar 06 (11)
      • ►  Mar 05 (6)
      • ►  Mar 04 (8)
      • ►  Mar 03 (4)
      • ►  Mar 02 (5)
      • ►  Mar 01 (3)
    • ►  February (115)
      • ►  Feb 28 (5)
      • ►  Feb 27 (5)
      • ►  Feb 26 (1)
      • ►  Feb 25 (2)
      • ►  Feb 24 (5)
      • ►  Feb 22 (2)
      • ►  Feb 21 (2)
      • ►  Feb 20 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (4)
      • ►  Feb 17 (6)
      • ►  Feb 16 (2)
      • ►  Feb 15 (4)
      • ►  Feb 14 (4)
      • ►  Feb 13 (1)
      • ►  Feb 12 (3)
      • ►  Feb 11 (2)
      • ►  Feb 10 (7)
      • ►  Feb 09 (5)
      • ►  Feb 08 (4)
      • ►  Feb 07 (4)
      • ►  Feb 06 (5)
      • ►  Feb 05 (7)
      • ►  Feb 04 (6)
      • ►  Feb 03 (7)
      • ►  Feb 02 (7)
      • ►  Feb 01 (8)
    • ►  January (263)
      • ►  Jan 31 (7)
      • ►  Jan 30 (8)
      • ►  Jan 29 (8)
      • ►  Jan 28 (6)
      • ►  Jan 27 (7)
      • ►  Jan 26 (15)
      • ►  Jan 25 (11)
      • ►  Jan 24 (18)
      • ►  Jan 23 (10)
      • ►  Jan 22 (13)
      • ►  Jan 21 (5)
      • ►  Jan 20 (9)
      • ►  Jan 19 (2)
      • ►  Jan 18 (6)
      • ►  Jan 17 (4)
      • ►  Jan 16 (5)
      • ►  Jan 15 (7)
      • ►  Jan 14 (7)
      • ►  Jan 13 (11)
      • ►  Jan 12 (4)
      • ►  Jan 11 (16)
      • ►  Jan 10 (11)
      • ►  Jan 09 (6)
      • ►  Jan 08 (5)
      • ►  Jan 07 (9)
      • ►  Jan 06 (6)
      • ►  Jan 05 (10)
      • ►  Jan 04 (14)
      • ►  Jan 03 (4)
      • ►  Jan 02 (14)
      • ►  Jan 01 (5)
  • ►  2024 (3069)
    • ►  December (227)
      • ►  Dec 31 (6)
      • ►  Dec 30 (4)
      • ►  Dec 29 (5)
      • ►  Dec 28 (4)
      • ►  Dec 27 (4)
      • ►  Dec 26 (5)
      • ►  Dec 25 (3)
      • ►  Dec 24 (5)
      • ►  Dec 23 (6)
      • ►  Dec 22 (8)
      • ►  Dec 21 (9)
      • ►  Dec 20 (15)
      • ►  Dec 19 (4)
      • ►  Dec 18 (13)
      • ►  Dec 17 (9)
      • ►  Dec 16 (14)
      • ►  Dec 15 (14)
      • ►  Dec 14 (12)
      • ►  Dec 13 (6)
      • ►  Dec 12 (10)
      • ►  Dec 11 (11)
      • ►  Dec 10 (7)
      • ►  Dec 09 (7)
      • ►  Dec 08 (6)
      • ►  Dec 07 (13)
      • ►  Dec 06 (4)
      • ►  Dec 05 (8)
      • ►  Dec 04 (3)
      • ►  Dec 03 (2)
      • ►  Dec 02 (6)
      • ►  Dec 01 (4)
    • ►  November (223)
      • ►  Nov 30 (6)
      • ►  Nov 29 (6)
      • ►  Nov 28 (6)
      • ►  Nov 27 (4)
      • ►  Nov 26 (5)
      • ►  Nov 25 (12)
      • ►  Nov 24 (9)
      • ►  Nov 23 (9)
      • ►  Nov 22 (7)
      • ►  Nov 21 (8)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (8)
      • ►  Nov 17 (7)
      • ►  Nov 16 (7)
      • ►  Nov 15 (8)
      • ►  Nov 14 (8)
      • ►  Nov 13 (5)
      • ►  Nov 12 (3)
      • ►  Nov 11 (7)
      • ►  Nov 10 (12)
      • ►  Nov 09 (6)
      • ►  Nov 08 (10)
      • ►  Nov 07 (8)
      • ►  Nov 06 (4)
      • ►  Nov 05 (2)
      • ►  Nov 04 (7)
      • ►  Nov 03 (19)
      • ►  Nov 02 (7)
      • ►  Nov 01 (12)
    • ►  October (231)
      • ►  Oct 31 (5)
      • ►  Oct 30 (9)
      • ►  Oct 29 (13)
      • ►  Oct 28 (11)
      • ►  Oct 27 (13)
      • ►  Oct 26 (11)
      • ►  Oct 25 (11)
      • ►  Oct 24 (8)
      • ►  Oct 23 (8)
      • ►  Oct 22 (1)
      • ►  Oct 21 (8)
      • ►  Oct 20 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (8)
      • ►  Oct 15 (14)
      • ►  Oct 14 (15)
      • ►  Oct 13 (11)
      • ►  Oct 12 (7)
      • ►  Oct 11 (8)
      • ►  Oct 10 (4)
      • ►  Oct 09 (11)
      • ►  Oct 08 (3)
      • ►  Oct 07 (6)
      • ►  Oct 06 (3)
      • ►  Oct 05 (2)
      • ►  Oct 04 (5)
      • ►  Oct 03 (9)
      • ►  Oct 02 (8)
      • ►  Oct 01 (12)
    • ►  September (257)
      • ►  Sep 30 (3)
      • ►  Sep 29 (12)
      • ►  Sep 28 (16)
      • ►  Sep 27 (6)
      • ►  Sep 26 (2)
      • ►  Sep 25 (1)
      • ►  Sep 24 (3)
      • ►  Sep 23 (2)
      • ►  Sep 22 (6)
      • ►  Sep 21 (18)
      • ►  Sep 20 (5)
      • ►  Sep 19 (5)
      • ►  Sep 18 (2)
      • ►  Sep 17 (1)
      • ►  Sep 16 (4)
      • ►  Sep 15 (12)
      • ►  Sep 14 (4)
      • ►  Sep 13 (12)
      • ►  Sep 12 (6)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (9)
      • ►  Sep 08 (12)
      • ►  Sep 07 (17)
      • ►  Sep 06 (13)
      • ►  Sep 05 (10)
      • ►  Sep 04 (10)
      • ►  Sep 03 (18)
      • ►  Sep 02 (20)
      • ►  Sep 01 (19)
    • ►  August (338)
      • ►  Aug 31 (16)
      • ►  Aug 30 (17)
      • ►  Aug 29 (11)
      • ►  Aug 28 (15)
      • ►  Aug 27 (16)
      • ►  Aug 26 (7)
      • ►  Aug 25 (7)
      • ►  Aug 24 (11)
      • ►  Aug 23 (9)
      • ►  Aug 22 (11)
      • ►  Aug 21 (8)
      • ►  Aug 20 (14)
      • ►  Aug 19 (9)
      • ►  Aug 18 (7)
      • ►  Aug 17 (3)
      • ►  Aug 16 (13)
      • ►  Aug 15 (7)
      • ►  Aug 14 (12)
      • ►  Aug 13 (12)
      • ►  Aug 12 (15)
      • ►  Aug 11 (13)
      • ►  Aug 10 (12)
      • ►  Aug 09 (17)
      • ►  Aug 08 (13)
      • ►  Aug 07 (8)
      • ►  Aug 06 (8)
      • ►  Aug 05 (17)
      • ►  Aug 04 (4)
      • ►  Aug 03 (7)
      • ►  Aug 02 (13)
      • ►  Aug 01 (6)
    • ►  July (305)
      • ►  Jul 31 (7)
      • ►  Jul 30 (14)
      • ►  Jul 29 (11)
      • ►  Jul 28 (17)
      • ►  Jul 27 (12)
      • ►  Jul 26 (13)
      • ►  Jul 25 (12)
      • ►  Jul 24 (4)
      • ►  Jul 23 (15)
      • ►  Jul 22 (8)
      • ►  Jul 21 (8)
      • ►  Jul 20 (11)
      • ►  Jul 19 (13)
      • ►  Jul 18 (5)
      • ►  Jul 17 (4)
      • ►  Jul 16 (7)
      • ►  Jul 15 (12)
      • ►  Jul 14 (12)
      • ►  Jul 13 (4)
      • ►  Jul 12 (11)
      • ►  Jul 11 (14)
      • ►  Jul 10 (10)
      • ►  Jul 09 (14)
      • ►  Jul 08 (10)
      • ►  Jul 07 (3)
      • ►  Jul 06 (9)
      • ►  Jul 05 (13)
      • ►  Jul 04 (9)
      • ►  Jul 03 (8)
      • ►  Jul 02 (8)
      • ►  Jul 01 (7)
    • ►  June (217)
      • ►  Jun 30 (5)
      • ►  Jun 29 (7)
      • ►  Jun 28 (6)
      • ►  Jun 27 (4)
      • ►  Jun 26 (4)
      • ►  Jun 25 (8)
      • ►  Jun 24 (9)
      • ►  Jun 23 (5)
      • ►  Jun 22 (5)
      • ►  Jun 21 (4)
      • ►  Jun 20 (4)
      • ►  Jun 19 (7)
      • ►  Jun 18 (10)
      • ►  Jun 17 (4)
      • ►  Jun 16 (10)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (9)
      • ►  Jun 08 (14)
      • ►  Jun 07 (2)
      • ►  Jun 06 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (11)
      • ►  Jun 03 (3)
      • ►  Jun 02 (15)
      • ►  Jun 01 (10)
    • ►  May (166)
      • ►  May 31 (3)
      • ►  May 30 (2)
      • ►  May 29 (6)
      • ►  May 28 (5)
      • ►  May 27 (9)
      • ►  May 26 (6)
      • ►  May 25 (3)
      • ►  May 24 (6)
      • ►  May 23 (6)
      • ►  May 22 (6)
      • ►  May 21 (8)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (6)
      • ►  May 14 (4)
      • ►  May 13 (4)
      • ►  May 12 (9)
      • ►  May 11 (12)
      • ►  May 10 (4)
      • ►  May 09 (7)
      • ►  May 08 (5)
      • ►  May 07 (8)
      • ►  May 06 (10)
      • ►  May 05 (2)
      • ►  May 04 (4)
      • ►  May 03 (2)
      • ►  May 02 (6)
      • ►  May 01 (3)
    • ►  April (275)
      • ►  Apr 29 (2)
      • ►  Apr 28 (8)
      • ►  Apr 27 (10)
      • ►  Apr 26 (11)
      • ►  Apr 25 (9)
      • ►  Apr 24 (7)
      • ►  Apr 23 (5)
      • ►  Apr 22 (8)
      • ►  Apr 21 (9)
      • ►  Apr 20 (8)
      • ►  Apr 19 (4)
      • ►  Apr 18 (9)
      • ►  Apr 17 (11)
      • ►  Apr 16 (15)
      • ►  Apr 15 (12)
      • ►  Apr 14 (15)
      • ►  Apr 13 (14)
      • ►  Apr 12 (15)
      • ►  Apr 11 (12)
      • ►  Apr 10 (14)
      • ►  Apr 09 (6)
      • ►  Apr 08 (16)
      • ►  Apr 07 (4)
      • ►  Apr 06 (9)
      • ►  Apr 05 (13)
      • ►  Apr 04 (8)
      • ►  Apr 03 (12)
      • ►  Apr 02 (5)
      • ►  Apr 01 (4)
    • ►  March (200)
      • ►  Mar 31 (6)
      • ►  Mar 30 (12)
      • ►  Mar 29 (9)
      • ►  Mar 28 (11)
      • ►  Mar 27 (13)
      • ►  Mar 26 (8)
      • ►  Mar 25 (9)
      • ►  Mar 24 (3)
      • ►  Mar 23 (7)
      • ►  Mar 22 (3)
      • ►  Mar 21 (16)
      • ►  Mar 20 (2)
      • ►  Mar 19 (7)
      • ►  Mar 18 (6)
      • ►  Mar 17 (12)
      • ►  Mar 16 (9)
      • ►  Mar 15 (10)
      • ►  Mar 14 (2)
      • ►  Mar 13 (8)
      • ►  Mar 12 (1)
      • ►  Mar 10 (4)
      • ►  Mar 09 (2)
      • ►  Mar 08 (1)
      • ►  Mar 07 (4)
      • ►  Mar 06 (6)
      • ►  Mar 05 (11)
      • ►  Mar 04 (9)
