A Medley of Potpourri

A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.

Search This Blog

Thursday, June 23, 2022

Quantum electrodynamics

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Quantum_electrodynamics 
 
Quantum field theory
Feynmann Diagram Gluon Radiation.svg
Feynman diagram

History
Background
Symmetries
Tools
Equations
Standard Model
Incomplete theories
Scientists

In particle physics, quantum electrodynamics (QED) is the relativistic quantum field theory of electrodynamics. In essence, it describes how light and matter interact and is the first theory where full agreement between quantum mechanics and special relativity is achieved. QED mathematically describes all phenomena involving electrically charged particles interacting by means of exchange of photons and represents the quantum counterpart of classical electromagnetism giving a complete account of matter and light interaction.

In technical terms, QED can be described as a perturbation theory of the electromagnetic quantum vacuum. Richard Feynman called it "the jewel of physics" for its extremely accurate predictions of quantities like the anomalous magnetic moment of the electron and the Lamb shift of the energy levels of hydrogen.

History

Main articles: History of quantum mechanics and History of quantum field theory
 
Paul Dirac

The first formulation of a quantum theory describing radiation and matter interaction is attributed to British scientist Paul Dirac, who (during the 1920s) was able to compute the coefficient of spontaneous emission of an atom.

Dirac described the quantization of the electromagnetic field as an ensemble of harmonic oscillators with the introduction of the concept of creation and annihilation operators of particles. In the following years, with contributions from Wolfgang Pauli, Eugene Wigner, Pascual Jordan, Werner Heisenberg and an elegant formulation of quantum electrodynamics by Enrico Fermi, physicists came to believe that, in principle, it would be possible to perform any computation for any physical process involving photons and charged particles. However, further studies by Felix Bloch with Arnold Nordsieck, and Victor Weisskopf, in 1937 and 1939, revealed that such computations were reliable only at a first order of perturbation theory, a problem already pointed out by Robert Oppenheimer. At higher orders in the series infinities emerged, making such computations meaningless and casting serious doubts on the internal consistency of the theory itself. With no solution for this problem known at the time, it appeared that a fundamental incompatibility existed between special relativity and quantum mechanics.

Hans Bethe

Difficulties with the theory increased through the end of the 1940s. Improvements in microwave technology made it possible to take more precise measurements of the shift of the levels of a hydrogen atom, now known as the Lamb shift and magnetic moment of the electron. These experiments exposed discrepancies which the theory was unable to explain.

A first indication of a possible way out was given by Hans Bethe in 1947, after attending the Shelter Island Conference. While he was traveling by train from the conference to Schenectady he made the first non-relativistic computation of the shift of the lines of the hydrogen atom as measured by Lamb and Retherford. Despite the limitations of the computation, agreement was excellent. The idea was simply to attach infinities to corrections of mass and charge that were actually fixed to a finite value by experiments. In this way, the infinities get absorbed in those constants and yield a finite result in good agreement with experiments. This procedure was named renormalization.

Feynman (center) and Oppenheimer (right) at Los Alamos.

Based on Bethe's intuition and fundamental papers on the subject by Shin'ichirō Tomonaga, Julian Schwinger, Richard Feynman and Freeman Dyson, it was finally possible to get fully covariant formulations that were finite at any order in a perturbation series of quantum electrodynamics. Shin'ichirō Tomonaga, Julian Schwinger and Richard Feynman were jointly awarded with the 1965 Nobel Prize in Physics for their work in this area. Their contributions, and those of Freeman Dyson, were about covariant and gauge-invariant formulations of quantum electrodynamics that allow computations of observables at any order of perturbation theory. Feynman's mathematical technique, based on his diagrams, initially seemed very different from the field-theoretic, operator-based approach of Schwinger and Tomonaga, but Freeman Dyson later showed that the two approaches were equivalent. Renormalization, the need to attach a physical meaning at certain divergences appearing in the theory through integrals, has subsequently become one of the fundamental aspects of quantum field theory and has come to be seen as a criterion for a theory's general acceptability. Even though renormalization works very well in practice, Feynman was never entirely comfortable with its mathematical validity, even referring to renormalization as a "shell game" and "hocus pocus".

QED has served as the model and template for all subsequent quantum field theories. One such subsequent theory is quantum chromodynamics, which began in the early 1960s and attained its present form in the 1970s work by H. David Politzer, Sidney Coleman, David Gross and Frank Wilczek. Building on the pioneering work of Schwinger, Gerald Guralnik, Dick Hagen, and Tom Kibble, Peter Higgs, Jeffrey Goldstone, and others, Sheldon Glashow, Steven Weinberg and Abdus Salam independently showed how the weak nuclear force and quantum electrodynamics could be merged into a single electroweak force.

Feynman's view of quantum electrodynamics

Introduction

Near the end of his life, Richard Feynman gave a series of lectures on QED intended for the lay public. These lectures were transcribed and published as Feynman (1985), QED: The Strange Theory of Light and Matter, a classic non-mathematical exposition of QED from the point of view articulated below.

The key components of Feynman's presentation of QED are three basic actions.

A photon goes from one place and time to another place and time.
An electron goes from one place and time to another place and time.
An electron emits or absorbs a photon at a certain place and time.
Feynman diagram elements

These actions are represented in the form of visual shorthand by the three basic elements of Feynman diagrams: a wavy line for the photon, a straight line for the electron and a junction of two straight lines and a wavy one for a vertex representing emission or absorption of a photon by an electron. These can all be seen in the adjacent diagram.

As well as the visual shorthand for the actions Feynman introduces another kind of shorthand for the numerical quantities called probability amplitudes. The probability is the square of the absolute value of total probability amplitude, probability = | f ( amplitude ) | 2 {\displaystyle {\text{probability}}=|f({\text{amplitude}})|^{2}} {\displaystyle {\text{probability}}=|f({\text{amplitude}})|^{2}}. If a photon moves from one place and time A {\displaystyle A} A to another place and time B {\displaystyle B} B, the associated quantity is written in Feynman's shorthand as P ( A  to  B ) {\displaystyle P(A{\text{ to }}B)} {\displaystyle P(A{\text{ to }}B)}. The similar quantity for an electron moving from C {\displaystyle C} C to D {\displaystyle D} D is written E ( C  to  D ) {\displaystyle E(C{\text{ to }}D)} {\displaystyle E(C{\text{ to }}D)}. The quantity that tells us about the probability amplitude for the emission or absorption of a photon he calls j. This is related to, but not the same as, the measured electron charge e. 

QED is based on the assumption that complex interactions of many electrons and photons can be represented by fitting together a suitable collection of the above three building blocks and then using the probability amplitudes to calculate the probability of any such complex interaction. It turns out that the basic idea of QED can be communicated while assuming that the square of the total of the probability amplitudes mentioned above (P(A to B), E(C to D) and j) acts just like our everyday probability (a simplification made in Feynman's book). Later on, this will be corrected to include specifically quantum-style mathematics, following Feynman.

The basic rules of probability amplitudes that will be used are:

  1. If an event can happen in a variety of different ways, then its probability amplitude is the sum of the probability amplitudes of the possible ways.
  2. If a process involves a number of independent sub-processes, then its probability amplitude is the product of the component probability amplitudes.

Basic constructions

Suppose, we start with one electron at a certain place and time (this place and time being given the arbitrary label A) and a photon at another place and time (given the label B). A typical question from a physical standpoint is: "What is the probability of finding an electron at C (another place and a later time) and a photon at D (yet another place and time)?". The simplest process to achieve this end is for the electron to move from A to C (an elementary action) and for the photon to move from B to D (another elementary action). From a knowledge of the probability amplitudes of each of these sub-processes – E(A to C) and P(B to D) – we would expect to calculate the probability amplitude of both happening together by multiplying them, using rule b) above. This gives a simple estimated overall probability amplitude, which is squared to give an estimated probability.

Compton scattering

But there are other ways in which the end result could come about. The electron might move to a place and time E, where it absorbs the photon; then move on before emitting another photon at F; then move on to C, where it is detected, while the new photon moves on to D. The probability of this complex process can again be calculated by knowing the probability amplitudes of each of the individual actions: three electron actions, two photon actions and two vertexes – one emission and one absorption. We would expect to find the total probability amplitude by multiplying the probability amplitudes of each of the actions, for any chosen positions of E and F. We then, using rule a) above, have to add up all these probability amplitudes for all the alternatives for E and F. (This is not elementary in practice and involves integration.) But there is another possibility, which is that the electron first moves to G, where it emits a photon, which goes on to D, while the electron moves on to H, where it absorbs the first photon, before moving on to C. Again, we can calculate the probability amplitude of these possibilities (for all points G and H). We then have a better estimation for the total probability amplitude by adding the probability amplitudes of these two possibilities to our original simple estimate. Incidentally, the name given to this process of a photon interacting with an electron in this way is Compton scattering.

There is an infinite number of other intermediate "virtual" processes in which more and more photons are absorbed and/or emitted. For each of these processes, a Feynman diagram could be drawn describing it. This implies a complex computation for the resulting probability amplitudes, but provided it is the case that the more complicated the diagram, the less it contributes to the result, it is only a matter of time and effort to find as accurate an answer as one wants to the original question. This is the basic approach of QED. To calculate the probability of any interactive process between electrons and photons, it is a matter of first noting, with Feynman diagrams, all the possible ways in which the process can be constructed from the three basic elements. Each diagram involves some calculation involving definite rules to find the associated probability amplitude.

That basic scaffolding remains when one moves to a quantum description, but some conceptual changes are needed. One is that whereas we might expect in our everyday life that there would be some constraints on the points to which a particle can move, that is not true in full quantum electrodynamics. There is a nonzero probability amplitude of an electron at A, or a photon at B, moving as a basic action to any other place and time in the universe. That includes places that could only be reached at speeds greater than that of light and also earlier times. (An electron moving backwards in time can be viewed as a positron moving forward in time.)

Probability amplitudes

Feynman replaces complex numbers with spinning arrows, which start at emission and end at detection of a particle. The sum of all resulting arrows gives a final arrow whose length squared equals the probability of the event. In this diagram, light emitted by the source S can reach the detector at P by bouncing off the mirror (in blue) at various points. Each one of the paths has an arrow associated with it (whose direction changes uniformly with the time taken for the light to traverse the path). To correctly calculate the total probability for light to reach P starting at S, one needs to sum the arrows for all such paths. The graph below depicts the total time spent to traverse each of the paths above.

Quantum mechanics introduces an important change in the way probabilities are computed. Probabilities are still represented by the usual real numbers we use for probabilities in our everyday world, but probabilities are computed as the square modulus of probability amplitudes, which are complex numbers.