      • ►  Mar 02 (8)
      • ►  Mar 01 (1)
    • ►  February (220)
      • ►  Feb 29 (6)
      • ►  Feb 28 (1)
      • ►  Feb 27 (4)
      • ►  Feb 26 (6)
      • ►  Feb 25 (7)
      • ►  Feb 24 (4)
      • ►  Feb 23 (5)
      • ►  Feb 22 (7)
      • ►  Feb 20 (15)
      • ►  Feb 19 (4)
      • ►  Feb 18 (13)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (10)
      • ►  Feb 14 (9)
      • ►  Feb 13 (17)
      • ►  Feb 12 (9)
      • ►  Feb 11 (10)
      • ►  Feb 10 (18)
      • ►  Feb 09 (5)
      • ►  Feb 08 (9)
      • ►  Feb 07 (11)
      • ►  Feb 06 (6)
      • ►  Feb 05 (10)
      • ►  Feb 04 (4)
      • ►  Feb 03 (5)
      • ►  Feb 02 (8)
      • ►  Feb 01 (8)
    • ►  January (410)
      • ►  Jan 31 (13)
      • ►  Jan 30 (11)
      • ►  Jan 29 (14)
      • ►  Jan 28 (11)
      • ►  Jan 27 (20)
      • ►  Jan 26 (22)
      • ►  Jan 25 (16)
      • ►  Jan 24 (14)
      • ►  Jan 23 (18)
      • ►  Jan 22 (15)
      • ►  Jan 21 (11)
      • ►  Jan 20 (16)
      • ►  Jan 19 (5)
      • ►  Jan 18 (11)
      • ►  Jan 17 (11)
      • ►  Jan 16 (8)
      • ►  Jan 15 (27)
      • ►  Jan 14 (12)
      • ►  Jan 13 (16)
      • ►  Jan 12 (4)
      • ►  Jan 11 (8)
      • ►  Jan 10 (7)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (10)
      • ►  Jan 06 (13)
      • ►  Jan 05 (18)
      • ►  Jan 04 (9)
      • ►  Jan 03 (20)
      • ►  Jan 02 (14)
      • ►  Jan 01 (17)
  • ►  2023 (4333)
    • ►  December (314)
      • ►  Dec 31 (10)
      • ►  Dec 30 (18)
      • ►  Dec 29 (17)
      • ►  Dec 28 (8)
      • ►  Dec 27 (1)
      • ►  Dec 26 (14)
      • ►  Dec 25 (19)
      • ►  Dec 24 (20)
      • ►  Dec 23 (12)
      • ►  Dec 22 (12)
      • ►  Dec 21 (4)
      • ►  Dec 20 (18)
      • ►  Dec 19 (9)
      • ►  Dec 18 (5)
      • ►  Dec 17 (6)
      • ►  Dec 16 (17)
      • ►  Dec 15 (5)
      • ►  Dec 14 (16)
      • ►  Dec 13 (10)
      • ►  Dec 12 (7)
      • ►  Dec 11 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (3)
      • ►  Dec 08 (5)
      • ►  Dec 07 (5)
      • ►  Dec 06 (16)
      • ►  Dec 05 (13)
      • ►  Dec 04 (11)
      • ►  Dec 03 (8)
      • ►  Dec 02 (7)
      • ►  Dec 01 (9)
    • ►  November (353)
      • ►  Nov 30 (10)
      • ►  Nov 29 (8)
      • ►  Nov 28 (7)
      • ►  Nov 27 (13)
      • ►  Nov 26 (7)
      • ►  Nov 25 (4)
      • ►  Nov 23 (11)
      • ►  Nov 22 (6)
      • ►  Nov 21 (7)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (13)
      • ►  Nov 17 (10)
      • ►  Nov 16 (2)
      • ►  Nov 15 (16)
      • ►  Nov 14 (21)
      • ►  Nov 13 (14)
      • ►  Nov 12 (12)
      • ►  Nov 11 (19)
      • ►  Nov 10 (11)
      • ►  Nov 09 (24)
      • ►  Nov 08 (8)
      • ►  Nov 07 (11)
      • ►  Nov 06 (13)
      • ►  Nov 05 (18)
      • ►  Nov 04 (9)
      • ►  Nov 03 (21)
      • ►  Nov 02 (25)
      • ►  Nov 01 (22)
    • ►  October (549)
      • ►  Oct 31 (23)
      • ►  Oct 30 (19)
      • ►  Oct 29 (22)
      • ►  Oct 28 (30)
      • ►  Oct 27 (24)
      • ►  Oct 26 (28)
      • ►  Oct 25 (24)
      • ►  Oct 24 (20)
      • ►  Oct 23 (4)
      • ►  Oct 22 (24)
      • ►  Oct 21 (20)
      • ►  Oct 20 (17)
      • ►  Oct 19 (14)
      • ►  Oct 18 (14)
      • ►  Oct 17 (19)
      • ►  Oct 16 (12)
      • ►  Oct 15 (4)
      • ►  Oct 14 (23)
      • ►  Oct 13 (21)
      • ►  Oct 12 (22)
      • ►  Oct 11 (22)
      • ►  Oct 10 (11)
      • ►  Oct 09 (12)
      • ►  Oct 08 (19)
      • ►  Oct 07 (16)
      • ►  Oct 06 (19)
      • ►  Oct 05 (20)
      • ►  Oct 04 (11)
      • ►  Oct 03 (15)
      • ►  Oct 02 (11)
      • ►  Oct 01 (9)
    • ►  September (478)
      • ►  Sep 30 (25)
      • ►  Sep 29 (19)
      • ►  Sep 28 (28)
      • ►  Sep 27 (17)
      • ►  Sep 26 (21)
      • ►  Sep 25 (21)
      • ►  Sep 24 (6)
      • ►  Sep 23 (13)
      • ►  Sep 22 (6)
      • ►  Sep 21 (11)
      • ►  Sep 20 (9)
      • ►  Sep 19 (4)
      • ►  Sep 18 (6)
      • ►  Sep 17 (4)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (22)
      • ►  Sep 13 (9)
      • ►  Sep 12 (11)
      • ►  Sep 11 (13)
      • ►  Sep 10 (25)
      • ►  Sep 09 (26)
      • ►  Sep 08 (23)
      • ►  Sep 07 (20)
      • ►  Sep 06 (27)
      • ►  Sep 05 (20)
      • ►  Sep 04 (18)
      • ►  Sep 03 (11)
      • ►  Sep 02 (24)
      • ►  Sep 01 (15)
    • ►  August (464)
      • ►  Aug 31 (20)
      • ►  Aug 30 (24)
      • ►  Aug 29 (10)
      • ►  Aug 28 (17)
      • ►  Aug 27 (15)
      • ►  Aug 26 (20)
      • ►  Aug 25 (12)
      • ►  Aug 24 (8)
      • ►  Aug 23 (16)
      • ►  Aug 22 (12)
      • ►  Aug 21 (21)
      • ►  Aug 20 (18)
      • ►  Aug 19 (10)
      • ►  Aug 18 (19)
      • ►  Aug 17 (14)
      • ►  Aug 16 (15)
      • ►  Aug 15 (22)
      • ►  Aug 14 (22)
      • ►  Aug 13 (11)
      • ►  Aug 12 (18)
      • ►  Aug 11 (15)
      • ►  Aug 10 (15)
      • ►  Aug 09 (22)
      • ►  Aug 08 (19)
      • ►  Aug 07 (24)
      • ►  Aug 06 (17)
      • ►  Aug 05 (3)
      • ►  Aug 04 (7)
      • ►  Aug 03 (2)
      • ►  Aug 02 (6)
      • ►  Aug 01 (10)
    • ►  July (359)
      • ►  Jul 31 (21)
      • ►  Jul 30 (5)
      • ►  Jul 29 (15)
      • ►  Jul 28 (10)
      • ►  Jul 27 (12)
      • ►  Jul 26 (12)
      • ►  Jul 25 (2)
      • ►  Jul 23 (17)
      • ►  Jul 22 (5)
      • ►  Jul 21 (15)
      • ►  Jul 20 (9)
      • ►  Jul 19 (11)
      • ►  Jul 18 (24)
      • ►  Jul 17 (10)
      • ►  Jul 16 (12)
      • ►  Jul 15 (6)
      • ►  Jul 14 (10)
      • ►  Jul 13 (7)
      • ►  Jul 12 (14)
      • ►  Jul 11 (14)
      • ►  Jul 10 (8)
      • ►  Jul 09 (8)
      • ►  Jul 08 (10)
      • ►  Jul 07 (12)
      • ►  Jul 06 (18)
      • ►  Jul 05 (19)
      • ►  Jul 04 (8)
      • ►  Jul 03 (17)
      • ►  Jul 02 (9)
      • ►  Jul 01 (19)
    • ►  June (397)
      • ►  Jun 30 (17)
      • ►  Jun 29 (15)
      • ►  Jun 28 (6)
      • ►  Jun 27 (8)
      • ►  Jun 26 (15)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (23)
      • ►  Jun 22 (30)
      • ►  Jun 21 (20)
      • ►  Jun 20 (18)
      • ►  Jun 19 (18)
      • ►  Jun 18 (20)
      • ►  Jun 17 (16)
      • ►  Jun 16 (13)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (7)
      • ►  Jun 12 (5)
      • ►  Jun 11 (4)
      • ►  Jun 10 (4)
      • ►  Jun 09 (4)
      • ►  Jun 08 (5)
      • ►  Jun 07 (3)
      • ►  Jun 06 (3)
      • ►  Jun 05 (21)
      • ►  Jun 04 (24)
      • ►  Jun 03 (12)
      • ►  Jun 02 (18)
      • ►  Jun 01 (20)
    • ►  May (395)
      • ►  May 31 (15)
      • ►  May 30 (25)
      • ►  May 29 (24)
      • ►  May 28 (26)
      • ►  May 27 (21)
      • ►  May 26 (23)
      • ►  May 25 (14)
      • ►  May 24 (7)
      • ►  May 23 (6)
      • ►  May 22 (4)
      • ►  May 21 (6)
      • ►  May 20 (2)
      • ►  May 19 (9)
      • ►  May 18 (8)
      • ►  May 17 (11)
      • ►  May 16 (8)
      • ►  May 15 (14)
      • ►  May 14 (15)
      • ►  May 13 (12)
      • ►  May 12 (10)
      • ►  May 11 (16)
      • ►  May 10 (10)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (6)
      • ►  May 06 (8)
      • ►  May 05 (13)
      • ►  May 04 (14)
      • ►  May 03 (17)
      • ►  May 02 (12)
      • ►  May 01 (12)
    • ►  April (292)
      • ►  Apr 30 (13)
      • ►  Apr 29 (12)
      • ►  Apr 28 (19)
      • ►  Apr 27 (15)
      • ►  Apr 26 (18)
      • ►  Apr 25 (14)
      • ►  Apr 24 (24)
      • ►  Apr 23 (7)
      • ►  Apr 22 (21)
      • ►  Apr 21 (14)
      • ►  Apr 20 (10)
      • ►  Apr 19 (10)
      • ►  Apr 18 (12)
      • ►  Apr 17 (7)
      • ►  Apr 16 (8)
      • ►  Apr 15 (11)
      • ►  Apr 14 (9)
      • ►  Apr 13 (11)
      • ►  Apr 12 (12)
      • ►  Apr 11 (10)
      • ►  Apr 10 (13)
      • ►  Apr 09 (7)
      • ►  Apr 08 (10)
      • ►  Apr 07 (2)
      • ►  Apr 02 (1)
      • ►  Apr 01 (2)
    • ►  March (306)
      • ►  Mar 28 (1)
      • ►  Mar 27 (2)
      • ►  Mar 26 (3)
      • ►  Mar 25 (3)
      • ►  Mar 24 (5)
      • ►  Mar 22 (3)
      • ►  Mar 21 (3)
      • ►  Mar 20 (6)
      • ►  Mar 19 (17)
      • ►  Mar 18 (7)
      • ►  Mar 17 (23)
      • ►  Mar 16 (24)
      • ►  Mar 15 (18)
      • ►  Mar 14 (30)
      • ►  Mar 13 (24)
      • ►  Mar 12 (26)
      • ►  Mar 11 (13)
      • ►  Mar 10 (24)
      • ►  Mar 09 (22)
      • ►  Mar 08 (18)
      • ►  Mar 06 (9)
      • ►  Mar 05 (6)
      • ►  Mar 04 (7)
      • ►  Mar 03 (7)
      • ►  Mar 02 (3)
      • ►  Mar 01 (2)
    • ►  February (210)
      • ►  Feb 27 (1)
      • ►  Feb 26 (4)
      • ►  Feb 24 (12)
      • ►  Feb 23 (9)
      • ►  Feb 22 (9)
      • ►  Feb 21 (9)
      • ►  Feb 19 (4)
      • ►  Feb 16 (9)
      • ►  Feb 15 (2)
      • ►  Feb 14 (5)
      • ►  Feb 13 (1)
      • ►  Feb 12 (1)
      • ►  Feb 11 (13)
      • ►  Feb 10 (8)
      • ►  Feb 09 (12)
      • ►  Feb 08 (10)
      • ►  Feb 07 (19)
      • ►  Feb 06 (9)
      • ►  Feb 05 (18)
      • ►  Feb 04 (10)
      • ►  Feb 03 (13)
      • ►  Feb 02 (12)
      • ►  Feb 01 (20)
    • ►  January (216)
      • ►  Jan 31 (8)
      • ►  Jan 30 (11)
      • ►  Jan 29 (13)
      • ►  Jan 28 (7)
      • ►  Jan 27 (13)
      • ►  Jan 26 (13)
      • ►  Jan 25 (4)
      • ►  Jan 24 (2)
      • ►  Jan 23 (6)
      • ►  Jan 22 (7)
      • ►  Jan 21 (4)
      • ►  Jan 20 (5)
      • ►  Jan 19 (1)
      • ►  Jan 18 (3)
      • ►  Jan 17 (2)
      • ►  Jan 15 (1)
      • ►  Jan 14 (2)
      • ►  Jan 13 (13)
      • ►  Jan 12 (25)
      • ►  Jan 11 (13)
      • ►  Jan 10 (18)
      • ►  Jan 09 (18)
      • ►  Jan 07 (9)
      • ►  Jan 06 (2)
      • ►  Jan 05 (11)
      • ►  Jan 04 (3)
      • ►  Jan 03 (2)
  • ▼  2022 (2401)
    • ►  December (115)
      • ►  Dec 31 (1)
      • ►  Dec 30 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (8)
      • ►  Dec 08 (8)
      • ►  Dec 07 (12)
      • ►  Dec 06 (16)
      • ►  Dec 05 (11)
      • ►  Dec 04 (15)
      • ►  Dec 03 (15)
      • ►  Dec 02 (8)
      • ►  Dec 01 (12)
    • ►  November (498)
      • ►  Nov 30 (2)
      • ►  Nov 29 (11)
      • ►  Nov 28 (13)
      • ►  Nov 27 (1)
      • ►  Nov 26 (9)
      • ►  Nov 25 (13)
      • ►  Nov 24 (16)
      • ►  Nov 23 (8)
      • ►  Nov 22 (16)
      • ►  Nov 21 (21)
      • ►  Nov 20 (13)
      • ►  Nov 19 (24)
      • ►  Nov 18 (23)
      • ►  Nov 17 (28)
      • ►  Nov 16 (15)
      • ►  Nov 15 (22)
      • ►  Nov 14 (32)
      • ►  Nov 13 (20)
      • ►  Nov 12 (22)
      • ►  Nov 11 (30)
      • ►  Nov 10 (4)
      • ►  Nov 09 (21)
      • ►  Nov 08 (21)
      • ►  Nov 07 (21)
      • ►  Nov 06 (14)
      • ►  Nov 05 (19)
      • ►  Nov 04 (17)
      • ►  Nov 03 (14)
      • ►  Nov 02 (12)
      • ►  Nov 01 (16)
    • ►  October (272)
      • ►  Oct 31 (14)
      • ►  Oct 30 (12)
      • ►  Oct 29 (13)
      • ►  Oct 28 (9)
      • ►  Oct 27 (10)
      • ►  Oct 26 (6)
      • ►  Oct 25 (15)
      • ►  Oct 24 (11)
      • ►  Oct 23 (12)
      • ►  Oct 22 (9)
      • ►  Oct 21 (5)
      • ►  Oct 19 (5)
      • ►  Oct 18 (8)
      • ►  Oct 17 (4)
      • ►  Oct 16 (4)
      • ►  Oct 15 (10)
      • ►  Oct 14 (6)
      • ►  Oct 13 (8)
      • ►  Oct 12 (9)
      • ►  Oct 11 (14)
      • ►  Oct 10 (15)
      • ►  Oct 09 (9)
      • ►  Oct 08 (12)
      • ►  Oct 07 (14)
      • ►  Oct 06 (7)
      • ►  Oct 05 (13)
      • ►  Oct 04 (8)
      • ►  Oct 03 (10)
    • ►  September (149)
      • ►  Sep 30 (4)
      • ►  Sep 29 (6)
      • ►  Sep 28 (4)
      • ►  Sep 27 (3)
      • ►  Sep 26 (6)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (6)
      • ►  Sep 22 (1)
      • ►  Sep 21 (6)
      • ►  Sep 20 (5)
      • ►  Sep 19 (6)
      • ►  Sep 17 (5)
      • ►  Sep 16 (2)
      • ►  Sep 15 (4)
      • ►  Sep 14 (6)
      • ►  Sep 13 (3)
      • ►  Sep 12 (5)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (11)
      • ►  Sep 08 (6)
      • ►  Sep 07 (7)
      • ►  Sep 06 (6)
      • ►  Sep 05 (8)
      • ►  Sep 04 (5)
      • ►  Sep 03 (12)
      • ►  Sep 02 (2)
      • ►  Sep 01 (9)
    • ►  August (231)
      • ►  Aug 31 (7)
      • ►  Aug 30 (9)
      • ►  Aug 29 (8)
      • ►  Aug 28 (10)
      • ►  Aug 27 (6)
      • ►  Aug 26 (10)
      • ►  Aug 25 (9)
      • ►  Aug 24 (8)
      • ►  Aug 23 (12)
      • ►  Aug 22 (6)
      • ►  Aug 21 (4)
      • ►  Aug 20 (10)
      • ►  Aug 19 (12)
      • ►  Aug 18 (7)
      • ►  Aug 17 (10)
      • ►  Aug 16 (9)
      • ►  Aug 15 (10)
      • ►  Aug 14 (7)
      • ►  Aug 13 (9)
      • ►  Aug 12 (7)
      • ►  Aug 11 (8)
      • ►  Aug 10 (5)
      • ►  Aug 09 (7)
      • ►  Aug 08 (8)
      • ►  Aug 07 (9)
      • ►  Aug 06 (10)
      • ►  Aug 05 (10)
      • ►  Aug 04 (4)
    • ►  July (258)
      • ►  Jul 31 (1)
      • ►  Jul 30 (3)
      • ►  Jul 29 (3)
      • ►  Jul 28 (1)
      • ►  Jul 27 (5)
      • ►  Jul 26 (5)
      • ►  Jul 25 (4)
      • ►  Jul 24 (4)
      • ►  Jul 23 (6)
      • ►  Jul 22 (5)
      • ►  Jul 21 (2)
      • ►  Jul 20 (10)
      • ►  Jul 19 (5)
      • ►  Jul 18 (8)
      • ►  Jul 17 (1)
      • ►  Jul 15 (6)
      • ►  Jul 14 (11)
      • ►  Jul 13 (9)
      • ►  Jul 12 (8)
      • ►  Jul 11 (17)
      • ►  Jul 10 (16)
      • ►  Jul 09 (14)
      • ►  Jul 08 (18)
      • ►  Jul 07 (12)
      • ►  Jul 06 (12)
      • ►  Jul 05 (17)
      • ►  Jul 04 (13)
      • ►  Jul 03 (15)
      • ►  Jul 02 (12)
      • ►  Jul 01 (15)
    • ▼  June (133)
      • ►  Jun 30 (10)
      • ►  Jun 29 (9)
      • ►  Jun 28 (9)
      • ►  Jun 27 (9)
      • ►  Jun 26 (11)
      • ►  Jun 25 (12)
      • ►  Jun 24 (12)
      • ▼  Jun 23 (10)
        • Cross product
        • Slater determinant
        • Mechanics
        • Vibration
        • Hermitian matrix
        • Eigenface
        • Analytic geometry
        • Topological quantum field theory
        • Quantum electrodynamics
        • Eigenvalues and eigenvectors
      • ►  Jun 22 (10)
      • ►  Jun 21 (4)
      • ►  Jun 20 (3)
      • ►  Jun 19 (8)
      • ►  Jun 18 (2)
      • ►  Jun 17 (2)
      • ►  Jun 15 (3)
      • ►  Jun 14 (1)
      • ►  Jun 13 (1)
      • ►  Jun 07 (1)
      • ►  Jun 04 (5)
      • ►  Jun 03 (2)
      • ►  Jun 02 (7)
      • ►  Jun 01 (2)
    • ►  May (168)
      • ►  May 31 (1)
      • ►  May 30 (2)
      • ►  May 29 (1)
      • ►  May 28 (1)
      • ►  May 26 (4)
      • ►  May 24 (1)
      • ►  May 23 (1)
      • ►  May 21 (3)
      • ►  May 20 (3)
      • ►  May 19 (2)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (11)
      • ►  May 14 (7)
      • ►  May 13 (8)
      • ►  May 12 (8)
      • ►  May 11 (7)
      • ►  May 10 (10)
      • ►  May 09 (11)
      • ►  May 08 (14)
      • ►  May 07 (7)
      • ►  May 06 (9)
      • ►  May 05 (6)
      • ►  May 04 (12)
      • ►  May 03 (10)
      • ►  May 02 (7)
      • ►  May 01 (9)
    • ►  April (59)
      • ►  Apr 30 (8)
      • ►  Apr 29 (11)
      • ►  Apr 28 (3)
      • ►  Apr 27 (5)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (1)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (2)
      • ►  Apr 13 (1)
      • ►  Apr 11 (2)
      • ►  Apr 09 (1)
      • ►  Apr 08 (4)
      • ►  Apr 07 (1)
      • ►  Apr 06 (4)
      • ►  Apr 05 (7)
      • ►  Apr 04 (1)
    • ►  March (114)
      • ►  Mar 27 (1)
      • ►  Mar 26 (8)
      • ►  Mar 25 (1)
      • ►  Mar 23 (4)
      • ►  Mar 22 (4)
      • ►  Mar 21 (2)
      • ►  Mar 20 (8)
      • ►  Mar 17 (4)
      • ►  Mar 16 (1)
      • ►  Mar 15 (8)
      • ►  Mar 14 (1)
      • ►  Mar 13 (4)
      • ►  Mar 12 (6)
      • ►  Mar 11 (4)
      • ►  Mar 10 (6)
      • ►  Mar 09 (6)
      • ►  Mar 08 (12)
      • ►  Mar 07 (5)
      • ►  Mar 06 (3)
      • ►  Mar 05 (4)
      • ►  Mar 04 (2)
      • ►  Mar 03 (6)
      • ►  Mar 02 (6)
      • ►  Mar 01 (8)
    • ►  February (136)
      • ►  Feb 28 (3)
      • ►  Feb 27 (3)
      • ►  Feb 26 (4)
      • ►  Feb 25 (1)
      • ►  Feb 24 (1)
      • ►  Feb 23 (4)
      • ►  Feb 22 (6)
      • ►  Feb 21 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (2)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (7)
      • ►  Feb 14 (5)
      • ►  Feb 13 (6)
      • ►  Feb 12 (3)
      • ►  Feb 11 (7)
      • ►  Feb 10 (5)
      • ►  Feb 09 (4)
      • ►  Feb 08 (3)
      • ►  Feb 07 (2)
      • ►  Feb 06 (5)
      • ►  Feb 05 (6)
      • ►  Feb 04 (4)
      • ►  Feb 03 (11)
      • ►  Feb 02 (13)
      • ►  Feb 01 (15)
    • ►  January (268)
      • ►  Jan 31 (16)
      • ►  Jan 30 (21)
      • ►  Jan 29 (11)
      • ►  Jan 28 (14)
      • ►  Jan 27 (11)
      • ►  Jan 26 (14)
      • ►  Jan 25 (5)
      • ►  Jan 23 (1)
      • ►  Jan 22 (2)
      • ►  Jan 19 (2)
      • ►  Jan 17 (9)
      • ►  Jan 16 (3)
      • ►  Jan 14 (14)
      • ►  Jan 13 (5)