Feynman avoids exposing the reader to the mathematics of complex numbers by using a simple but accurate representation of them as arrows on a piece of paper or screen. (These must not be confused with the arrows of Feynman diagrams, which are simplified representations in two dimensions of a relationship between points in three dimensions of space and one of time.) The amplitude arrows are fundamental to the description of the world given by quantum theory. They are related to our everyday ideas of probability by the simple rule that the probability of an event is the square of the length of the corresponding amplitude arrow. So, for a given process, if two probability amplitudes, v and w, are involved, the probability of the process will be given either by

P = | v + w | 2 {\displaystyle P=|\mathbf {v} +\mathbf {w} |^{2}} {\displaystyle P=|\mathbf {v} +\mathbf {w} |^{2}}

or

P = | v w | 2 . {\displaystyle P=|\mathbf {v} \,\mathbf {w} |^{2}.} {\displaystyle P=|\mathbf {v} \,\mathbf {w} |^{2}.}

The rules as regards adding or multiplying, however, are the same as above. But where you would expect to add or multiply probabilities, instead you add or multiply probability amplitudes that now are complex numbers.

Addition of probability amplitudes as complex numbers
 
Multiplication of probability amplitudes as complex numbers

Addition and multiplication are common operations in the theory of complex numbers and are given in the figures. The sum is found as follows. Let the start of the second arrow be at the end of the first. The sum is then a third arrow that goes directly from the beginning of the first to the end of the second. The product of two arrows is an arrow whose length is the product of the two lengths. The direction of the product is found by adding the angles that each of the two have been turned through relative to a reference direction: that gives the angle that the product is turned relative to the reference direction.

That change, from probabilities to probability amplitudes, complicates the mathematics without changing the basic approach. But that change is still not quite enough because it fails to take into account the fact that both photons and electrons can be polarized, which is to say that their orientations in space and time have to be taken into account. Therefore, P(A to B) consists of 16 complex numbers, or probability amplitude arrows. There are also some minor changes to do with the quantity j, which may have to be rotated by a multiple of 90° for some polarizations, which is only of interest for the detailed bookkeeping.

Associated with the fact that the electron can be polarized is another small necessary detail, which is connected with the fact that an electron is a fermion and obeys Fermi–Dirac statistics. The basic rule is that if we have the probability amplitude for a given complex process involving more than one electron, then when we include (as we always must) the complementary Feynman diagram in which we exchange two electron events, the resulting amplitude is the reverse – the negative – of the first. The simplest case would be two electrons starting at A and B ending at C and D. The amplitude would be calculated as the "difference", E(A to D) × E(B to C) − E(A to C) × E(B to D), where we would expect, from our everyday idea of probabilities, that it would be a sum.

Propagators

Finally, one has to compute P(A to B) and E(C to D) corresponding to the probability amplitudes for the photon and the electron respectively. These are essentially the solutions of the Dirac equation, which describe the behavior of the electron's probability amplitude and the Maxwell's equations, which describes the behavior of the photon's probability amplitude. These are called Feynman propagators. The translation to a notation commonly used in the standard literature is as follows:

P ( A  to  B ) → D F ( x B − x A ) , E ( C  to  D ) → S F ( x D − x C ) , {\displaystyle P(A{\text{ to }}B)\to D_{F}(x_{B}-x_{A}),\quad E(C{\text{ to }}D)\to S_{F}(x_{D}-x_{C}),} {\displaystyle P(A{\text{ to }}B)\to D_{F}(x_{B}-x_{A}),\quad E(C{\text{ to }}D)\to S_{F}(x_{D}-x_{C}),}

where a shorthand symbol such as x A {\displaystyle x_{A}} x_{A} stands for the four real numbers that give the time and position in three dimensions of the point labeled A.

Mass renormalization

Main article: Self-energy
 
Electron self-energy loop

A problem arose historically which held up progress for twenty years: although we start with the assumption of three basic "simple" actions, the rules of the game say that if we want to calculate the probability amplitude for an electron to get from A to B, we must take into account all the possible ways: all possible Feynman diagrams with those endpoints. Thus there will be a way in which the electron travels to C, emits a photon there and then absorbs it again at D before moving on to B. Or it could do this kind of thing twice, or more. In short, we have a fractal-like situation in which if we look closely at a line, it breaks up into a collection of "simple" lines, each of which, if looked at closely, are in turn composed of "simple" lines, and so on ad infinitum. This is a challenging situation to handle. If adding that detail only altered things slightly, then it would not have been too bad, but disaster struck when it was found that the simple correction mentioned above led to infinite probability amplitudes. In time this problem was "fixed" by the technique of renormalization. However, Feynman himself remained unhappy about it, calling it a "dippy process".

Conclusions

Within the above framework physicists were then able to calculate to a high degree of accuracy some of the properties of electrons, such as the anomalous magnetic dipole moment. However, as Feynman points out, it fails to explain why particles such as the electron have the masses they do. "There is no theory that adequately explains these numbers. We use the numbers in all our theories, but we don't understand them – what they are, or where they come from. I believe that from a fundamental point of view, this is a very interesting and serious problem."

Mathematical formulation

QED action

Mathematically, QED is an abelian gauge theory with the symmetry group U(1), defined on Minkowski space (flat spacetime). The gauge field, which mediates the interaction between the charged spin-1/2 fields, is the electromagnetic field. The QED Lagrangian for a spin-1/2 field interacting with the electromagnetic field in natural units gives rise to the action

QED Action

S QED = ∫ d 4 x [ − 1 4 F μ ν F μ ν + ψ ¯ ( i γ μ D μ − m ) ψ ] {\displaystyle S_{\text{QED}}=\int d^{4}x\,\left[-{\frac {1}{4}}F^{\mu \nu }F_{\mu \nu }+{\bar {\psi }}\,(i\gamma ^{\mu }D_{\mu }-m)\,\psi \right]} {\displaystyle S_{\text{QED}}=\int d^{4}x\,\left[-{\frac {1}{4}}F^{\mu \nu }F_{\mu \nu }+{\bar {\psi }}\,(i\gamma ^{\mu }D_{\mu }-m)\,\psi \right]}

where

  • γ μ {\displaystyle \gamma ^{\mu }} \gamma ^{\mu } are Dirac matrices.
  • ψ {\displaystyle \psi } \psi a bispinor field of spin-1/2 particles (e.g. electron–positron field).
  • ψ ¯ ≡ ψ † γ 0 {\displaystyle {\bar {\psi }}\equiv \psi ^{\dagger }\gamma ^{0}} {\bar {\psi }}\equiv \psi ^{\dagger }\gamma ^{0}, called "psi-bar", is sometimes referred to as the Dirac adjoint.
  • D μ ≡ ∂ μ + i e A μ + i e B μ {\displaystyle D_{\mu }\equiv \partial _{\mu }+ieA_{\mu }+ieB_{\mu }} {\displaystyle D_{\mu }\equiv \partial _{\mu }+ieA_{\mu }+ieB_{\mu }} is the gauge covariant derivative.
    • e is the coupling constant, equal to the electric charge of the bispinor field.
    • A μ {\displaystyle A_{\mu }} A_{\mu } is the covariant four-potential of the electromagnetic field generated by the electron itself. It is also known as a gauge field or a U ( 1 ) {\displaystyle {\text{U}}(1)} {\displaystyle {\text{U}}(1)} connection.
    • B μ {\displaystyle B_{\mu }} B_{\mu } is the external field imposed by external source.
  • m is the mass of the electron or positron.
  • F μ ν = ∂ μ A ν − ∂ ν A μ {\displaystyle F_{\mu \nu }=\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }} {\displaystyle F_{\mu \nu }=\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }} is the electromagnetic field tensor. This is also known as the curvature of the gauge field.

Expanding the covariant derivative reveals a second useful form of the Lagrangian (external field B μ {\displaystyle B_{\mu }} B_{\mu } set to zero for simplicity)

L = − 1 4 F μ ν F μ ν + ψ ¯ ( i γ μ ∂ μ − m ) ψ − j μ A μ {\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+{\bar {\psi }}(i\gamma ^{\mu }\partial _{\mu }-m)\psi -j^{\mu }A_{\mu }} {\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+{\bar {\psi }}(i\gamma ^{\mu }\partial _{\mu }-m)\psi -j^{\mu }A_{\mu }}

where j μ {\displaystyle j^{\mu }} j^{\mu } is the conserved U ( 1 ) {\displaystyle {\text{U}}(1)} {\displaystyle {\text{U}}(1)} current arising from Noether's theorem. It is written

j μ = ψ ¯ γ μ ψ . {\displaystyle j^{\mu }={\bar {\psi }}\gamma ^{\mu }\psi .} {\displaystyle j^{\mu }={\bar {\psi }}\gamma ^{\mu }\psi .}

Equations of motion

Expanding the covariant derivative in the Lagrangian gives

L = − 1 4 F μ ν F μ ν + i ψ ¯ γ μ ∂ μ ψ − e ψ ¯ γ μ A μ ψ − m ψ ¯ ψ {\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+i{\bar {\psi }}\gamma ^{\mu }\partial _{\mu }\psi -e{\bar {\psi }}\gamma ^{\mu }A_{\mu }\psi -m{\bar {\psi }}\psi } {\displaystyle {\mathcal {L}}=-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+i{\bar {\psi }}\gamma ^{\mu }\partial _{\mu }\psi -e{\bar {\psi }}\gamma ^{\mu }A_{\mu }\psi -m{\bar {\psi }}\psi }
= − 1 4 F μ ν F μ ν + i ψ ¯ γ μ ∂ μ ψ − m ψ ¯ ψ − e j μ A μ . {\displaystyle =-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+i{\bar {\psi }}\gamma ^{\mu }\partial _{\mu }\psi -m{\bar {\psi }}\psi -ej^{\mu }A_{\mu }.} {\displaystyle =-{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu }+i{\bar {\psi }}\gamma ^{\mu }\partial _{\mu }\psi -m{\bar {\psi }}\psi -ej^{\mu }A_{\mu }.}

For simplicity, B μ {\displaystyle B_{\mu }} B_{\mu } has been set to zero. Alternatively, we can absorb B μ {\displaystyle B_{\mu }} B_{\mu } into a new gauge field A μ ′ = A μ + B μ {\displaystyle A'_{\mu }=A_{\mu }+B_{\mu }} {\displaystyle A'_{\mu }=A_{\mu }+B_{\mu }} and relabel the new field as A μ . {\displaystyle A_{\mu }.} {\displaystyle A_{\mu }.}

From this Lagrangian, the equations of motion for the ψ {\displaystyle \psi } \psi and A μ {\displaystyle A_{\mu }} A_{\mu } fields can be obtained.