      • ►  Jan 12 (6)
      • ►  Jan 11 (8)
      • ►  Jan 10 (13)
      • ►  Jan 09 (4)
      • ►  Jan 08 (14)
      • ►  Jan 07 (9)
      • ►  Jan 06 (10)
      • ►  Jan 05 (15)
      • ►  Jan 04 (13)
      • ►  Jan 03 (14)
      • ►  Jan 02 (19)
      • ►  Jan 01 (15)
  • ►  2021 (3238)
    • ►  December (507)
      • ►  Dec 31 (10)
      • ►  Dec 30 (9)
      • ►  Dec 29 (14)
      • ►  Dec 28 (11)
      • ►  Dec 27 (18)
      • ►  Dec 26 (12)
      • ►  Dec 25 (18)
      • ►  Dec 24 (13)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (6)
      • ►  Dec 20 (15)
      • ►  Dec 19 (12)
      • ►  Dec 18 (11)
      • ►  Dec 17 (19)
      • ►  Dec 16 (13)
      • ►  Dec 15 (22)
      • ►  Dec 14 (25)
      • ►  Dec 13 (23)
      • ►  Dec 12 (21)
      • ►  Dec 11 (21)
      • ►  Dec 10 (22)
      • ►  Dec 09 (18)
      • ►  Dec 08 (23)
      • ►  Dec 07 (25)
      • ►  Dec 06 (19)
      • ►  Dec 05 (11)
      • ►  Dec 04 (20)
      • ►  Dec 03 (19)
      • ►  Dec 02 (25)
      • ►  Dec 01 (10)
    • ►  November (305)
      • ►  Nov 30 (16)
      • ►  Nov 29 (20)
      • ►  Nov 28 (11)
      • ►  Nov 27 (16)
      • ►  Nov 26 (17)
      • ►  Nov 25 (20)
      • ►  Nov 24 (14)
      • ►  Nov 23 (15)
      • ►  Nov 22 (16)
      • ►  Nov 21 (16)
      • ►  Nov 20 (16)
      • ►  Nov 19 (11)
      • ►  Nov 18 (12)
      • ►  Nov 17 (10)
      • ►  Nov 16 (13)
      • ►  Nov 15 (9)
      • ►  Nov 14 (6)
      • ►  Nov 13 (5)
      • ►  Nov 12 (10)
      • ►  Nov 11 (3)
      • ►  Nov 10 (6)
      • ►  Nov 09 (7)
      • ►  Nov 08 (2)
      • ►  Nov 07 (1)
      • ►  Nov 06 (5)
      • ►  Nov 05 (4)
      • ►  Nov 04 (2)
      • ►  Nov 03 (5)
      • ►  Nov 02 (3)
      • ►  Nov 01 (14)
    • ►  October (238)
      • ►  Oct 31 (16)
      • ►  Oct 30 (6)
      • ►  Oct 29 (13)
      • ►  Oct 28 (16)
      • ►  Oct 27 (10)
      • ►  Oct 26 (8)
      • ►  Oct 25 (8)
      • ►  Oct 24 (5)
      • ►  Oct 23 (11)
      • ►  Oct 22 (5)
      • ►  Oct 21 (12)
      • ►  Oct 20 (4)
      • ►  Oct 19 (2)
      • ►  Oct 18 (2)
      • ►  Oct 17 (2)
      • ►  Oct 16 (1)
      • ►  Oct 15 (4)
      • ►  Oct 12 (2)
      • ►  Oct 11 (4)
      • ►  Oct 10 (9)
      • ►  Oct 09 (13)
      • ►  Oct 08 (4)
      • ►  Oct 07 (6)
      • ►  Oct 06 (6)
      • ►  Oct 05 (9)
      • ►  Oct 04 (12)
      • ►  Oct 03 (12)
      • ►  Oct 02 (20)
      • ►  Oct 01 (16)
    • ►  September (358)
      • ►  Sep 30 (16)
      • ►  Sep 29 (18)
      • ►  Sep 28 (10)
      • ►  Sep 27 (17)
      • ►  Sep 26 (11)
      • ►  Sep 25 (15)
      • ►  Sep 24 (11)
      • ►  Sep 23 (12)
      • ►  Sep 22 (7)
      • ►  Sep 21 (8)
      • ►  Sep 20 (19)
      • ►  Sep 19 (14)
      • ►  Sep 18 (16)
      • ►  Sep 17 (17)
      • ►  Sep 16 (20)
      • ►  Sep 15 (17)
      • ►  Sep 14 (8)
      • ►  Sep 13 (19)
      • ►  Sep 12 (13)
      • ►  Sep 11 (11)
      • ►  Sep 10 (10)
      • ►  Sep 09 (13)
      • ►  Sep 08 (8)
      • ►  Sep 07 (9)
      • ►  Sep 06 (6)
      • ►  Sep 05 (10)
      • ►  Sep 04 (8)
      • ►  Sep 03 (6)
      • ►  Sep 02 (4)
      • ►  Sep 01 (5)
    • ►  August (213)
      • ►  Aug 31 (6)
      • ►  Aug 30 (10)
      • ►  Aug 29 (4)
      • ►  Aug 26 (3)
      • ►  Aug 25 (2)
      • ►  Aug 23 (4)
      • ►  Aug 22 (2)
      • ►  Aug 21 (10)
      • ►  Aug 20 (12)
      • ►  Aug 19 (10)
      • ►  Aug 18 (13)
      • ►  Aug 17 (8)
      • ►  Aug 16 (12)
      • ►  Aug 15 (15)
      • ►  Aug 14 (12)
      • ►  Aug 13 (10)
      • ►  Aug 12 (3)
      • ►  Aug 11 (7)
      • ►  Aug 10 (7)
      • ►  Aug 09 (5)
      • ►  Aug 08 (7)
      • ►  Aug 07 (9)
      • ►  Aug 06 (9)
      • ►  Aug 05 (6)
      • ►  Aug 04 (5)
      • ►  Aug 03 (4)
      • ►  Aug 02 (6)
      • ►  Aug 01 (12)
    • ►  July (213)
      • ►  Jul 31 (18)
      • ►  Jul 30 (7)
      • ►  Jul 29 (17)
      • ►  Jul 28 (16)
      • ►  Jul 27 (6)
      • ►  Jul 25 (1)
      • ►  Jul 24 (7)
      • ►  Jul 23 (5)
      • ►  Jul 22 (13)
      • ►  Jul 21 (3)
      • ►  Jul 20 (8)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (6)
      • ►  Jul 16 (16)
      • ►  Jul 15 (7)
      • ►  Jul 14 (8)
      • ►  Jul 13 (8)
      • ►  Jul 12 (5)
      • ►  Jul 11 (1)
      • ►  Jul 09 (4)
      • ►  Jul 08 (3)
      • ►  Jul 07 (1)
      • ►  Jul 05 (1)
      • ►  Jul 04 (2)
      • ►  Jul 03 (8)
      • ►  Jul 02 (5)
      • ►  Jul 01 (17)
    • ►  June (292)
      • ►  Jun 30 (13)
      • ►  Jun 29 (19)
      • ►  Jun 28 (17)
      • ►  Jun 27 (12)
      • ►  Jun 26 (27)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (12)
      • ►  Jun 22 (11)
      • ►  Jun 21 (16)
      • ►  Jun 20 (7)
      • ►  Jun 19 (9)
      • ►  Jun 18 (14)
      • ►  Jun 17 (7)
      • ►  Jun 16 (11)
      • ►  Jun 15 (9)
      • ►  Jun 14 (12)
      • ►  Jun 13 (2)
      • ►  Jun 12 (4)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (2)
      • ►  Jun 08 (5)
      • ►  Jun 07 (4)
      • ►  Jun 06 (3)
      • ►  Jun 05 (4)
      • ►  Jun 04 (4)
      • ►  Jun 03 (8)
      • ►  Jun 02 (6)
      • ►  Jun 01 (11)
    • ►  May (302)
      • ►  May 31 (14)
      • ►  May 30 (21)
      • ►  May 29 (11)
      • ►  May 28 (21)
      • ►  May 27 (8)
      • ►  May 26 (5)
      • ►  May 25 (11)
      • ►  May 24 (13)
      • ►  May 23 (5)
      • ►  May 22 (13)
      • ►  May 21 (8)
      • ►  May 20 (8)
      • ►  May 19 (8)
      • ►  May 18 (11)
      • ►  May 17 (12)
      • ►  May 16 (17)
      • ►  May 15 (13)
      • ►  May 14 (10)
      • ►  May 13 (8)
      • ►  May 12 (16)
      • ►  May 11 (11)
      • ►  May 10 (16)
      • ►  May 09 (9)
      • ►  May 08 (7)
      • ►  May 07 (5)
      • ►  May 06 (7)
      • ►  May 05 (1)
      • ►  May 04 (1)
      • ►  May 03 (3)
      • ►  May 02 (1)
      • ►  May 01 (8)
    • ►  April (398)
      • ►  Apr 30 (7)
      • ►  Apr 29 (6)
      • ►  Apr 28 (11)
      • ►  Apr 27 (5)
      • ►  Apr 26 (21)
      • ►  Apr 25 (18)
      • ►  Apr 24 (16)
      • ►  Apr 23 (21)
      • ►  Apr 22 (19)
      • ►  Apr 21 (14)
      • ►  Apr 20 (16)
      • ►  Apr 19 (25)
      • ►  Apr 18 (11)
      • ►  Apr 17 (3)
      • ►  Apr 16 (9)
      • ►  Apr 15 (8)
      • ►  Apr 14 (11)
      • ►  Apr 13 (19)
      • ►  Apr 12 (9)
      • ►  Apr 11 (15)
      • ►  Apr 10 (11)
      • ►  Apr 09 (14)
      • ►  Apr 08 (15)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (12)
      • ►  Apr 04 (14)
      • ►  Apr 03 (17)
      • ►  Apr 02 (16)
      • ►  Apr 01 (7)
    • ►  March (330)
      • ►  Mar 31 (7)
      • ►  Mar 30 (8)
      • ►  Mar 29 (11)
      • ►  Mar 28 (16)
      • ►  Mar 27 (10)
      • ►  Mar 26 (12)
      • ►  Mar 25 (19)
      • ►  Mar 24 (14)
      • ►  Mar 23 (14)
      • ►  Mar 22 (11)
      • ►  Mar 21 (12)
      • ►  Mar 20 (14)
      • ►  Mar 19 (15)
      • ►  Mar 18 (17)
      • ►  Mar 17 (4)
      • ►  Mar 16 (12)
      • ►  Mar 15 (18)
      • ►  Mar 14 (9)
      • ►  Mar 13 (12)
      • ►  Mar 12 (12)
      • ►  Mar 11 (14)
      • ►  Mar 10 (7)
      • ►  Mar 09 (7)
      • ►  Mar 08 (11)
      • ►  Mar 07 (9)
      • ►  Mar 06 (7)
      • ►  Mar 05 (9)
      • ►  Mar 04 (4)
      • ►  Mar 03 (5)
      • ►  Mar 02 (5)
      • ►  Mar 01 (5)
    • ►  February (76)
      • ►  Feb 28 (8)
      • ►  Feb 27 (11)
      • ►  Feb 26 (4)
      • ►  Feb 25 (4)
      • ►  Feb 24 (1)
      • ►  Feb 23 (3)
      • ►  Feb 22 (2)
      • ►  Feb 21 (1)
      • ►  Feb 20 (3)
      • ►  Feb 19 (3)
      • ►  Feb 18 (4)
      • ►  Feb 17 (8)
      • ►  Feb 16 (2)
      • ►  Feb 15 (6)
      • ►  Feb 14 (1)
      • ►  Feb 13 (3)
      • ►  Feb 12 (5)
      • ►  Feb 10 (2)
      • ►  Feb 08 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (2)
      • ►  Feb 02 (1)
    • ►  January (6)
      • ►  Jan 31 (1)
      • ►  Jan 24 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (3)
  • ►  2020 (2688)
    • ►  December (67)
      • ►  Dec 29 (1)
      • ►  Dec 28 (3)
      • ►  Dec 27 (1)
      • ►  Dec 23 (5)
      • ►  Dec 21 (4)
      • ►  Dec 19 (1)
      • ►  Dec 18 (2)
      • ►  Dec 11 (1)
      • ►  Dec 10 (6)
      • ►  Dec 09 (15)
      • ►  Dec 08 (8)
      • ►  Dec 07 (10)
      • ►  Dec 06 (5)
      • ►  Dec 05 (5)
    • ►  November (141)
      • ►  Nov 30 (5)
      • ►  Nov 29 (5)
      • ►  Nov 28 (1)
      • ►  Nov 27 (8)
      • ►  Nov 26 (20)
      • ►  Nov 25 (9)
      • ►  Nov 24 (11)
      • ►  Nov 23 (9)
      • ►  Nov 22 (11)
      • ►  Nov 21 (12)
      • ►  Nov 20 (3)
      • ►  Nov 19 (10)
      • ►  Nov 18 (7)
      • ►  Nov 17 (8)
      • ►  Nov 16 (2)
      • ►  Nov 15 (4)
      • ►  Nov 14 (8)
      • ►  Nov 13 (4)
      • ►  Nov 12 (2)
      • ►  Nov 10 (1)
      • ►  Nov 02 (1)
    • ►  October (190)
      • ►  Oct 26 (1)
      • ►  Oct 25 (4)
      • ►  Oct 24 (19)
      • ►  Oct 23 (16)
      • ►  Oct 22 (2)
      • ►  Oct 21 (1)
      • ►  Oct 20 (1)
      • ►  Oct 16 (2)
      • ►  Oct 11 (11)
      • ►  Oct 10 (8)
      • ►  Oct 09 (14)
      • ►  Oct 08 (18)
      • ►  Oct 07 (9)
      • ►  Oct 06 (17)
      • ►  Oct 05 (17)
      • ►  Oct 04 (4)
      • ►  Oct 03 (14)
      • ►  Oct 02 (13)
      • ►  Oct 01 (19)
    • ►  September (371)
      • ►  Sep 30 (12)
      • ►  Sep 29 (11)
      • ►  Sep 28 (14)
      • ►  Sep 27 (14)
      • ►  Sep 26 (13)
      • ►  Sep 25 (25)
      • ►  Sep 24 (30)
      • ►  Sep 23 (16)
      • ►  Sep 22 (11)
      • ►  Sep 21 (18)
      • ►  Sep 20 (16)
      • ►  Sep 19 (23)
      • ►  Sep 18 (22)
      • ►  Sep 17 (15)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (9)
      • ►  Sep 13 (11)
      • ►  Sep 12 (9)
      • ►  Sep 11 (6)
      • ►  Sep 10 (1)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (7)
      • ►  Sep 06 (13)
      • ►  Sep 05 (8)
      • ►  Sep 04 (6)
      • ►  Sep 03 (1)
      • ►  Sep 02 (3)
      • ►  Sep 01 (10)
    • ►  August (112)
      • ►  Aug 31 (12)
      • ►  Aug 30 (2)
      • ►  Aug 29 (7)
      • ►  Aug 28 (2)
      • ►  Aug 27 (1)
      • ►  Aug 26 (1)
      • ►  Aug 24 (2)
      • ►  Aug 23 (2)
      • ►  Aug 21 (3)
      • ►  Aug 20 (4)
      • ►  Aug 19 (8)
      • ►  Aug 18 (5)
      • ►  Aug 17 (4)
      • ►  Aug 16 (6)
      • ►  Aug 15 (4)
      • ►  Aug 14 (1)
      • ►  Aug 13 (2)
      • ►  Aug 12 (4)
      • ►  Aug 11 (5)
      • ►  Aug 10 (7)
      • ►  Aug 09 (8)
      • ►  Aug 08 (4)
      • ►  Aug 07 (1)
      • ►  Aug 06 (5)
      • ►  Aug 05 (2)
      • ►  Aug 04 (1)
      • ►  Aug 03 (4)
      • ►  Aug 02 (1)
      • ►  Aug 01 (4)
    • ►  July (227)
      • ►  Jul 30 (3)
      • ►  Jul 29 (6)
      • ►  Jul 28 (2)
      • ►  Jul 27 (1)
      • ►  Jul 26 (7)
      • ►  Jul 25 (3)
      • ►  Jul 24 (3)
      • ►  Jul 23 (14)
      • ►  Jul 22 (1)
      • ►  Jul 21 (12)
      • ►  Jul 20 (8)
      • ►  Jul 19 (10)
      • ►  Jul 18 (12)
      • ►  Jul 17 (4)
      • ►  Jul 16 (12)
      • ►  Jul 15 (12)
      • ►  Jul 14 (8)
      • ►  Jul 13 (13)
      • ►  Jul 12 (8)
      • ►  Jul 11 (14)
      • ►  Jul 10 (7)
      • ►  Jul 09 (9)
      • ►  Jul 08 (7)
      • ►  Jul 07 (10)
      • ►  Jul 06 (8)
      • ►  Jul 05 (8)
      • ►  Jul 04 (8)
      • ►  Jul 03 (6)
      • ►  Jul 02 (4)
      • ►  Jul 01 (7)
    • ►  June (243)
      • ►  Jun 30 (5)
      • ►  Jun 29 (3)
      • ►  Jun 28 (4)
      • ►  Jun 27 (6)
      • ►  Jun 26 (4)
      • ►  Jun 25 (2)
      • ►  Jun 24 (3)
      • ►  Jun 23 (5)
      • ►  Jun 22 (6)
      • ►  Jun 20 (5)
      • ►  Jun 19 (6)
      • ►  Jun 18 (5)
      • ►  Jun 17 (16)
      • ►  Jun 16 (17)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (8)
      • ►  Jun 12 (11)
      • ►  Jun 11 (6)
      • ►  Jun 10 (15)
      • ►  Jun 09 (6)
      • ►  Jun 08 (20)
      • ►  Jun 07 (10)
      • ►  Jun 06 (11)
      • ►  Jun 05 (13)
      • ►  Jun 04 (12)
      • ►  Jun 03 (11)
      • ►  Jun 02 (6)
      • ►  Jun 01 (8)
    • ►  May (405)
      • ►  May 31 (8)
      • ►  May 30 (6)
      • ►  May 29 (16)
      • ►  May 28 (10)
      • ►  May 27 (15)
      • ►  May 26 (18)
      • ►  May 25 (14)
      • ►  May 24 (23)
      • ►  May 23 (15)
      • ►  May 22 (21)
      • ►  May 21 (13)
      • ►  May 20 (22)
      • ►  May 19 (25)
      • ►  May 18 (17)
      • ►  May 17 (21)
      • ►  May 16 (10)
      • ►  May 15 (12)
      • ►  May 14 (22)
      • ►  May 13 (13)
      • ►  May 12 (14)
      • ►  May 11 (10)
      • ►  May 10 (8)
      • ►  May 09 (15)
      • ►  May 08 (17)
      • ►  May 07 (1)
      • ►  May 06 (3)
      • ►  May 05 (11)
      • ►  May 04 (11)
      • ►  May 03 (7)
      • ►  May 02 (2)
      • ►  May 01 (5)
    • ►  April (183)
      • ►  Apr 30 (10)
      • ►  Apr 29 (6)
      • ►  Apr 28 (7)
      • ►  Apr 27 (9)
      • ►  Apr 26 (8)
      • ►  Apr 25 (10)
      • ►  Apr 24 (8)
      • ►  Apr 23 (10)
      • ►  Apr 22 (4)
      • ►  Apr 21 (10)
      • ►  Apr 20 (9)
      • ►  Apr 19 (10)
      • ►  Apr 18 (22)
      • ►  Apr 17 (8)
      • ►  Apr 16 (8)
      • ►  Apr 15 (5)
      • ►  Apr 14 (2)
      • ►  Apr 13 (4)
      • ►  Apr 12 (1)
      • ►  Apr 11 (7)
      • ►  Apr 10 (8)
      • ►  Apr 09 (1)
      • ►  Apr 07 (3)
      • ►  Apr 06 (1)
      • ►  Apr 03 (3)
      • ►  Apr 02 (3)
      • ►  Apr 01 (6)
    • ►  March (208)
      • ►  Mar 31 (10)
      • ►  Mar 30 (9)
      • ►  Mar 29 (4)
      • ►  Mar 28 (3)
      • ►  Mar 27 (11)
      • ►  Mar 26 (5)
      • ►  Mar 25 (5)
      • ►  Mar 24 (7)
      • ►  Mar 23 (5)
      • ►  Mar 22 (7)
      • ►  Mar 21 (7)
      • ►  Mar 20 (9)
      • ►  Mar 19 (8)
      • ►  Mar 18 (3)
      • ►  Mar 17 (1)
      • ►  Mar 16 (1)
      • ►  Mar 14 (5)
      • ►  Mar 13 (8)
      • ►  Mar 12 (11)
      • ►  Mar 11 (9)
      • ►  Mar 10 (6)
      • ►  Mar 09 (10)
      • ►  Mar 08 (8)
      • ►  Mar 07 (10)
      • ►  Mar 06 (7)
      • ►  Mar 05 (11)
      • ►  Mar 04 (15)
      • ►  Mar 03 (9)
      • ►  Mar 02 (4)
    • ►  February (255)
      • ►  Feb 28 (6)
      • ►  Feb 27 (7)
      • ►  Feb 26 (6)
      • ►  Feb 25 (5)
      • ►  Feb 24 (12)
      • ►  Feb 22 (9)
      • ►  Feb 21 (11)
      • ►  Feb 20 (9)
      • ►  Feb 19 (9)
      • ►  Feb 18 (4)
      • ►  Feb 17 (9)
      • ►  Feb 16 (9)
      • ►  Feb 15 (12)
      • ►  Feb 14 (15)
      • ►  Feb 13 (13)
      • ►  Feb 12 (10)
      • ►  Feb 11 (12)
      • ►  Feb 10 (14)
      • ►  Feb 09 (7)
      • ►  Feb 08 (8)
      • ►  Feb 07 (11)
      • ►  Feb 06 (8)
      • ►  Feb 05 (14)
      • ►  Feb 04 (7)
      • ►  Feb 03 (12)
      • ►  Feb 02 (12)
      • ►  Feb 01 (4)
    • ►  January (286)
      • ►  Jan 31 (10)
      • ►  Jan 30 (12)
      • ►  Jan 29 (10)
      • ►  Jan 28 (6)
      • ►  Jan 27 (11)
      • ►  Jan 26 (11)
      • ►  Jan 25 (11)
      • ►  Jan 24 (13)
      • ►  Jan 23 (17)
      • ►  Jan 22 (6)
      • ►  Jan 21 (10)
      • ►  Jan 20 (9)
      • ►  Jan 19 (12)
      • ►  Jan 18 (6)
      • ►  Jan 17 (11)
      • ►  Jan 16 (6)
      • ►  Jan 15 (7)
      • ►  Jan 14 (8)
      • ►  Jan 13 (10)
      • ►  Jan 12 (9)
      • ►  Jan 11 (1)
      • ►  Jan 10 (11)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (13)
      • ►  Jan 06 (5)
      • ►  Jan 05 (11)
      • ►  Jan 04 (8)
      • ►  Jan 03 (6)
      • ►  Jan 02 (11)
      • ►  Jan 01 (6)
  • ►  2019 (3306)
    • ►  December (344)
      • ►  Dec 31 (13)
      • ►  Dec 30 (9)
      • ►  Dec 29 (10)
      • ►  Dec 28 (15)
      • ►  Dec 27 (10)
      • ►  Dec 26 (6)
      • ►  Dec 25 (13)
      • ►  Dec 24 (10)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (13)
      • ►  Dec 20 (14)
      • ►  Dec 19 (10)
      • ►  Dec 18 (12)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (11)
      • ►  Dec 14 (19)
      • ►  Dec 13 (10)
      • ►  Dec 12 (15)
      • ►  Dec 11 (10)
      • ►  Dec 10 (9)
      • ►  Dec 09 (12)
      • ►  Dec 08 (9)
      • ►  Dec 07 (10)
      • ►  Dec 06 (7)
      • ►  Dec 05 (10)
      • ►  Dec 04 (8)
      • ►  Dec 03 (11)
      • ►  Dec 02 (10)
      • ►  Dec 01 (7)
    • ►  November (197)
      • ►  Nov 30 (13)
      • ►  Nov 29 (14)
      • ►  Nov 28 (11)
      • ►  Nov 27 (9)
      • ►  Nov 26 (5)
      • ►  Nov 25 (3)
      • ►  Nov 24 (11)
      • ►  Nov 23 (2)
      • ►  Nov 22 (7)
      • ►  Nov 21 (4)
      • ►  Nov 20 (4)
      • ►  Nov 19 (2)
      • ►  Nov 18 (7)
      • ►  Nov 17 (3)
      • ►  Nov 16 (9)
      • ►  Nov 15 (1)
      • ►  Nov 14 (3)
      • ►  Nov 13 (14)
      • ►  Nov 12 (2)
      • ►  Nov 11 (5)
      • ►  Nov 10 (5)
      • ►  Nov 09 (4)
      • ►  Nov 08 (11)