Equation of motion for ψ

These arise most straightforwardly by considering the Euler-Lagrange equation for ψ ¯ {\displaystyle {\bar {\psi }}} {\displaystyle {\bar {\psi }}}. Since the Lagrangian contains no ∂ μ ψ ¯ {\displaystyle \partial _{\mu }{\bar {\psi }}} {\displaystyle \partial _{\mu }{\bar {\psi }}} terms, we immediately get

∂ L ∂ ψ ¯ = 0 {\displaystyle {\frac {\partial {\mathcal {L}}}{\partial {\bar {\psi }}}}=0} {\displaystyle {\frac {\partial {\mathcal {L}}}{\partial {\bar {\psi }}}}=0}

so the equation of motion can be written ( i γ μ ∂ μ − m ) ψ = e γ μ A μ ψ . {\displaystyle (i\gamma ^{\mu }\partial _{\mu }-m)\psi =e\gamma ^{\mu }A_{\mu }\psi .} {\displaystyle (i\gamma ^{\mu }\partial _{\mu }-m)\psi =e\gamma ^{\mu }A_{\mu }\psi .}

Equation of motion for Aμ

  • Using the Euler–Lagrange equation for the A μ {\displaystyle A_{\mu }} A_{\mu } field,
∂ ν ( ∂ L ∂ ( ∂ ν A μ ) ) − ∂ L ∂ A μ = 0 , {\displaystyle \partial _{\nu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\nu }A_{\mu })}}\right)-{\frac {\partial {\mathcal {L}}}{\partial A_{\mu }}}=0,}
{\displaystyle \partial _{\nu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\nu }A_{\mu })}}\right)-{\frac {\partial {\mathcal {L}}}{\partial A_{\mu }}}=0,}

 

 

 

 

(3)

the derivatives this time are

∂ ν ( ∂ L ∂ ( ∂ ν A μ ) ) = ∂ ν ( ∂ μ A ν − ∂ ν A μ ) , {\displaystyle \partial _{\nu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\nu }A_{\mu })}}\right)=\partial _{\nu }\left(\partial ^{\mu }A^{\nu }-\partial ^{\nu }A^{\mu }\right),}
{\displaystyle \partial _{\nu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\nu }A_{\mu })}}\right)=\partial _{\nu }\left(\partial ^{\mu }A^{\nu }-\partial ^{\nu }A^{\mu }\right),}
∂ L ∂ A μ = − e ψ ¯ γ μ ψ . {\displaystyle {\frac {\partial {\mathcal {L}}}{\partial A_{\mu }}}=-e{\bar {\psi }}\gamma ^{\mu }\psi .}
{\displaystyle {\frac {\partial {\mathcal {L}}}{\partial A_{\mu }}}=-e{\bar {\psi }}\gamma ^{\mu }\psi .}

Substituting back into (3) leads to

∂ μ F μ ν = e ψ ¯ γ ν ψ {\displaystyle \partial _{\mu }F^{\mu \nu }=e{\bar {\psi }}\gamma ^{\nu }\psi } {\displaystyle \partial _{\mu }F^{\mu \nu }=e{\bar {\psi }}\gamma ^{\nu }\psi }

which can be written in terms of the U ( 1 ) {\displaystyle {\text{U}}(1)} {\displaystyle {\text{U}}(1)} current j μ {\displaystyle j^{\mu }} j^{\mu } as

∂ μ F μ ν = e j ν . {\displaystyle \partial _{\mu }F^{\mu \nu }=ej^{\nu }.} {\displaystyle \partial _{\mu }F^{\mu \nu }=ej^{\nu }.}

Now, if we impose the Lorenz gauge condition

∂ μ A μ = 0 , {\displaystyle \partial _{\mu }A^{\mu }=0,}
{\displaystyle \partial _{\mu }A^{\mu }=0,}
the equations reduce to
◻ A μ = e j μ , {\displaystyle \Box A^{\mu }=ej^{\mu },}
{\displaystyle \Box A^{\mu }=ej^{\mu },}
which is a wave equation for the four-potential, the QED version of the classical Maxwell equations in the Lorenz gauge. (The square represents the wave operator, ◻ = ∂ μ ∂ μ {\displaystyle \Box =\partial _{\mu }\partial ^{\mu }} {\displaystyle \Box =\partial _{\mu }\partial ^{\mu }}.)

Interaction picture

This theory can be straightforwardly quantized by treating bosonic and fermionic sectors as free. This permits us to build a set of asymptotic states that can be used to start computation of the probability amplitudes for different processes. In order to do so, we have to compute an evolution operator, which for a given initial state | i ⟩ {\displaystyle |i\rangle } |i\rangle will give a final state ⟨ f | {\displaystyle \langle f|} \langle f| in such a way to have

M f i = ⟨ f | U | i ⟩ . {\displaystyle M_{fi}=\langle f|U|i\rangle .}
{\displaystyle M_{fi}=\langle f|U|i\rangle .}

This technique is also known as the S-matrix. The evolution operator is obtained in the interaction picture, where time evolution is given by the interaction Hamiltonian, which is the integral over space of the second term in the Lagrangian density given above:

V = e ∫ d 3 x ψ ¯ γ μ ψ A μ , {\displaystyle V=e\int d^{3}x\,{\bar {\psi }}\gamma ^{\mu }\psi A_{\mu },}
{\displaystyle V=e\int d^{3}x\,{\bar {\psi }}\gamma ^{\mu }\psi A_{\mu },}

and so, one has

U = T exp ⁡ [ − i ℏ ∫ t 0 t d t ′ V ( t ′ ) ] , {\displaystyle U=T\exp \left[-{\frac {i}{\hbar }}\int _{t_{0}}^{t}dt'\,V(t')\right],}
{\displaystyle U=T\exp \left[-{\frac {i}{\hbar }}\int _{t_{0}}^{t}dt'\,V(t')\right],}

where T is the time-ordering operator. This evolution operator only has meaning as a series, and what we get here is a perturbation series with the fine-structure constant as the development parameter. This series is called the Dyson series.

Feynman diagrams

Despite the conceptual clarity of this Feynman approach to QED, almost no early textbooks follow him in their presentation. When performing calculations, it is much easier to work with the Fourier transforms of the propagators. Experimental tests of quantum electrodynamics are typically scattering experiments. In scattering theory, particles' momenta rather than their positions are considered, and it is convenient to think of particles as being created or annihilated when they interact. Feynman diagrams then look the same, but the lines have different interpretations. The electron line represents an electron with a given energy and momentum, with a similar interpretation of the photon line. A vertex diagram represents the annihilation of one electron and the creation of another together with the absorption or creation of a photon, each having specified energies and momenta.

Using Wick's theorem on the terms of the Dyson series, all the terms of the S-matrix for quantum electrodynamics can be computed through the technique of Feynman diagrams. In this case, rules for drawing are the following:

Qed rules.jpg
Qed2e.jpg

To these rules we must add a further one for closed loops that implies an integration on momenta ∫ d 4 p / ( 2 π ) 4 {\textstyle \int d^{4}p/(2\pi )^{4}} {\textstyle \int d^{4}p/(2\pi )^{4}}, since these internal ("virtual") particles are not constrained to any specific energy–momentum, even that usually required by special relativity (see Propagator for details). The signature of the metric η μ ν {\displaystyle \eta _{\mu \nu }} {\displaystyle \eta _{\mu \nu }} is d i a g ( + − − − ) {\displaystyle {\rm {diag}}(+---)} {\displaystyle {\rm {diag}}(+---)}.

From them, computations of probability amplitudes are straightforwardly given. An example is Compton scattering, with an electron and a photon undergoing elastic scattering. Feynman diagrams are in this case:

Compton qed.jpg

and so we are able to get the corresponding amplitude at the first order of a perturbation series for the S-matrix:

M f i = ( i e ) 2 u ¯ ( p → ′ , s ′ ) ϵ / ′ ( k → ′ , λ ′ ) ∗ p / + k / + m e ( p + k ) 2 − m e 2 ϵ / ( k → , λ ) u ( p → , s ) + ( i e ) 2 u ¯ ( p → ′ , s ′ ) ϵ / ( k → , λ ) p / − k / ′ + m e ( p − k ′ ) 2 − m e 2 ϵ / ′ ( k → ′ , λ ′ ) ∗ u ( p → , s ) , {\displaystyle M_{fi}=(ie)^{2}{\overline {u}}({\vec {p}}',s')\epsilon \!\!\!/\,'({\vec {k}}',\lambda ')^{*}{\frac {p\!\!\!/+k\!\!\!/+m_{e}}{(p+k)^{2}-m_{e}^{2}}}\epsilon \!\!\!/({\vec {k}},\lambda )u({\vec {p}},s)+(ie)^{2}{\overline {u}}({\vec {p}}',s')\epsilon \!\!\!/({\vec {k}},\lambda ){\frac {p\!\!\!/-k\!\!\!/'+m_{e}}{(p-k')^{2}-m_{e}^{2}}}\epsilon \!\!\!/\,'({\vec {k}}',\lambda ')^{*}u({\vec {p}},s),}
{\displaystyle M_{fi}=(ie)^{2}{\overline {u}}({\vec {p}}',s')\epsilon \!\!\!/\,'({\vec {k}}',\lambda ')^{*}{\frac {p\!\!\!/+k\!\!\!/+m_{e}}{(p+k)^{2}-m_{e}^{2}}}\epsilon \!\!\!/({\vec {k}},\lambda )u({\vec {p}},s)+(ie)^{2}{\overline {u}}({\vec {p}}',s')\epsilon \!\!\!/({\vec {k}},\lambda ){\frac {p\!\!\!/-k\!\!\!/'+m_{e}}{(p-k')^{2}-m_{e}^{2}}}\epsilon \!\!\!/\,'({\vec {k}}',\lambda ')^{*}u({\vec {p}},s),}

from which we can compute the cross section for this scattering.

Nonperturbative phenomena

The predictive success of quantum electrodynamics largely rests on the use of perturbation theory, expressed in Feynman diagrams. However, quantum electrodynamics also leads to predictions beyond perturbation theory. In the presence of very strong electric fields, it predicts that electrons and positrons will be spontaneously produced, so causing the decay of the field. This process, called the Schwinger effect, cannot be understood in terms of any finite number of Feynman diagrams and hence is described as nonperturbative. Mathematically, it can be derived by a semiclassical approximation to the path integral of quantum electrodynamics.