      • ►  Nov 07 (3)
      • ►  Nov 06 (9)
      • ►  Nov 05 (7)
      • ►  Nov 04 (2)
      • ►  Nov 03 (7)
      • ►  Nov 02 (10)
      • ►  Nov 01 (10)
    • ►  October (154)
      • ►  Oct 31 (7)
      • ►  Oct 30 (8)
      • ►  Oct 29 (5)
      • ►  Oct 28 (12)
      • ►  Oct 27 (5)
      • ►  Oct 26 (12)
      • ►  Oct 25 (7)
      • ►  Oct 24 (7)
      • ►  Oct 23 (5)
      • ►  Oct 22 (14)
      • ►  Oct 21 (9)
      • ►  Oct 20 (8)
      • ►  Oct 19 (4)
      • ►  Oct 18 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (3)
      • ►  Oct 15 (9)
      • ►  Oct 14 (7)
      • ►  Oct 13 (4)
      • ►  Oct 12 (5)
      • ►  Oct 10 (2)
      • ►  Oct 09 (10)
      • ►  Oct 07 (2)
      • ►  Oct 05 (1)
      • ►  Oct 02 (1)
    • ►  September (67)
      • ►  Sep 30 (3)
      • ►  Sep 29 (1)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (4)
      • ►  Sep 25 (3)
      • ►  Sep 22 (3)
      • ►  Sep 21 (6)
      • ►  Sep 19 (1)
      • ►  Sep 18 (3)
      • ►  Sep 16 (3)
      • ►  Sep 15 (2)
      • ►  Sep 14 (4)
      • ►  Sep 13 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (4)
      • ►  Sep 08 (4)
      • ►  Sep 07 (1)
      • ►  Sep 06 (6)
      • ►  Sep 04 (3)
      • ►  Sep 03 (6)
      • ►  Sep 01 (4)
    • ►  August (84)
      • ►  Aug 26 (2)
      • ►  Aug 25 (2)
      • ►  Aug 24 (2)
      • ►  Aug 23 (1)
      • ►  Aug 22 (3)
      • ►  Aug 21 (2)
      • ►  Aug 19 (1)
      • ►  Aug 18 (2)
      • ►  Aug 17 (1)
      • ►  Aug 14 (1)
      • ►  Aug 13 (1)
      • ►  Aug 12 (5)
      • ►  Aug 11 (4)
      • ►  Aug 10 (7)
      • ►  Aug 09 (2)
      • ►  Aug 08 (2)
      • ►  Aug 07 (5)
      • ►  Aug 06 (6)
      • ►  Aug 05 (3)
      • ►  Aug 04 (5)
      • ►  Aug 03 (9)
      • ►  Aug 02 (8)
      • ►  Aug 01 (10)
    • ►  July (217)
      • ►  Jul 31 (6)
      • ►  Jul 29 (10)
      • ►  Jul 28 (5)
      • ►  Jul 27 (10)
      • ►  Jul 25 (7)
      • ►  Jul 24 (11)
      • ►  Jul 23 (8)
      • ►  Jul 22 (4)
      • ►  Jul 21 (17)
      • ►  Jul 20 (7)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (7)
      • ►  Jul 16 (10)
      • ►  Jul 15 (6)
      • ►  Jul 14 (6)
      • ►  Jul 13 (15)
      • ►  Jul 12 (12)
      • ►  Jul 11 (3)
      • ►  Jul 10 (7)
      • ►  Jul 09 (2)
      • ►  Jul 08 (2)
      • ►  Jul 07 (7)
      • ►  Jul 06 (9)
      • ►  Jul 04 (11)
      • ►  Jul 03 (2)
      • ►  Jul 02 (4)
      • ►  Jul 01 (9)
    • ►  June (260)
      • ►  Jun 30 (7)
      • ►  Jun 29 (15)
      • ►  Jun 28 (4)
      • ►  Jun 27 (2)
      • ►  Jun 26 (6)
      • ►  Jun 25 (2)
      • ►  Jun 24 (10)
      • ►  Jun 23 (10)
      • ►  Jun 22 (8)
      • ►  Jun 21 (12)
      • ►  Jun 20 (8)
      • ►  Jun 19 (8)
      • ►  Jun 18 (12)
      • ►  Jun 17 (7)
      • ►  Jun 16 (7)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (1)
      • ►  Jun 11 (2)
      • ►  Jun 10 (13)
      • ►  Jun 09 (16)
      • ►  Jun 08 (10)
      • ►  Jun 07 (16)
      • ►  Jun 06 (11)
      • ►  Jun 05 (17)
      • ►  Jun 04 (6)
      • ►  Jun 03 (13)
      • ►  Jun 02 (4)
      • ►  Jun 01 (12)
    • ►  May (426)
      • ►  May 31 (22)
      • ►  May 30 (14)
      • ►  May 29 (7)
      • ►  May 28 (16)
      • ►  May 27 (8)
      • ►  May 26 (9)
      • ►  May 25 (25)
      • ►  May 24 (10)
      • ►  May 23 (10)
      • ►  May 22 (13)
      • ►  May 21 (11)
      • ►  May 20 (16)
      • ►  May 19 (26)
      • ►  May 18 (8)
      • ►  May 17 (17)
      • ►  May 16 (11)
      • ►  May 15 (3)
      • ►  May 14 (17)
      • ►  May 13 (17)
      • ►  May 12 (14)
      • ►  May 11 (13)
      • ►  May 10 (18)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (8)
      • ►  May 06 (12)
      • ►  May 05 (12)
      • ►  May 04 (13)
      • ►  May 03 (13)
      • ►  May 02 (16)
      • ►  May 01 (20)
    • ►  April (356)
      • ►  Apr 30 (9)
      • ►  Apr 29 (10)
      • ►  Apr 28 (11)
      • ►  Apr 27 (11)
      • ►  Apr 26 (15)
      • ►  Apr 25 (9)
      • ►  Apr 24 (12)
      • ►  Apr 23 (15)
      • ►  Apr 22 (12)
      • ►  Apr 21 (15)
      • ►  Apr 20 (13)
      • ►  Apr 19 (9)
      • ►  Apr 18 (14)
      • ►  Apr 17 (11)
      • ►  Apr 16 (8)
      • ►  Apr 15 (15)
      • ►  Apr 14 (6)
      • ►  Apr 13 (8)
      • ►  Apr 12 (10)
      • ►  Apr 11 (17)
      • ►  Apr 10 (12)
      • ►  Apr 09 (8)
      • ►  Apr 08 (13)
      • ►  Apr 07 (18)
      • ►  Apr 06 (11)
      • ►  Apr 05 (12)
      • ►  Apr 04 (16)
      • ►  Apr 03 (12)
      • ►  Apr 02 (12)
      • ►  Apr 01 (12)
    • ►  March (419)
      • ►  Mar 31 (13)
      • ►  Mar 30 (17)
      • ►  Mar 29 (13)
      • ►  Mar 28 (14)
      • ►  Mar 27 (17)
      • ►  Mar 26 (12)
      • ►  Mar 25 (9)
      • ►  Mar 24 (13)
      • ►  Mar 23 (13)
      • ►  Mar 22 (12)
      • ►  Mar 21 (12)
      • ►  Mar 20 (12)
      • ►  Mar 19 (12)
      • ►  Mar 18 (12)
      • ►  Mar 17 (12)
      • ►  Mar 16 (17)
      • ►  Mar 15 (13)
      • ►  Mar 14 (16)
      • ►  Mar 13 (8)
      • ►  Mar 12 (12)
      • ►  Mar 11 (11)
      • ►  Mar 10 (12)
      • ►  Mar 09 (15)
      • ►  Mar 08 (11)
      • ►  Mar 07 (19)
      • ►  Mar 06 (26)
      • ►  Mar 05 (14)
      • ►  Mar 04 (14)
      • ►  Mar 03 (12)
      • ►  Mar 02 (12)
      • ►  Mar 01 (14)
    • ►  February (375)
      • ►  Feb 28 (11)
      • ►  Feb 27 (10)
      • ►  Feb 26 (8)
      • ►  Feb 25 (11)
      • ►  Feb 24 (11)
      • ►  Feb 23 (5)
      • ►  Feb 22 (14)
      • ►  Feb 21 (13)
      • ►  Feb 20 (17)
      • ►  Feb 19 (14)
      • ►  Feb 18 (15)
      • ►  Feb 17 (12)
      • ►  Feb 16 (14)
      • ►  Feb 15 (14)
      • ►  Feb 14 (15)
      • ►  Feb 13 (20)
      • ►  Feb 12 (11)
      • ►  Feb 11 (21)
      • ►  Feb 10 (12)
      • ►  Feb 09 (18)
      • ►  Feb 08 (20)
      • ►  Feb 07 (13)
      • ►  Feb 06 (12)
      • ►  Feb 05 (14)
      • ►  Feb 04 (17)
      • ►  Feb 03 (8)
      • ►  Feb 02 (11)
      • ►  Feb 01 (14)
    • ►  January (407)
      • ►  Jan 31 (15)
      • ►  Jan 30 (11)
      • ►  Jan 29 (5)
      • ►  Jan 28 (19)
      • ►  Jan 27 (15)
      • ►  Jan 26 (13)
      • ►  Jan 25 (15)
      • ►  Jan 24 (13)
      • ►  Jan 23 (15)
      • ►  Jan 22 (10)
      • ►  Jan 21 (10)
      • ►  Jan 20 (18)
      • ►  Jan 19 (18)
      • ►  Jan 18 (7)
      • ►  Jan 17 (14)
      • ►  Jan 16 (17)
      • ►  Jan 15 (12)
      • ►  Jan 14 (14)
      • ►  Jan 13 (19)
      • ►  Jan 12 (8)
      • ►  Jan 11 (15)
      • ►  Jan 10 (9)
      • ►  Jan 09 (13)
      • ►  Jan 08 (12)
      • ►  Jan 07 (12)
      • ►  Jan 06 (15)
      • ►  Jan 05 (25)
      • ►  Jan 04 (11)
      • ►  Jan 03 (7)
      • ►  Jan 02 (12)
      • ►  Jan 01 (8)
  • ►  2018 (2910)
    • ►  December (343)
      • ►  Dec 31 (10)
      • ►  Dec 30 (14)
      • ►  Dec 29 (10)
      • ►  Dec 28 (7)
      • ►  Dec 27 (6)
      • ►  Dec 26 (16)
      • ►  Dec 25 (15)
      • ►  Dec 24 (11)
      • ►  Dec 23 (14)
      • ►  Dec 22 (7)
      • ►  Dec 21 (11)
      • ►  Dec 20 (9)
      • ►  Dec 19 (12)
      • ►  Dec 18 (8)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (14)
      • ►  Dec 14 (9)
      • ►  Dec 13 (12)
      • ►  Dec 12 (11)
      • ►  Dec 11 (7)
      • ►  Dec 10 (8)
      • ►  Dec 09 (8)
      • ►  Dec 08 (14)
      • ►  Dec 07 (16)
      • ►  Dec 06 (12)
      • ►  Dec 05 (14)
      • ►  Dec 04 (8)
      • ►  Dec 03 (10)
      • ►  Dec 02 (3)
      • ►  Dec 01 (18)
    • ►  November (319)
      • ►  Nov 30 (11)
      • ►  Nov 29 (14)
      • ►  Nov 28 (9)
      • ►  Nov 27 (4)
      • ►  Nov 26 (10)
      • ►  Nov 25 (18)
      • ►  Nov 24 (14)
      • ►  Nov 23 (9)
      • ►  Nov 22 (15)
      • ►  Nov 21 (4)
      • ►  Nov 20 (6)
      • ►  Nov 19 (9)
      • ►  Nov 18 (3)
      • ►  Nov 17 (10)
      • ►  Nov 16 (5)
      • ►  Nov 15 (13)
      • ►  Nov 14 (11)
      • ►  Nov 13 (11)
      • ►  Nov 12 (16)
      • ►  Nov 11 (8)
      • ►  Nov 10 (14)
      • ►  Nov 09 (6)
      • ►  Nov 08 (6)
      • ►  Nov 07 (6)
      • ►  Nov 06 (14)
      • ►  Nov 05 (6)
      • ►  Nov 04 (18)
      • ►  Nov 03 (22)
      • ►  Nov 02 (7)
      • ►  Nov 01 (20)
    • ►  October (304)
      • ►  Oct 31 (6)
      • ►  Oct 30 (10)
      • ►  Oct 29 (17)
      • ►  Oct 28 (10)
      • ►  Oct 27 (11)
      • ►  Oct 26 (11)
      • ►  Oct 25 (12)
      • ►  Oct 24 (13)
      • ►  Oct 23 (13)
      • ►  Oct 22 (10)
      • ►  Oct 21 (9)
      • ►  Oct 20 (11)
      • ►  Oct 19 (7)
      • ►  Oct 18 (7)
      • ►  Oct 17 (14)
      • ►  Oct 16 (5)
      • ►  Oct 15 (13)
      • ►  Oct 14 (8)
      • ►  Oct 13 (13)
      • ►  Oct 12 (6)
      • ►  Oct 11 (17)
      • ►  Oct 10 (17)
      • ►  Oct 09 (1)
      • ►  Oct 08 (10)
      • ►  Oct 07 (2)
      • ►  Oct 06 (11)
      • ►  Oct 05 (16)
      • ►  Oct 04 (6)
      • ►  Oct 03 (9)
      • ►  Oct 02 (6)
      • ►  Oct 01 (3)
    • ►  September (324)
      • ►  Sep 30 (5)
      • ►  Sep 29 (8)
      • ►  Sep 28 (9)
      • ►  Sep 27 (9)
      • ►  Sep 26 (11)
      • ►  Sep 25 (13)
      • ►  Sep 24 (16)
      • ►  Sep 23 (7)
      • ►  Sep 22 (18)
      • ►  Sep 21 (8)
      • ►  Sep 20 (8)
      • ►  Sep 19 (8)
      • ►  Sep 18 (11)
      • ►  Sep 17 (6)
      • ►  Sep 16 (9)
      • ►  Sep 15 (13)
      • ►  Sep 14 (7)
      • ►  Sep 13 (13)
      • ►  Sep 12 (4)
      • ►  Sep 11 (14)
      • ►  Sep 10 (12)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (11)
      • ►  Sep 06 (13)
      • ►  Sep 05 (17)
      • ►  Sep 04 (12)
      • ►  Sep 03 (17)
      • ►  Sep 02 (10)
      • ►  Sep 01 (12)
    • ►  August (453)
      • ►  Aug 31 (6)
      • ►  Aug 30 (12)
      • ►  Aug 29 (13)
      • ►  Aug 28 (7)
      • ►  Aug 27 (6)
      • ►  Aug 26 (9)
      • ►  Aug 25 (11)
      • ►  Aug 24 (6)
      • ►  Aug 23 (10)
      • ►  Aug 22 (18)
      • ►  Aug 21 (8)
      • ►  Aug 20 (18)
      • ►  Aug 19 (5)
      • ►  Aug 18 (8)
      • ►  Aug 17 (16)
      • ►  Aug 16 (18)
      • ►  Aug 15 (7)
      • ►  Aug 14 (8)
      • ►  Aug 13 (17)
      • ►  Aug 12 (18)
      • ►  Aug 11 (21)
      • ►  Aug 10 (10)
      • ►  Aug 09 (14)
      • ►  Aug 08 (25)
      • ►  Aug 07 (25)
      • ►  Aug 06 (22)
      • ►  Aug 05 (32)
      • ►  Aug 04 (24)
      • ►  Aug 03 (15)
      • ►  Aug 02 (26)
      • ►  Aug 01 (18)
    • ►  July (443)
      • ►  Jul 31 (28)
      • ►  Jul 30 (13)
      • ►  Jul 29 (20)
      • ►  Jul 28 (16)
      • ►  Jul 27 (30)
      • ►  Jul 26 (14)
      • ►  Jul 25 (16)
      • ►  Jul 24 (26)
      • ►  Jul 23 (14)
      • ►  Jul 22 (15)
      • ►  Jul 21 (21)
      • ►  Jul 20 (10)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (12)
      • ►  Jul 16 (10)
      • ►  Jul 15 (10)
      • ►  Jul 14 (11)
      • ►  Jul 13 (12)
      • ►  Jul 12 (7)
      • ►  Jul 11 (12)
      • ►  Jul 10 (8)
      • ►  Jul 09 (16)
      • ►  Jul 08 (7)
      • ►  Jul 07 (11)
      • ►  Jul 06 (8)
      • ►  Jul 05 (22)
      • ►  Jul 04 (15)
      • ►  Jul 03 (15)
      • ►  Jul 02 (13)
      • ►  Jul 01 (11)
    • ►  June (335)
      • ►  Jun 30 (18)
      • ►  Jun 29 (16)
      • ►  Jun 28 (27)
      • ►  Jun 27 (8)
      • ►  Jun 26 (9)
      • ►  Jun 25 (15)
      • ►  Jun 24 (6)
      • ►  Jun 23 (12)
      • ►  Jun 22 (8)
      • ►  Jun 21 (6)
      • ►  Jun 20 (8)
      • ►  Jun 19 (15)
      • ►  Jun 18 (7)
      • ►  Jun 17 (7)
      • ►  Jun 16 (16)
      • ►  Jun 15 (9)
      • ►  Jun 14 (10)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (20)
      • ►  Jun 10 (16)
      • ►  Jun 09 (10)
      • ►  Jun 08 (9)
      • ►  Jun 07 (9)
      • ►  Jun 06 (6)
      • ►  Jun 05 (9)
      • ►  Jun 04 (9)
      • ►  Jun 03 (6)
      • ►  Jun 02 (9)
      • ►  Jun 01 (12)
    • ►  May (298)
      • ►  May 31 (15)
      • ►  May 30 (10)
      • ►  May 29 (12)
      • ►  May 28 (13)
      • ►  May 27 (12)
      • ►  May 26 (23)
      • ►  May 25 (13)
      • ►  May 24 (7)
      • ►  May 23 (4)
      • ►  May 22 (10)
      • ►  May 21 (7)
      • ►  May 20 (13)
      • ►  May 19 (10)
      • ►  May 18 (10)
      • ►  May 17 (8)
      • ►  May 16 (8)
      • ►  May 15 (12)
      • ►  May 14 (10)
      • ►  May 13 (19)
      • ►  May 12 (7)
      • ►  May 11 (6)
      • ►  May 10 (11)
      • ►  May 09 (7)
      • ►  May 08 (4)
      • ►  May 07 (4)
      • ►  May 06 (12)
      • ►  May 05 (6)
      • ►  May 04 (3)
      • ►  May 03 (7)
      • ►  May 02 (13)
      • ►  May 01 (2)
    • ►  April (36)
      • ►  Apr 30 (3)
      • ►  Apr 29 (11)
      • ►  Apr 28 (2)
      • ►  Apr 27 (2)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (3)
      • ►  Apr 21 (1)
      • ►  Apr 20 (4)
      • ►  Apr 16 (1)
      • ►  Apr 14 (1)
      • ►  Apr 08 (1)
      • ►  Apr 07 (2)
    • ►  March (24)
      • ►  Mar 30 (3)
      • ►  Mar 25 (1)
      • ►  Mar 24 (1)
      • ►  Mar 23 (1)
      • ►  Mar 22 (1)
      • ►  Mar 17 (1)
      • ►  Mar 15 (2)
      • ►  Mar 13 (1)
      • ►  Mar 12 (2)
      • ►  Mar 11 (2)
      • ►  Mar 10 (1)
      • ►  Mar 09 (1)
      • ►  Mar 06 (1)
      • ►  Mar 05 (2)
      • ►  Mar 03 (1)
      • ►  Mar 02 (2)
      • ►  Mar 01 (1)
    • ►  February (19)
      • ►  Feb 28 (4)
      • ►  Feb 26 (1)
      • ►  Feb 23 (1)
      • ►  Feb 21 (1)
      • ►  Feb 20 (1)
      • ►  Feb 19 (1)
      • ►  Feb 18 (2)
      • ►  Feb 17 (1)
      • ►  Feb 16 (1)
      • ►  Feb 15 (3)
      • ►  Feb 07 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (1)
    • ►  January (12)
      • ►  Jan 28 (3)
      • ►  Jan 26 (5)
      • ►  Jan 24 (2)
      • ►  Jan 07 (1)
      • ►  Jan 05 (1)
  • ►  2017 (105)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 27 (2)
      • ►  Dec 24 (1)
      • ►  Dec 15 (1)
      • ►  Dec 02 (4)
    • ►  November (8)
      • ►  Nov 24 (1)
      • ►  Nov 23 (1)
      • ►  Nov 17 (1)
      • ►  Nov 16 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (2)
    • ►  October (1)
      • ►  Oct 09 (1)
    • ►  August (2)
      • ►  Aug 12 (1)
      • ►  Aug 04 (1)
    • ►  July (18)
      • ►  Jul 28 (1)
      • ►  Jul 27 (1)
      • ►  Jul 26 (4)
      • ►  Jul 19 (1)
      • ►  Jul 17 (1)
      • ►  Jul 15 (2)
      • ►  Jul 14 (2)
      • ►  Jul 13 (1)
      • ►  Jul 12 (2)
      • ►  Jul 02 (3)
    • ►  June (9)
      • ►  Jun 25 (1)
      • ►  Jun 18 (1)
      • ►  Jun 16 (1)
      • ►  Jun 14 (2)
      • ►  Jun 08 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (1)
    • ►  May (22)
      • ►  May 29 (1)
      • ►  May 20 (2)
      • ►  May 19 (1)
      • ►  May 18 (1)
      • ►  May 17 (1)
      • ►  May 14 (3)
      • ►  May 13 (1)
      • ►  May 09 (1)
      • ►  May 07 (3)
      • ►  May 06 (2)
      • ►  May 05 (1)
      • ►  May 04 (2)
      • ►  May 03 (1)
      • ►  May 02 (1)
      • ►  May 01 (1)
    • ►  April (25)
      • ►  Apr 30 (1)
      • ►  Apr 29 (1)
      • ►  Apr 27 (1)
      • ►  Apr 24 (2)
      • ►  Apr 23 (1)
      • ►  Apr 18 (1)
      • ►  Apr 17 (2)
      • ►  Apr 16 (1)
      • ►  Apr 14 (2)
      • ►  Apr 12 (2)
      • ►  Apr 11 (1)
      • ►  Apr 08 (1)
      • ►  Apr 06 (1)
      • ►  Apr 05 (1)
      • ►  Apr 04 (1)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (2)
    • ►  March (11)
      • ►  Mar 31 (2)
      • ►  Mar 30 (2)
      • ►  Mar 28 (1)
      • ►  Mar 27 (3)
      • ►  Mar 25 (2)
      • ►  Mar 11 (1)
  • ►  2016 (31)
    • ►  August (1)
      • ►  Aug 10 (1)
    • ►  March (3)
      • ►  Mar 17 (1)
      • ►  Mar 12 (1)
      • ►  Mar 04 (1)
    • ►  February (11)
      • ►  Feb 29 (1)
      • ►  Feb 24 (1)
      • ►  Feb 22 (1)
      • ►  Feb 21 (2)
      • ►  Feb 11 (1)
      • ►  Feb 09 (2)
      • ►  Feb 03 (1)
      • ►  Feb 02 (1)
      • ►  Feb 01 (1)
    • ►  January (16)
      • ►  Jan 26 (2)
      • ►  Jan 24 (1)
      • ►  Jan 22 (2)
      • ►  Jan 21 (1)
      • ►  Jan 20 (1)
      • ►  Jan 19 (2)
      • ►  Jan 16 (1)
      • ►  Jan 14 (3)
      • ►  Jan 13 (1)
      • ►  Jan 12 (1)
      • ►  Jan 07 (1)
  • ►  2015 (1803)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 26 (1)
      • ►  Dec 25 (1)
      • ►  Dec 23 (1)
      • ►  Dec 22 (2)
      • ►  Dec 19 (1)
      • ►  Dec 01 (2)
    • ►  November (11)
      • ►  Nov 28 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (1)
      • ►  Nov 09 (3)
      • ►  Nov 07 (1)
      • ►  Nov 05 (1)
      • ►  Nov 03 (1)
      • ►  Nov 02 (1)
    • ►  October (31)
      • ►  Oct 31 (1)
      • ►  Oct 30 (2)
      • ►  Oct 29 (1)
      • ►  Oct 28 (3)
      • ►  Oct 26 (1)
      • ►  Oct 24 (1)
      • ►  Oct 22 (1)
      • ►  Oct 21 (1)