Renormalizability

Higher-order terms can be straightforwardly computed for the evolution operator, but these terms display diagrams containing the following simpler ones:

  • One-loop contribution to the vacuum polarization function '"`UNIQ--postMath-0000003A-QINU`"'

    One-loop contribution to the vacuum polarization function Π {\displaystyle \Pi } \Pi

  • One-loop contribution to the electron self-energy function '"`UNIQ--postMath-0000003B-QINU`"'

    One-loop contribution to the electron self-energy function Σ {\displaystyle \Sigma } \Sigma

  • One-loop contribution to the vertex function '"`UNIQ--postMath-0000003C-QINU`"'

    One-loop contribution to the vertex function Γ {\displaystyle \Gamma } \Gamma

that, being closed loops, imply the presence of diverging integrals having no mathematical meaning. To overcome this difficulty, a technique called renormalization has been devised, producing finite results in very close agreement with experiments. A criterion for the theory being meaningful after renormalization is that the number of diverging diagrams is finite. In this case, the theory is said to be "renormalizable". The reason for this is that to get observables renormalized, one needs a finite number of constants to maintain the predictive value of the theory untouched. This is exactly the case of quantum electrodynamics displaying just three diverging diagrams. This procedure gives observables in very close agreement with experiment as seen e.g. for electron gyromagnetic ratio.

Renormalizability has become an essential criterion for a quantum field theory to be considered as a viable one. All the theories describing fundamental interactions, except gravitation, whose quantum counterpart is only conjectural and presently under very active research, are renormalizable theories.

Nonconvergence of series

An argument by Freeman Dyson shows that the radius of convergence of the perturbation series in QED is zero. The basic argument goes as follows: if the coupling constant were negative, this would be equivalent to the Coulomb force constant being negative. This would "reverse" the electromagnetic interaction so that like charges would attract and unlike charges would repel. This would render the vacuum unstable against decay into a cluster of electrons on one side of the universe and a cluster of positrons on the other side of the universe. Because the theory is "sick" for any negative value of the coupling constant, the series does not converge but are at best an asymptotic series.

From a modern perspective, we say that QED is not well defined as a quantum field theory to arbitrarily high energy. The coupling constant runs to infinity at finite energy, signalling a Landau pole. The problem is essentially that QED appears to suffer from quantum triviality issues. This is one of the motivations for embedding QED within a Grand Unified Theory.

Electrodynamics in curved spacetime

See also: Maxwell's equations in curved spacetime
See also: Dirac equation in curved spacetime

This theory can be extended, at least as a classical field theory, to curved spacetime. This arises similarly to the flat spacetime case, from coupling a free electromagnetic theory to a free fermion theory and including an interaction which promotes the partial derivative in the fermion theory to a gauge-covariant derivative.

at June 23, 2022
Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
Newer Post Older Post Home

Telehealth

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Telehealth ...

  • Islamic State and the Levant
    From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام   ( ...
  • Heart Sutra
    From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...
  • Environmental impact of fracking
    From Wikipedia, the free encyclopedia Fracking Shale gas drilling rig near Alvarado, Texas The environme...

Search This Blog

  • Home

About Me

My photo
David J Strumfels
View my complete profile

Blog Archive

  • ►  2025 (869)
    • ►  May (116)
      • ►  May 22 (3)
      • ►  May 21 (2)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (6)
      • ►  May 17 (7)
      • ►  May 16 (1)
      • ►  May 15 (5)
      • ►  May 14 (6)
      • ►  May 13 (12)
      • ►  May 12 (4)
      • ►  May 11 (2)
      • ►  May 10 (5)
      • ►  May 09 (3)
      • ►  May 08 (7)
      • ►  May 07 (3)
      • ►  May 06 (8)
      • ►  May 05 (9)
      • ►  May 04 (5)
      • ►  May 03 (6)
      • ►  May 02 (5)
      • ►  May 01 (10)
    • ►  April (193)
      • ►  Apr 30 (8)
      • ►  Apr 29 (6)
      • ►  Apr 28 (5)
      • ►  Apr 27 (10)
      • ►  Apr 26 (9)
      • ►  Apr 25 (4)
      • ►  Apr 24 (11)
      • ►  Apr 23 (3)
      • ►  Apr 22 (8)
      • ►  Apr 21 (10)
      • ►  Apr 20 (14)
      • ►  Apr 19 (6)
      • ►  Apr 18 (13)
      • ►  Apr 17 (10)
      • ►  Apr 16 (8)
      • ►  Apr 15 (4)
      • ►  Apr 14 (6)
      • ►  Apr 13 (7)
      • ►  Apr 12 (7)
      • ►  Apr 11 (9)
      • ►  Apr 10 (1)
      • ►  Apr 09 (5)
      • ►  Apr 08 (4)
      • ►  Apr 07 (5)
      • ►  Apr 06 (4)
      • ►  Apr 05 (4)
      • ►  Apr 04 (2)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (6)
    • ►  March (182)
      • ►  Mar 31 (5)
      • ►  Mar 30 (10)
      • ►  Mar 29 (12)
      • ►  Mar 28 (5)
      • ►  Mar 27 (7)
      • ►  Mar 26 (5)
      • ►  Mar 25 (7)
      • ►  Mar 24 (8)
      • ►  Mar 23 (6)
      • ►  Mar 22 (5)
      • ►  Mar 21 (5)
      • ►  Mar 20 (5)
      • ►  Mar 19 (6)
      • ►  Mar 18 (4)
      • ►  Mar 17 (7)
      • ►  Mar 16 (5)
      • ►  Mar 15 (7)
      • ►  Mar 14 (5)
      • ►  Mar 13 (2)
      • ►  Mar 12 (1)
      • ►  Mar 11 (1)
      • ►  Mar 10 (6)
      • ►  Mar 09 (8)
      • ►  Mar 08 (7)
      • ►  Mar 07 (6)
      • ►  Mar 06 (11)
      • ►  Mar 05 (6)
      • ►  Mar 04 (8)
      • ►  Mar 03 (4)
      • ►  Mar 02 (5)
      • ►  Mar 01 (3)
    • ►  February (115)
      • ►  Feb 28 (5)
      • ►  Feb 27 (5)
      • ►  Feb 26 (1)
      • ►  Feb 25 (2)
      • ►  Feb 24 (5)
      • ►  Feb 22 (2)
      • ►  Feb 21 (2)
      • ►  Feb 20 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (4)
      • ►  Feb 17 (6)
      • ►  Feb 16 (2)
      • ►  Feb 15 (4)
      • ►  Feb 14 (4)
      • ►  Feb 13 (1)
      • ►  Feb 12 (3)
      • ►  Feb 11 (2)
      • ►  Feb 10 (7)
      • ►  Feb 09 (5)
      • ►  Feb 08 (4)
      • ►  Feb 07 (4)
      • ►  Feb 06 (5)
      • ►  Feb 05 (7)
      • ►  Feb 04 (6)
      • ►  Feb 03 (7)
      • ►  Feb 02 (7)
      • ►  Feb 01 (8)
    • ►  January (263)
      • ►  Jan 31 (7)
      • ►  Jan 30 (8)
      • ►  Jan 29 (8)
      • ►  Jan 28 (6)
      • ►  Jan 27 (7)
      • ►  Jan 26 (15)
      • ►  Jan 25 (11)
      • ►  Jan 24 (18)
      • ►  Jan 23 (10)
      • ►  Jan 22 (13)
      • ►  Jan 21 (5)
      • ►  Jan 20 (9)
      • ►  Jan 19 (2)
      • ►  Jan 18 (6)
      • ►  Jan 17 (4)
      • ►  Jan 16 (5)
      • ►  Jan 15 (7)
      • ►  Jan 14 (7)
      • ►  Jan 13 (11)
      • ►  Jan 12 (4)
      • ►  Jan 11 (16)
      • ►  Jan 10 (11)
      • ►  Jan 09 (6)
      • ►  Jan 08 (5)
      • ►  Jan 07 (9)
      • ►  Jan 06 (6)
      • ►  Jan 05 (10)
      • ►  Jan 04 (14)
      • ►  Jan 03 (4)
      • ►  Jan 02 (14)
      • ►  Jan 01 (5)
  • ►  2024 (3069)
    • ►  December (227)
      • ►  Dec 31 (6)
      • ►  Dec 30 (4)
      • ►  Dec 29 (5)
      • ►  Dec 28 (4)
      • ►  Dec 27 (4)
      • ►  Dec 26 (5)
      • ►  Dec 25 (3)
      • ►  Dec 24 (5)
      • ►  Dec 23 (6)
      • ►  Dec 22 (8)
      • ►  Dec 21 (9)
      • ►  Dec 20 (15)
      • ►  Dec 19 (4)
      • ►  Dec 18 (13)
      • ►  Dec 17 (9)
      • ►  Dec 16 (14)
      • ►  Dec 15 (14)
      • ►  Dec 14 (12)
      • ►  Dec 13 (6)
      • ►  Dec 12 (10)
      • ►  Dec 11 (11)
      • ►  Dec 10 (7)
      • ►  Dec 09 (7)
      • ►  Dec 08 (6)
      • ►  Dec 07 (13)
      • ►  Dec 06 (4)
      • ►  Dec 05 (8)
      • ►  Dec 04 (3)
      • ►  Dec 03 (2)
      • ►  Dec 02 (6)
      • ►  Dec 01 (4)
    • ►  November (223)
      • ►  Nov 30 (6)
      • ►  Nov 29 (6)
      • ►  Nov 28 (6)
      • ►  Nov 27 (4)
      • ►  Nov 26 (5)
      • ►  Nov 25 (12)
      • ►  Nov 24 (9)
      • ►  Nov 23 (9)
      • ►  Nov 22 (7)
      • ►  Nov 21 (8)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (8)
      • ►  Nov 17 (7)
      • ►  Nov 16 (7)
      • ►  Nov 15 (8)
      • ►  Nov 14 (8)
      • ►  Nov 13 (5)
      • ►  Nov 12 (3)
      • ►  Nov 11 (7)
      • ►  Nov 10 (12)
      • ►  Nov 09 (6)
      • ►  Nov 08 (10)
      • ►  Nov 07 (8)
      • ►  Nov 06 (4)
      • ►  Nov 05 (2)
      • ►  Nov 04 (7)
      • ►  Nov 03 (19)
      • ►  Nov 02 (7)
      • ►  Nov 01 (12)
    • ►  October (231)
      • ►  Oct 31 (5)
      • ►  Oct 30 (9)
      • ►  Oct 29 (13)
      • ►  Oct 28 (11)
      • ►  Oct 27 (13)
      • ►  Oct 26 (11)
      • ►  Oct 25 (11)
      • ►  Oct 24 (8)
      • ►  Oct 23 (8)
      • ►  Oct 22 (1)
      • ►  Oct 21 (8)
      • ►  Oct 20 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (8)
      • ►  Oct 15 (14)
      • ►  Oct 14 (15)
      • ►  Oct 13 (11)
      • ►  Oct 12 (7)
      • ►  Oct 11 (8)
      • ►  Oct 10 (4)
      • ►  Oct 09 (11)
      • ►  Oct 08 (3)
      • ►  Oct 07 (6)
      • ►  Oct 06 (3)
      • ►  Oct 05 (2)
      • ►  Oct 04 (5)
      • ►  Oct 03 (9)
      • ►  Oct 02 (8)
      • ►  Oct 01 (12)
    • ►  September (257)
      • ►  Sep 30 (3)
      • ►  Sep 29 (12)
      • ►  Sep 28 (16)
      • ►  Sep 27 (6)
      • ►  Sep 26 (2)
      • ►  Sep 25 (1)
      • ►  Sep 24 (3)
      • ►  Sep 23 (2)
      • ►  Sep 22 (6)
      • ►  Sep 21 (18)
      • ►  Sep 20 (5)
      • ►  Sep 19 (5)
      • ►  Sep 18 (2)
      • ►  Sep 17 (1)
      • ►  Sep 16 (4)
      • ►  Sep 15 (12)
      • ►  Sep 14 (4)
      • ►  Sep 13 (12)
      • ►  Sep 12 (6)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (9)
      • ►  Sep 08 (12)
      • ►  Sep 07 (17)
      • ►  Sep 06 (13)
      • ►  Sep 05 (10)
      • ►  Sep 04 (10)
      • ►  Sep 03 (18)
      • ►  Sep 02 (20)
      • ►  Sep 01 (19)
    • ►  August (338)
      • ►  Aug 31 (16)
      • ►  Aug 30 (17)
      • ►  Aug 29 (11)
      • ►  Aug 28 (15)
      • ►  Aug 27 (16)
      • ►  Aug 26 (7)
      • ►  Aug 25 (7)
      • ►  Aug 24 (11)
      • ►  Aug 23 (9)
      • ►  Aug 22 (11)
      • ►  Aug 21 (8)
      • ►  Aug 20 (14)
      • ►  Aug 19 (9)
      • ►  Aug 18 (7)
      • ►  Aug 17 (3)
      • ►  Aug 16 (13)
      • ►  Aug 15 (7)
      • ►  Aug 14 (12)
      • ►  Aug 13 (12)
      • ►  Aug 12 (15)
      • ►  Aug 11 (13)
      • ►  Aug 10 (12)
      • ►  Aug 09 (17)
      • ►  Aug 08 (13)
      • ►  Aug 07 (8)
      • ►  Aug 06 (8)
      • ►  Aug 05 (17)
      • ►  Aug 04 (4)
      • ►  Aug 03 (7)
      • ►  Aug 02 (13)
      • ►  Aug 01 (6)
    • ►  July (305)
      • ►  Jul 31 (7)
      • ►  Jul 30 (14)
      • ►  Jul 29 (11)
      • ►  Jul 28 (17)
      • ►  Jul 27 (12)
      • ►  Jul 26 (13)
      • ►  Jul 25 (12)
      • ►  Jul 24 (4)
      • ►  Jul 23 (15)
      • ►  Jul 22 (8)
      • ►  Jul 21 (8)
      • ►  Jul 20 (11)
      • ►  Jul 19 (13)
      • ►  Jul 18 (5)
      • ►  Jul 17 (4)
      • ►  Jul 16 (7)
      • ►  Jul 15 (12)
      • ►  Jul 14 (12)
      • ►  Jul 13 (4)
      • ►  Jul 12 (11)
      • ►  Jul 11 (14)
      • ►  Jul 10 (10)
      • ►  Jul 09 (14)
      • ►  Jul 08 (10)
      • ►  Jul 07 (3)
      • ►  Jul 06 (9)
      • ►  Jul 05 (13)
      • ►  Jul 04 (9)
      • ►  Jul 03 (8)
      • ►  Jul 02 (8)
      • ►  Jul 01 (7)
    • ►  June (217)
      • ►  Jun 30 (5)
      • ►  Jun 29 (7)
      • ►  Jun 28 (6)
      • ►  Jun 27 (4)
      • ►  Jun 26 (4)
      • ►  Jun 25 (8)
      • ►  Jun 24 (9)
      • ►  Jun 23 (5)
      • ►  Jun 22 (5)
      • ►  Jun 21 (4)
      • ►  Jun 20 (4)
      • ►  Jun 19 (7)
      • ►  Jun 18 (10)
      • ►  Jun 17 (4)
      • ►  Jun 16 (10)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (9)
      • ►  Jun 08 (14)
      • ►  Jun 07 (2)
      • ►  Jun 06 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (11)
      • ►  Jun 03 (3)
      • ►  Jun 02 (15)
      • ►  Jun 01 (10)
    • ►  May (166)