      • ►  Oct 19 (1)
      • ►  Oct 17 (1)
      • ►  Oct 16 (1)
      • ►  Oct 15 (1)
      • ►  Oct 14 (1)
      • ►  Oct 11 (2)
      • ►  Oct 09 (4)
      • ►  Oct 08 (1)
      • ►  Oct 07 (6)
      • ►  Oct 06 (1)
      • ►  Oct 02 (1)
    • ►  September (34)
      • ►  Sep 29 (4)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (3)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (2)
      • ►  Sep 22 (4)
      • ►  Sep 21 (6)
      • ►  Sep 14 (1)
      • ►  Sep 13 (1)
      • ►  Sep 12 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (2)
      • ►  Sep 08 (1)
      • ►  Sep 05 (1)
      • ►  Sep 04 (1)
    • ►  August (6)
      • ►  Aug 22 (1)
      • ►  Aug 20 (1)
      • ►  Aug 08 (1)
      • ►  Aug 07 (2)
      • ►  Aug 06 (1)
    • ►  July (29)
      • ►  Jul 21 (1)
      • ►  Jul 18 (1)
      • ►  Jul 15 (1)
      • ►  Jul 14 (3)
      • ►  Jul 13 (1)
      • ►  Jul 12 (1)
      • ►  Jul 10 (2)
      • ►  Jul 09 (1)
      • ►  Jul 08 (1)
      • ►  Jul 06 (4)
      • ►  Jul 05 (3)
      • ►  Jul 04 (1)
      • ►  Jul 03 (6)
      • ►  Jul 02 (1)
      • ►  Jul 01 (2)
    • ►  June (9)
      • ►  Jun 28 (2)
      • ►  Jun 24 (2)
      • ►  Jun 22 (1)
      • ►  Jun 18 (1)
      • ►  Jun 17 (1)
      • ►  Jun 02 (2)
    • ►  May (141)
      • ►  May 31 (3)
      • ►  May 30 (7)
      • ►  May 29 (8)
      • ►  May 28 (4)
      • ►  May 27 (4)
      • ►  May 26 (5)
      • ►  May 25 (1)
      • ►  May 24 (4)
      • ►  May 23 (8)
      • ►  May 22 (6)
      • ►  May 21 (4)
      • ►  May 20 (4)
      • ►  May 19 (7)
      • ►  May 18 (3)
      • ►  May 17 (2)
      • ►  May 16 (7)
      • ►  May 15 (10)
      • ►  May 14 (7)
      • ►  May 13 (5)
      • ►  May 12 (2)
      • ►  May 11 (2)
      • ►  May 10 (4)
      • ►  May 09 (3)
      • ►  May 08 (3)
      • ►  May 07 (5)
      • ►  May 06 (4)
      • ►  May 05 (4)
      • ►  May 04 (2)
      • ►  May 03 (3)
      • ►  May 02 (4)
      • ►  May 01 (6)
    • ►  April (150)
      • ►  Apr 29 (4)
      • ►  Apr 28 (5)
      • ►  Apr 24 (3)
      • ►  Apr 22 (1)
      • ►  Apr 19 (3)
      • ►  Apr 17 (2)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (1)
      • ►  Apr 12 (3)
      • ►  Apr 10 (13)
      • ►  Apr 09 (18)
      • ►  Apr 08 (8)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (17)
      • ►  Apr 04 (9)
      • ►  Apr 03 (4)
      • ►  Apr 02 (14)
      • ►  Apr 01 (14)
    • ►  March (609)
      • ►  Mar 31 (29)
      • ►  Mar 30 (24)
      • ►  Mar 29 (18)
      • ►  Mar 28 (15)
      • ►  Mar 27 (7)
      • ►  Mar 26 (14)
      • ►  Mar 25 (6)
      • ►  Mar 23 (11)
      • ►  Mar 22 (22)
      • ►  Mar 21 (29)
      • ►  Mar 20 (41)
      • ►  Mar 19 (34)
      • ►  Mar 18 (34)
      • ►  Mar 17 (41)
      • ►  Mar 16 (31)
      • ►  Mar 15 (1)
      • ►  Mar 14 (3)
      • ►  Mar 13 (17)
      • ►  Mar 12 (12)
      • ►  Mar 11 (12)
      • ►  Mar 10 (19)
      • ►  Mar 09 (25)
      • ►  Mar 08 (20)
      • ►  Mar 07 (17)
      • ►  Mar 06 (20)
      • ►  Mar 05 (19)
      • ►  Mar 04 (30)
      • ►  Mar 03 (5)
      • ►  Mar 02 (18)
      • ►  Mar 01 (35)
    • ►  February (652)
      • ►  Feb 28 (19)
      • ►  Feb 27 (19)
      • ►  Feb 26 (28)
      • ►  Feb 25 (18)
      • ►  Feb 24 (8)
      • ►  Feb 23 (26)
      • ►  Feb 22 (15)
      • ►  Feb 21 (40)
      • ►  Feb 20 (24)
      • ►  Feb 19 (40)
      • ►  Feb 18 (38)
      • ►  Feb 17 (39)
      • ►  Feb 16 (53)
      • ►  Feb 15 (28)
      • ►  Feb 14 (31)
      • ►  Feb 13 (14)
      • ►  Feb 12 (26)
      • ►  Feb 11 (18)
      • ►  Feb 10 (32)
      • ►  Feb 09 (15)
      • ►  Feb 08 (7)
      • ►  Feb 07 (24)
      • ►  Feb 06 (15)
      • ►  Feb 05 (16)
      • ►  Feb 04 (21)
      • ►  Feb 03 (9)
      • ►  Feb 02 (23)
      • ►  Feb 01 (6)
    • ►  January (122)
      • ►  Jan 31 (10)
      • ►  Jan 30 (21)
      • ►  Jan 29 (4)
      • ►  Jan 28 (5)
      • ►  Jan 27 (9)
      • ►  Jan 26 (3)
      • ►  Jan 25 (6)
      • ►  Jan 24 (9)
      • ►  Jan 23 (5)
      • ►  Jan 22 (4)
      • ►  Jan 21 (3)
      • ►  Jan 20 (1)
      • ►  Jan 17 (1)
      • ►  Jan 16 (2)
      • ►  Jan 15 (2)
      • ►  Jan 14 (2)
      • ►  Jan 13 (8)
      • ►  Jan 12 (4)
      • ►  Jan 11 (4)
      • ►  Jan 10 (2)
      • ►  Jan 09 (6)
      • ►  Jan 08 (6)
      • ►  Jan 07 (5)
  • ►  2014 (1062)
    • ►  November (6)
      • ►  Nov 26 (2)
      • ►  Nov 25 (3)
      • ►  Nov 24 (1)
    • ►  October (10)
      • ►  Oct 23 (2)
      • ►  Oct 16 (3)
      • ►  Oct 12 (4)
      • ►  Oct 06 (1)
    • ►  September (270)
      • ►  Sep 21 (34)
      • ►  Sep 20 (15)
      • ►  Sep 17 (9)
      • ►  Sep 13 (10)
      • ►  Sep 12 (33)
      • ►  Sep 11 (30)
      • ►  Sep 10 (1)
      • ►  Sep 09 (14)
      • ►  Sep 08 (23)
      • ►  Sep 07 (5)
      • ►  Sep 06 (19)
      • ►  Sep 05 (18)
      • ►  Sep 04 (24)
      • ►  Sep 03 (18)
      • ►  Sep 02 (10)
      • ►  Sep 01 (7)
    • ►  August (497)
      • ►  Aug 31 (15)
      • ►  Aug 30 (20)
      • ►  Aug 28 (1)
      • ►  Aug 25 (10)
      • ►  Aug 24 (26)
      • ►  Aug 23 (23)
      • ►  Aug 22 (14)
      • ►  Aug 21 (22)
      • ►  Aug 20 (21)
      • ►  Aug 19 (18)
      • ►  Aug 18 (66)
      • ►  Aug 17 (21)
      • ►  Aug 16 (16)
      • ►  Aug 15 (34)
      • ►  Aug 14 (25)
      • ►  Aug 13 (12)
      • ►  Aug 11 (7)
      • ►  Aug 10 (18)
      • ►  Aug 09 (13)
      • ►  Aug 08 (13)
      • ►  Aug 07 (26)
      • ►  Aug 06 (21)
      • ►  Aug 05 (7)
      • ►  Aug 04 (15)
      • ►  Aug 03 (20)
      • ►  Aug 02 (5)
      • ►  Aug 01 (8)
    • ►  July (85)
      • ►  Jul 31 (5)
      • ►  Jul 30 (26)
      • ►  Jul 29 (21)
      • ►  Jul 28 (33)
    • ►  March (3)
      • ►  Mar 25 (1)
      • ►  Mar 12 (1)
      • ►  Mar 09 (1)
    • ►  February (23)
      • ►  Feb 14 (1)
      • ►  Feb 06 (2)
      • ►  Feb 04 (4)
      • ►  Feb 03 (1)
      • ►  Feb 02 (6)
      • ►  Feb 01 (9)
    • ►  January (168)
      • ►  Jan 31 (10)
      • ►  Jan 30 (6)
      • ►  Jan 29 (4)
      • ►  Jan 27 (6)
      • ►  Jan 26 (1)
      • ►  Jan 25 (7)
      • ►  Jan 24 (13)
      • ►  Jan 23 (11)
      • ►  Jan 22 (3)
      • ►  Jan 21 (6)
      • ►  Jan 20 (3)
      • ►  Jan 19 (8)
      • ►  Jan 18 (7)
      • ►  Jan 17 (7)
      • ►  Jan 16 (13)
      • ►  Jan 15 (1)
      • ►  Jan 12 (1)
      • ►  Jan 11 (1)
      • ►  Jan 09 (3)
      • ►  Jan 08 (6)
      • ►  Jan 07 (7)
      • ►  Jan 06 (14)
      • ►  Jan 05 (10)
      • ►  Jan 04 (2)
      • ►  Jan 02 (6)
      • ►  Jan 01 (12)
  • ►  2013 (210)
    • ►  December (199)
      • ►  Dec 30 (5)
      • ►  Dec 29 (8)
      • ►  Dec 28 (6)
      • ►  Dec 27 (11)
      • ►  Dec 26 (9)
      • ►  Dec 25 (7)
      • ►  Dec 24 (15)
      • ►  Dec 23 (13)
      • ►  Dec 22 (3)
      • ►  Dec 21 (9)
      • ►  Dec 20 (10)
      • ►  Dec 19 (7)
      • ►  Dec 18 (4)
      • ►  Dec 17 (7)
      • ►  Dec 16 (6)
      • ►  Dec 15 (5)
      • ►  Dec 14 (3)
      • ►  Dec 13 (5)
      • ►  Dec 12 (2)
      • ►  Dec 11 (4)
      • ►  Dec 10 (9)
      • ►  Dec 09 (11)
      • ►  Dec 08 (11)
      • ►  Dec 07 (14)
      • ►  Dec 06 (3)
      • ►  Dec 05 (3)
      • ►  Dec 04 (6)
      • ►  Dec 03 (1)
      • ►  Dec 02 (2)
    • ►  September (2)
      • ►  Sep 25 (2)
    • ►  April (1)
      • ►  Apr 30 (1)
    • ►  January (8)
      • ►  Jan 22 (1)
      • ►  Jan 20 (4)
      • ►  Jan 16 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (1)
  • ►  2012 (2)
    • ►  December (1)
      • ►  Dec 21 (1)
    • ►  January (1)
      • ►  Jan 11 (1)
  • ►  2011 (26)
    • ►  December (25)
      • ►  Dec 22 (1)
      • ►  Dec 17 (3)
      • ►  Dec 16 (2)
      • ►  Dec 15 (1)
      • ►  Dec 14 (1)
      • ►  Dec 13 (2)
      • ►  Dec 12 (1)
      • ►  Dec 11 (1)
      • ►  Dec 10 (1)
      • ►  Dec 07 (4)
      • ►  Dec 06 (2)
      • ►  Dec 04 (1)
      • ►  Dec 03 (2)
      • ►  Dec 02 (3)
    • ►  November (1)
      • ►  Nov 19 (1)
  • ►  2010 (2)
    • ►  September (1)
      • ►  Sep 11 (1)
    • ►  January (1)
      • ►  Jan 16 (1)
  • ►  2008 (1)
    • ►  April (1)
      • ►  Apr 05 (1)

Labels

  • Estradiol

Report Abuse

Followers

Total Pageviews

Translate

Simple theme. Theme images by merrymoonmary. Powered by Blogger.