      • ►  May 31 (3)
      • ►  May 30 (2)
      • ►  May 29 (6)
      • ►  May 28 (5)
      • ►  May 27 (9)
      • ►  May 26 (6)
      • ►  May 25 (3)
      • ►  May 24 (6)
      • ►  May 23 (6)
      • ►  May 22 (6)
      • ►  May 21 (8)
      • ►  May 20 (2)
      • ►  May 19 (5)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (6)
      • ►  May 14 (4)
      • ►  May 13 (4)
      • ►  May 12 (9)
      • ►  May 11 (12)
      • ►  May 10 (4)
      • ►  May 09 (7)
      • ►  May 08 (5)
      • ►  May 07 (8)
      • ►  May 06 (10)
      • ►  May 05 (2)
      • ►  May 04 (4)
      • ►  May 03 (2)
      • ►  May 02 (6)
      • ►  May 01 (3)
    • ►  April (275)
      • ►  Apr 29 (2)
      • ►  Apr 28 (8)
      • ►  Apr 27 (10)
      • ►  Apr 26 (11)
      • ►  Apr 25 (9)
      • ►  Apr 24 (7)
      • ►  Apr 23 (5)
      • ►  Apr 22 (8)
      • ►  Apr 21 (9)
      • ►  Apr 20 (8)
      • ►  Apr 19 (4)
      • ►  Apr 18 (9)
      • ►  Apr 17 (11)
      • ►  Apr 16 (15)
      • ►  Apr 15 (12)
      • ►  Apr 14 (15)
      • ►  Apr 13 (14)
      • ►  Apr 12 (15)
      • ►  Apr 11 (12)
      • ►  Apr 10 (14)
      • ►  Apr 09 (6)
      • ►  Apr 08 (16)
      • ►  Apr 07 (4)
      • ►  Apr 06 (9)
      • ►  Apr 05 (13)
      • ►  Apr 04 (8)
      • ►  Apr 03 (12)
      • ►  Apr 02 (5)
      • ►  Apr 01 (4)
    • ►  March (200)
      • ►  Mar 31 (6)
      • ►  Mar 30 (12)
      • ►  Mar 29 (9)
      • ►  Mar 28 (11)
      • ►  Mar 27 (13)
      • ►  Mar 26 (8)
      • ►  Mar 25 (9)
      • ►  Mar 24 (3)
      • ►  Mar 23 (7)
      • ►  Mar 22 (3)
      • ►  Mar 21 (16)
      • ►  Mar 20 (2)
      • ►  Mar 19 (7)
      • ►  Mar 18 (6)
      • ►  Mar 17 (12)
      • ►  Mar 16 (9)
      • ►  Mar 15 (10)
      • ►  Mar 14 (2)
      • ►  Mar 13 (8)
      • ►  Mar 12 (1)
      • ►  Mar 10 (4)
      • ►  Mar 09 (2)
      • ►  Mar 08 (1)
      • ►  Mar 07 (4)
      • ►  Mar 06 (6)
      • ►  Mar 05 (11)
      • ►  Mar 04 (9)
      • ►  Mar 02 (8)
      • ►  Mar 01 (1)
    • ►  February (220)
      • ►  Feb 29 (6)
      • ►  Feb 28 (1)
      • ►  Feb 27 (4)
      • ►  Feb 26 (6)
      • ►  Feb 25 (7)
      • ►  Feb 24 (4)
      • ►  Feb 23 (5)
      • ►  Feb 22 (7)
      • ►  Feb 20 (15)
      • ►  Feb 19 (4)
      • ►  Feb 18 (13)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (10)
      • ►  Feb 14 (9)
      • ►  Feb 13 (17)
      • ►  Feb 12 (9)
      • ►  Feb 11 (10)
      • ►  Feb 10 (18)
      • ►  Feb 09 (5)
      • ►  Feb 08 (9)
      • ►  Feb 07 (11)
      • ►  Feb 06 (6)
      • ►  Feb 05 (10)
      • ►  Feb 04 (4)
      • ►  Feb 03 (5)
      • ►  Feb 02 (8)
      • ►  Feb 01 (8)
    • ►  January (410)
      • ►  Jan 31 (13)
      • ►  Jan 30 (11)
      • ►  Jan 29 (14)
      • ►  Jan 28 (11)
      • ►  Jan 27 (20)
      • ►  Jan 26 (22)
      • ►  Jan 25 (16)
      • ►  Jan 24 (14)
      • ►  Jan 23 (18)
      • ►  Jan 22 (15)
      • ►  Jan 21 (11)
      • ►  Jan 20 (16)
      • ►  Jan 19 (5)
      • ►  Jan 18 (11)
      • ►  Jan 17 (11)
      • ►  Jan 16 (8)
      • ►  Jan 15 (27)
      • ►  Jan 14 (12)
      • ►  Jan 13 (16)
      • ►  Jan 12 (4)
      • ►  Jan 11 (8)
      • ►  Jan 10 (7)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (10)
      • ►  Jan 06 (13)
      • ►  Jan 05 (18)
      • ►  Jan 04 (9)
      • ►  Jan 03 (20)
      • ►  Jan 02 (14)
      • ►  Jan 01 (17)
  • ►  2023 (4333)
    • ►  December (314)
      • ►  Dec 31 (10)
      • ►  Dec 30 (18)
      • ►  Dec 29 (17)
      • ►  Dec 28 (8)
      • ►  Dec 27 (1)
      • ►  Dec 26 (14)
      • ►  Dec 25 (19)
      • ►  Dec 24 (20)
      • ►  Dec 23 (12)
      • ►  Dec 22 (12)
      • ►  Dec 21 (4)
      • ►  Dec 20 (18)
      • ►  Dec 19 (9)
      • ►  Dec 18 (5)
      • ►  Dec 17 (6)
      • ►  Dec 16 (17)
      • ►  Dec 15 (5)
      • ►  Dec 14 (16)
      • ►  Dec 13 (10)
      • ►  Dec 12 (7)
      • ►  Dec 11 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (3)
      • ►  Dec 08 (5)
      • ►  Dec 07 (5)
      • ►  Dec 06 (16)
      • ►  Dec 05 (13)
      • ►  Dec 04 (11)
      • ►  Dec 03 (8)
      • ►  Dec 02 (7)
      • ►  Dec 01 (9)
    • ►  November (353)
      • ►  Nov 30 (10)
      • ►  Nov 29 (8)
      • ►  Nov 28 (7)
      • ►  Nov 27 (13)
      • ►  Nov 26 (7)
      • ►  Nov 25 (4)
      • ►  Nov 23 (11)
      • ►  Nov 22 (6)
      • ►  Nov 21 (7)
      • ►  Nov 20 (6)
      • ►  Nov 19 (5)
      • ►  Nov 18 (13)
      • ►  Nov 17 (10)
      • ►  Nov 16 (2)
      • ►  Nov 15 (16)
      • ►  Nov 14 (21)
      • ►  Nov 13 (14)
      • ►  Nov 12 (12)
      • ►  Nov 11 (19)
      • ►  Nov 10 (11)
      • ►  Nov 09 (24)
      • ►  Nov 08 (8)
      • ►  Nov 07 (11)
      • ►  Nov 06 (13)
      • ►  Nov 05 (18)
      • ►  Nov 04 (9)
      • ►  Nov 03 (21)
      • ►  Nov 02 (25)
      • ►  Nov 01 (22)
    • ►  October (549)
      • ►  Oct 31 (23)
      • ►  Oct 30 (19)
      • ►  Oct 29 (22)
      • ►  Oct 28 (30)
      • ►  Oct 27 (24)
      • ►  Oct 26 (28)
      • ►  Oct 25 (24)
      • ►  Oct 24 (20)
      • ►  Oct 23 (4)
      • ►  Oct 22 (24)
      • ►  Oct 21 (20)
      • ►  Oct 20 (17)
      • ►  Oct 19 (14)
      • ►  Oct 18 (14)
      • ►  Oct 17 (19)
      • ►  Oct 16 (12)
      • ►  Oct 15 (4)
      • ►  Oct 14 (23)
      • ►  Oct 13 (21)
      • ►  Oct 12 (22)
      • ►  Oct 11 (22)
      • ►  Oct 10 (11)
      • ►  Oct 09 (12)
      • ►  Oct 08 (19)
      • ►  Oct 07 (16)
      • ►  Oct 06 (19)
      • ►  Oct 05 (20)
      • ►  Oct 04 (11)
      • ►  Oct 03 (15)
      • ►  Oct 02 (11)
      • ►  Oct 01 (9)
    • ►  September (478)
      • ►  Sep 30 (25)
      • ►  Sep 29 (19)
      • ►  Sep 28 (28)
      • ►  Sep 27 (17)
      • ►  Sep 26 (21)
      • ►  Sep 25 (21)
      • ►  Sep 24 (6)
      • ►  Sep 23 (13)
      • ►  Sep 22 (6)
      • ►  Sep 21 (11)
      • ►  Sep 20 (9)
      • ►  Sep 19 (4)
      • ►  Sep 18 (6)
      • ►  Sep 17 (4)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (22)
      • ►  Sep 13 (9)
      • ►  Sep 12 (11)
      • ►  Sep 11 (13)
      • ►  Sep 10 (25)
      • ►  Sep 09 (26)
      • ►  Sep 08 (23)
      • ►  Sep 07 (20)
      • ►  Sep 06 (27)
      • ►  Sep 05 (20)
      • ►  Sep 04 (18)
      • ►  Sep 03 (11)
      • ►  Sep 02 (24)
      • ►  Sep 01 (15)
    • ►  August (464)
      • ►  Aug 31 (20)
      • ►  Aug 30 (24)
      • ►  Aug 29 (10)
      • ►  Aug 28 (17)
      • ►  Aug 27 (15)
      • ►  Aug 26 (20)
      • ►  Aug 25 (12)
      • ►  Aug 24 (8)
      • ►  Aug 23 (16)
      • ►  Aug 22 (12)
      • ►  Aug 21 (21)
      • ►  Aug 20 (18)
      • ►  Aug 19 (10)
      • ►  Aug 18 (19)
      • ►  Aug 17 (14)
      • ►  Aug 16 (15)
      • ►  Aug 15 (22)
      • ►  Aug 14 (22)
      • ►  Aug 13 (11)
      • ►  Aug 12 (18)
      • ►  Aug 11 (15)
      • ►  Aug 10 (15)
      • ►  Aug 09 (22)
      • ►  Aug 08 (19)
      • ►  Aug 07 (24)
      • ►  Aug 06 (17)
      • ►  Aug 05 (3)
      • ►  Aug 04 (7)
      • ►  Aug 03 (2)
      • ►  Aug 02 (6)
      • ►  Aug 01 (10)
    • ►  July (359)
      • ►  Jul 31 (21)
      • ►  Jul 30 (5)
      • ►  Jul 29 (15)
      • ►  Jul 28 (10)
      • ►  Jul 27 (12)
      • ►  Jul 26 (12)
      • ►  Jul 25 (2)
      • ►  Jul 23 (17)
      • ►  Jul 22 (5)
      • ►  Jul 21 (15)
      • ►  Jul 20 (9)
      • ►  Jul 19 (11)
      • ►  Jul 18 (24)
      • ►  Jul 17 (10)
      • ►  Jul 16 (12)
      • ►  Jul 15 (6)
      • ►  Jul 14 (10)
      • ►  Jul 13 (7)
      • ►  Jul 12 (14)
      • ►  Jul 11 (14)
      • ►  Jul 10 (8)
      • ►  Jul 09 (8)
      • ►  Jul 08 (10)
      • ►  Jul 07 (12)
      • ►  Jul 06 (18)
      • ►  Jul 05 (19)
      • ►  Jul 04 (8)
      • ►  Jul 03 (17)
      • ►  Jul 02 (9)
      • ►  Jul 01 (19)
    • ►  June (397)
      • ►  Jun 30 (17)
      • ►  Jun 29 (15)
      • ►  Jun 28 (6)
      • ►  Jun 27 (8)
      • ►  Jun 26 (15)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (23)
      • ►  Jun 22 (30)
      • ►  Jun 21 (20)
      • ►  Jun 20 (18)
      • ►  Jun 19 (18)
      • ►  Jun 18 (20)
      • ►  Jun 17 (16)
      • ►  Jun 16 (13)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (7)
      • ►  Jun 12 (5)
      • ►  Jun 11 (4)
      • ►  Jun 10 (4)
      • ►  Jun 09 (4)
      • ►  Jun 08 (5)
      • ►  Jun 07 (3)
      • ►  Jun 06 (3)
      • ►  Jun 05 (21)
      • ►  Jun 04 (24)
      • ►  Jun 03 (12)
      • ►  Jun 02 (18)
      • ►  Jun 01 (20)
    • ►  May (395)
      • ►  May 31 (15)
      • ►  May 30 (25)
      • ►  May 29 (24)
      • ►  May 28 (26)
      • ►  May 27 (21)
      • ►  May 26 (23)
      • ►  May 25 (14)
      • ►  May 24 (7)
      • ►  May 23 (6)
      • ►  May 22 (4)
      • ►  May 21 (6)
      • ►  May 20 (2)
      • ►  May 19 (9)
      • ►  May 18 (8)
      • ►  May 17 (11)
      • ►  May 16 (8)
      • ►  May 15 (14)
      • ►  May 14 (15)
      • ►  May 13 (12)
      • ►  May 12 (10)
      • ►  May 11 (16)
      • ►  May 10 (10)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (6)
      • ►  May 06 (8)
      • ►  May 05 (13)
      • ►  May 04 (14)
      • ►  May 03 (17)
      • ►  May 02 (12)
      • ►  May 01 (12)
    • ►  April (292)
      • ►  Apr 30 (13)
      • ►  Apr 29 (12)
      • ►  Apr 28 (19)
      • ►  Apr 27 (15)
      • ►  Apr 26 (18)
      • ►  Apr 25 (14)
      • ►  Apr 24 (24)
      • ►  Apr 23 (7)
      • ►  Apr 22 (21)
      • ►  Apr 21 (14)
      • ►  Apr 20 (10)
      • ►  Apr 19 (10)
      • ►  Apr 18 (12)
      • ►  Apr 17 (7)
      • ►  Apr 16 (8)
      • ►  Apr 15 (11)
      • ►  Apr 14 (9)
      • ►  Apr 13 (11)
      • ►  Apr 12 (12)
      • ►  Apr 11 (10)
      • ►  Apr 10 (13)
      • ►  Apr 09 (7)
      • ►  Apr 08 (10)
      • ►  Apr 07 (2)
      • ►  Apr 02 (1)
      • ►  Apr 01 (2)
    • ►  March (306)
      • ►  Mar 28 (1)
      • ►  Mar 27 (2)
      • ►  Mar 26 (3)
      • ►  Mar 25 (3)
      • ►  Mar 24 (5)
      • ►  Mar 22 (3)
      • ►  Mar 21 (3)
      • ►  Mar 20 (6)
      • ►  Mar 19 (17)
      • ►  Mar 18 (7)
      • ►  Mar 17 (23)
      • ►  Mar 16 (24)
      • ►  Mar 15 (18)
      • ►  Mar 14 (30)
      • ►  Mar 13 (24)
      • ►  Mar 12 (26)
      • ►  Mar 11 (13)
      • ►  Mar 10 (24)
      • ►  Mar 09 (22)
      • ►  Mar 08 (18)
      • ►  Mar 06 (9)
      • ►  Mar 05 (6)
      • ►  Mar 04 (7)
      • ►  Mar 03 (7)
      • ►  Mar 02 (3)
      • ►  Mar 01 (2)
    • ►  February (210)
      • ►  Feb 27 (1)
      • ►  Feb 26 (4)
      • ►  Feb 24 (12)
      • ►  Feb 23 (9)
      • ►  Feb 22 (9)
      • ►  Feb 21 (9)
      • ►  Feb 19 (4)
      • ►  Feb 16 (9)
      • ►  Feb 15 (2)
      • ►  Feb 14 (5)
      • ►  Feb 13 (1)
      • ►  Feb 12 (1)
      • ►  Feb 11 (13)
      • ►  Feb 10 (8)
      • ►  Feb 09 (12)
      • ►  Feb 08 (10)
      • ►  Feb 07 (19)
      • ►  Feb 06 (9)
      • ►  Feb 05 (18)
      • ►  Feb 04 (10)
      • ►  Feb 03 (13)
      • ►  Feb 02 (12)
      • ►  Feb 01 (20)
    • ►  January (216)
      • ►  Jan 31 (8)
      • ►  Jan 30 (11)
      • ►  Jan 29 (13)
      • ►  Jan 28 (7)
      • ►  Jan 27 (13)
      • ►  Jan 26 (13)
      • ►  Jan 25 (4)
      • ►  Jan 24 (2)
      • ►  Jan 23 (6)
      • ►  Jan 22 (7)
      • ►  Jan 21 (4)
      • ►  Jan 20 (5)
      • ►  Jan 19 (1)
      • ►  Jan 18 (3)
      • ►  Jan 17 (2)
      • ►  Jan 15 (1)
      • ►  Jan 14 (2)
      • ►  Jan 13 (13)
      • ►  Jan 12 (25)
      • ►  Jan 11 (13)
      • ►  Jan 10 (18)
      • ►  Jan 09 (18)
      • ►  Jan 07 (9)
      • ►  Jan 06 (2)
      • ►  Jan 05 (11)
      • ►  Jan 04 (3)
      • ►  Jan 03 (2)
  • ▼  2022 (2401)
    • ►  December (115)
      • ►  Dec 31 (1)
      • ►  Dec 30 (2)
      • ►  Dec 10 (7)
      • ►  Dec 09 (8)
      • ►  Dec 08 (8)
      • ►  Dec 07 (12)
      • ►  Dec 06 (16)
      • ►  Dec 05 (11)
      • ►  Dec 04 (15)
      • ►  Dec 03 (15)
      • ►  Dec 02 (8)
      • ►  Dec 01 (12)
    • ►  November (498)
      • ►  Nov 30 (2)
      • ►  Nov 29 (11)
      • ►  Nov 28 (13)
      • ►  Nov 27 (1)
      • ►  Nov 26 (9)
      • ►  Nov 25 (13)
      • ►  Nov 24 (16)
      • ►  Nov 23 (8)
      • ►  Nov 22 (16)
      • ►  Nov 21 (21)
      • ►  Nov 20 (13)
      • ►  Nov 19 (24)
      • ►  Nov 18 (23)
      • ►  Nov 17 (28)
      • ►  Nov 16 (15)
      • ►  Nov 15 (22)
      • ►  Nov 14 (32)
      • ►  Nov 13 (20)
      • ►  Nov 12 (22)
      • ►  Nov 11 (30)
      • ►  Nov 10 (4)
      • ►  Nov 09 (21)
      • ►  Nov 08 (21)
      • ►  Nov 07 (21)
      • ►  Nov 06 (14)
      • ►  Nov 05 (19)
      • ►  Nov 04 (17)
      • ►  Nov 03 (14)
      • ►  Nov 02 (12)
      • ►  Nov 01 (16)
    • ►  October (272)
      • ►  Oct 31 (14)
      • ►  Oct 30 (12)
      • ►  Oct 29 (13)
      • ►  Oct 28 (9)
      • ►  Oct 27 (10)
      • ►  Oct 26 (6)
      • ►  Oct 25 (15)
      • ►  Oct 24 (11)
      • ►  Oct 23 (12)
      • ►  Oct 22 (9)
      • ►  Oct 21 (5)
      • ►  Oct 19 (5)
      • ►  Oct 18 (8)
      • ►  Oct 17 (4)
      • ►  Oct 16 (4)
      • ►  Oct 15 (10)
      • ►  Oct 14 (6)
      • ►  Oct 13 (8)
      • ►  Oct 12 (9)
      • ►  Oct 11 (14)
      • ►  Oct 10 (15)
      • ►  Oct 09 (9)
      • ►  Oct 08 (12)
      • ►  Oct 07 (14)
      • ►  Oct 06 (7)
      • ►  Oct 05 (13)
      • ►  Oct 04 (8)
      • ►  Oct 03 (10)
    • ►  September (149)
      • ►  Sep 30 (4)
      • ►  Sep 29 (6)
      • ►  Sep 28 (4)
      • ►  Sep 27 (3)
      • ►  Sep 26 (6)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (6)
      • ►  Sep 22 (1)
      • ►  Sep 21 (6)
      • ►  Sep 20 (5)
      • ►  Sep 19 (6)
      • ►  Sep 17 (5)
      • ►  Sep 16 (2)
      • ►  Sep 15 (4)
      • ►  Sep 14 (6)
      • ►  Sep 13 (3)
      • ►  Sep 12 (5)
      • ►  Sep 11 (5)
      • ►  Sep 10 (4)
      • ►  Sep 09 (11)
      • ►  Sep 08 (6)
      • ►  Sep 07 (7)
      • ►  Sep 06 (6)
      • ►  Sep 05 (8)
      • ►  Sep 04 (5)
      • ►  Sep 03 (12)
      • ►  Sep 02 (2)
      • ►  Sep 01 (9)
    • ►  August (231)
      • ►  Aug 31 (7)
      • ►  Aug 30 (9)
      • ►  Aug 29 (8)
      • ►  Aug 28 (10)
      • ►  Aug 27 (6)
      • ►  Aug 26 (10)
      • ►  Aug 25 (9)
      • ►  Aug 24 (8)
      • ►  Aug 23 (12)
      • ►  Aug 22 (6)
      • ►  Aug 21 (4)
      • ►  Aug 20 (10)
      • ►  Aug 19 (12)
      • ►  Aug 18 (7)
      • ►  Aug 17 (10)
      • ►  Aug 16 (9)
      • ►  Aug 15 (10)
      • ►  Aug 14 (7)
      • ►  Aug 13 (9)
      • ►  Aug 12 (7)
      • ►  Aug 11 (8)
      • ►  Aug 10 (5)
      • ►  Aug 09 (7)
      • ►  Aug 08 (8)
      • ►  Aug 07 (9)
      • ►  Aug 06 (10)
      • ►  Aug 05 (10)
      • ►  Aug 04 (4)
    • ►  July (258)
      • ►  Jul 31 (1)
      • ►  Jul 30 (3)
      • ►  Jul 29 (3)
      • ►  Jul 28 (1)
      • ►  Jul 27 (5)
      • ►  Jul 26 (5)
      • ►  Jul 25 (4)
      • ►  Jul 24 (4)
      • ►  Jul 23 (6)
      • ►  Jul 22 (5)
      • ►  Jul 21 (2)
      • ►  Jul 20 (10)
      • ►  Jul 19 (5)
      • ►  Jul 18 (8)
      • ►  Jul 17 (1)
      • ►  Jul 15 (6)
      • ►  Jul 14 (11)
      • ►  Jul 13 (9)
      • ►  Jul 12 (8)
      • ►  Jul 11 (17)
      • ►  Jul 10 (16)
      • ►  Jul 09 (14)
      • ►  Jul 08 (18)
      • ►  Jul 07 (12)
      • ►  Jul 06 (12)
      • ►  Jul 05 (17)
      • ►  Jul 04 (13)
      • ►  Jul 03 (15)
      • ►  Jul 02 (12)
      • ►  Jul 01 (15)
    • ▼  June (133)
      • ►  Jun 30 (10)
      • ►  Jun 29 (9)
      • ►  Jun 28 (9)
      • ►  Jun 27 (9)
      • ►  Jun 26 (11)
      • ►  Jun 25 (12)
      • ►  Jun 24 (12)
      • ▼  Jun 23 (10)
        • Cross product
        • Slater determinant
        • Mechanics
        • Vibration
        • Hermitian matrix
        • Eigenface
        • Analytic geometry
        • Topological quantum field theory
        • Quantum electrodynamics
        • Eigenvalues and eigenvectors
      • ►  Jun 22 (10)
      • ►  Jun 21 (4)
      • ►  Jun 20 (3)
      • ►  Jun 19 (8)
      • ►  Jun 18 (2)
      • ►  Jun 17 (2)
      • ►  Jun 15 (3)
      • ►  Jun 14 (1)
      • ►  Jun 13 (1)
      • ►  Jun 07 (1)
      • ►  Jun 04 (5)
      • ►  Jun 03 (2)
      • ►  Jun 02 (7)
      • ►  Jun 01 (2)
    • ►  May (168)
      • ►  May 31 (1)
      • ►  May 30 (2)
      • ►  May 29 (1)
      • ►  May 28 (1)
      • ►  May 26 (4)
      • ►  May 24 (1)
      • ►  May 23 (1)
      • ►  May 21 (3)
      • ►  May 20 (3)
      • ►  May 19 (2)
      • ►  May 18 (5)
      • ►  May 17 (3)
      • ►  May 16 (5)
      • ►  May 15 (11)
      • ►  May 14 (7)
      • ►  May 13 (8)
      • ►  May 12 (8)
      • ►  May 11 (7)
      • ►  May 10 (10)
      • ►  May 09 (11)
      • ►  May 08 (14)
      • ►  May 07 (7)
      • ►  May 06 (9)
      • ►  May 05 (6)
      • ►  May 04 (12)
      • ►  May 03 (10)
      • ►  May 02 (7)
      • ►  May 01 (9)
    • ►  April (59)
      • ►  Apr 30 (8)
      • ►  Apr 29 (11)
      • ►  Apr 28 (3)
      • ►  Apr 27 (5)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (1)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (2)
      • ►  Apr 13 (1)
      • ►  Apr 11 (2)
      • ►  Apr 09 (1)
      • ►  Apr 08 (4)
      • ►  Apr 07 (1)
      • ►  Apr 06 (4)
      • ►  Apr 05 (7)
      • ►  Apr 04 (1)
    • ►  March (114)
      • ►  Mar 27 (1)
      • ►  Mar 26 (8)
      • ►  Mar 25 (1)
      • ►  Mar 23 (4)
      • ►  Mar 22 (4)
      • ►  Mar 21 (2)
      • ►  Mar 20 (8)
      • ►  Mar 17 (4)
      • ►  Mar 16 (1)
      • ►  Mar 15 (8)
      • ►  Mar 14 (1)
      • ►  Mar 13 (4)
      • ►  Mar 12 (6)
      • ►  Mar 11 (4)
      • ►  Mar 10 (6)
      • ►  Mar 09 (6)
      • ►  Mar 08 (12)
      • ►  Mar 07 (5)
      • ►  Mar 06 (3)
      • ►  Mar 05 (4)
      • ►  Mar 04 (2)
      • ►  Mar 03 (6)
      • ►  Mar 02 (6)
      • ►  Mar 01 (8)
    • ►  February (136)
      • ►  Feb 28 (3)
      • ►  Feb 27 (3)
      • ►  Feb 26 (4)
      • ►  Feb 25 (1)
      • ►  Feb 24 (1)
      • ►  Feb 23 (4)
      • ►  Feb 22 (6)
      • ►  Feb 21 (3)
      • ►  Feb 19 (4)
      • ►  Feb 18 (2)
      • ►  Feb 17 (4)
      • ►  Feb 16 (5)
      • ►  Feb 15 (7)
      • ►  Feb 14 (5)
      • ►  Feb 13 (6)
      • ►  Feb 12 (3)
      • ►  Feb 11 (7)
      • ►  Feb 10 (5)
      • ►  Feb 09 (4)
      • ►  Feb 08 (3)
      • ►  Feb 07 (2)
      • ►  Feb 06 (5)
      • ►  Feb 05 (6)
      • ►  Feb 04 (4)
      • ►  Feb 03 (11)
      • ►  Feb 02 (13)
      • ►  Feb 01 (15)
    • ►  January (268)
      • ►  Jan 31 (16)
      • ►  Jan 30 (21)
      • ►  Jan 29 (11)
      • ►  Jan 28 (14)
      • ►  Jan 27 (11)
      • ►  Jan 26 (14)
      • ►  Jan 25 (5)
      • ►  Jan 23 (1)
      • ►  Jan 22 (2)
      • ►  Jan 19 (2)
      • ►  Jan 17 (9)
      • ►  Jan 16 (3)
      • ►  Jan 14 (14)
      • ►  Jan 13 (5)
      • ►  Jan 12 (6)
      • ►  Jan 11 (8)
      • ►  Jan 10 (13)
      • ►  Jan 09 (4)
      • ►  Jan 08 (14)
      • ►  Jan 07 (9)
      • ►  Jan 06 (10)
      • ►  Jan 05 (15)
      • ►  Jan 04 (13)
      • ►  Jan 03 (14)
      • ►  Jan 02 (19)
      • ►  Jan 01 (15)
  • ►  2021 (3238)
    • ►  December (507)
      • ►  Dec 31 (10)
      • ►  Dec 30 (9)
      • ►  Dec 29 (14)
      • ►  Dec 28 (11)
      • ►  Dec 27 (18)
      • ►  Dec 26 (12)
      • ►  Dec 25 (18)
      • ►  Dec 24 (13)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (6)
      • ►  Dec 20 (15)
      • ►  Dec 19 (12)
      • ►  Dec 18 (11)
      • ►  Dec 17 (19)
      • ►  Dec 16 (13)
      • ►  Dec 15 (22)
      • ►  Dec 14 (25)
      • ►  Dec 13 (23)
      • ►  Dec 12 (21)
      • ►  Dec 11 (21)
      • ►  Dec 10 (22)
      • ►  Dec 09 (18)
      • ►  Dec 08 (23)
      • ►  Dec 07 (25)
      • ►  Dec 06 (19)
      • ►  Dec 05 (11)
      • ►  Dec 04 (20)
      • ►  Dec 03 (19)
      • ►  Dec 02 (25)
      • ►  Dec 01 (10)
    • ►  November (305)
      • ►  Nov 30 (16)
      • ►  Nov 29 (20)
      • ►  Nov 28 (11)
      • ►  Nov 27 (16)
      • ►  Nov 26 (17)
      • ►  Nov 25 (20)
      • ►  Nov 24 (14)
      • ►  Nov 23 (15)
      • ►  Nov 22 (16)
      • ►  Nov 21 (16)
      • ►  Nov 20 (16)
      • ►  Nov 19 (11)
      • ►  Nov 18 (12)
      • ►  Nov 17 (10)
      • ►  Nov 16 (13)
      • ►  Nov 15 (9)
      • ►  Nov 14 (6)
      • ►  Nov 13 (5)
      • ►  Nov 12 (10)
      • ►  Nov 11 (3)
      • ►  Nov 10 (6)
      • ►  Nov 09 (7)
      • ►  Nov 08 (2)
      • ►  Nov 07 (1)
      • ►  Nov 06 (5)
      • ►  Nov 05 (4)
      • ►  Nov 04 (2)
      • ►  Nov 03 (5)
      • ►  Nov 02 (3)
      • ►  Nov 01 (14)
    • ►  October (238)
      • ►  Oct 31 (16)
      • ►  Oct 30 (6)
      • ►  Oct 29 (13)
      • ►  Oct 28 (16)
      • ►  Oct 27 (10)
      • ►  Oct 26 (8)
      • ►  Oct 25 (8)
      • ►  Oct 24 (5)
      • ►  Oct 23 (11)
      • ►  Oct 22 (5)
      • ►  Oct 21 (12)
      • ►  Oct 20 (4)
      • ►  Oct 19 (2)
      • ►  Oct 18 (2)
      • ►  Oct 17 (2)
      • ►  Oct 16 (1)
      • ►  Oct 15 (4)
      • ►  Oct 12 (2)
      • ►  Oct 11 (4)
      • ►  Oct 10 (9)
      • ►  Oct 09 (13)
      • ►  Oct 08 (4)
      • ►  Oct 07 (6)
      • ►  Oct 06 (6)
      • ►  Oct 05 (9)
      • ►  Oct 04 (12)
      • ►  Oct 03 (12)
      • ►  Oct 02 (20)
      • ►  Oct 01 (16)
    • ►  September (358)
      • ►  Sep 30 (16)
      • ►  Sep 29 (18)
      • ►  Sep 28 (10)
      • ►  Sep 27 (17)
      • ►  Sep 26 (11)
      • ►  Sep 25 (15)
      • ►  Sep 24 (11)
      • ►  Sep 23 (12)
      • ►  Sep 22 (7)
      • ►  Sep 21 (8)
      • ►  Sep 20 (19)
      • ►  Sep 19 (14)
      • ►  Sep 18 (16)
      • ►  Sep 17 (17)
      • ►  Sep 16 (20)
      • ►  Sep 15 (17)
      • ►  Sep 14 (8)
      • ►  Sep 13 (19)
      • ►  Sep 12 (13)
      • ►  Sep 11 (11)
      • ►  Sep 10 (10)
      • ►  Sep 09 (13)
      • ►  Sep 08 (8)
      • ►  Sep 07 (9)
      • ►  Sep 06 (6)
      • ►  Sep 05 (10)
      • ►  Sep 04 (8)
      • ►  Sep 03 (6)
      • ►  Sep 02 (4)
      • ►  Sep 01 (5)
    • ►  August (213)
      • ►  Aug 31 (6)
      • ►  Aug 30 (10)
      • ►  Aug 29 (4)
      • ►  Aug 26 (3)
      • ►  Aug 25 (2)
      • ►  Aug 23 (4)
      • ►  Aug 22 (2)
      • ►  Aug 21 (10)
      • ►  Aug 20 (12)
      • ►  Aug 19 (10)
      • ►  Aug 18 (13)
      • ►  Aug 17 (8)
      • ►  Aug 16 (12)
      • ►  Aug 15 (15)
      • ►  Aug 14 (12)
      • ►  Aug 13 (10)
      • ►  Aug 12 (3)
      • ►  Aug 11 (7)
      • ►  Aug 10 (7)
      • ►  Aug 09 (5)
      • ►  Aug 08 (7)
      • ►  Aug 07 (9)
      • ►  Aug 06 (9)
      • ►  Aug 05 (6)
      • ►  Aug 04 (5)
      • ►  Aug 03 (4)
      • ►  Aug 02 (6)
      • ►  Aug 01 (12)
    • ►  July (213)
      • ►  Jul 31 (18)
      • ►  Jul 30 (7)
      • ►  Jul 29 (17)
      • ►  Jul 28 (16)
      • ►  Jul 27 (6)
      • ►  Jul 25 (1)
      • ►  Jul 24 (7)
      • ►  Jul 23 (5)
      • ►  Jul 22 (13)
      • ►  Jul 21 (3)
      • ►  Jul 20 (8)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (6)
      • ►  Jul 16 (16)
      • ►  Jul 15 (7)
      • ►  Jul 14 (8)
      • ►  Jul 13 (8)
      • ►  Jul 12 (5)
      • ►  Jul 11 (1)
      • ►  Jul 09 (4)
      • ►  Jul 08 (3)
      • ►  Jul 07 (1)
      • ►  Jul 05 (1)
      • ►  Jul 04 (2)
      • ►  Jul 03 (8)
      • ►  Jul 02 (5)
      • ►  Jul 01 (17)
    • ►  June (292)
      • ►  Jun 30 (13)
      • ►  Jun 29 (19)
      • ►  Jun 28 (17)
      • ►  Jun 27 (12)
      • ►  Jun 26 (27)
      • ►  Jun 25 (18)
      • ►  Jun 24 (11)
      • ►  Jun 23 (12)
      • ►  Jun 22 (11)
      • ►  Jun 21 (16)
      • ►  Jun 20 (7)
      • ►  Jun 19 (9)
      • ►  Jun 18 (14)
      • ►  Jun 17 (7)
      • ►  Jun 16 (11)
      • ►  Jun 15 (9)
      • ►  Jun 14 (12)
      • ►  Jun 13 (2)
      • ►  Jun 12 (4)
      • ►  Jun 11 (8)
      • ►  Jun 10 (6)
      • ►  Jun 09 (2)
      • ►  Jun 08 (5)
      • ►  Jun 07 (4)
      • ►  Jun 06 (3)
      • ►  Jun 05 (4)
      • ►  Jun 04 (4)
      • ►  Jun 03 (8)
      • ►  Jun 02 (6)
      • ►  Jun 01 (11)
    • ►  May (302)
      • ►  May 31 (14)
      • ►  May 30 (21)
      • ►  May 29 (11)
      • ►  May 28 (21)
      • ►  May 27 (8)
      • ►  May 26 (5)
      • ►  May 25 (11)
      • ►  May 24 (13)
      • ►  May 23 (5)
      • ►  May 22 (13)
      • ►  May 21 (8)
      • ►  May 20 (8)
      • ►  May 19 (8)
      • ►  May 18 (11)
      • ►  May 17 (12)
      • ►  May 16 (17)
      • ►  May 15 (13)
      • ►  May 14 (10)
      • ►  May 13 (8)
      • ►  May 12 (16)
      • ►  May 11 (11)
      • ►  May 10 (16)
      • ►  May 09 (9)
      • ►  May 08 (7)
      • ►  May 07 (5)
      • ►  May 06 (7)
      • ►  May 05 (1)
      • ►  May 04 (1)
      • ►  May 03 (3)
      • ►  May 02 (1)
      • ►  May 01 (8)
    • ►  April (398)
      • ►  Apr 30 (7)
      • ►  Apr 29 (6)
      • ►  Apr 28 (11)
      • ►  Apr 27 (5)
      • ►  Apr 26 (21)
      • ►  Apr 25 (18)
      • ►  Apr 24 (16)
      • ►  Apr 23 (21)
      • ►  Apr 22 (19)
      • ►  Apr 21 (14)
      • ►  Apr 20 (16)
      • ►  Apr 19 (25)
      • ►  Apr 18 (11)
      • ►  Apr 17 (3)
      • ►  Apr 16 (9)
      • ►  Apr 15 (8)
      • ►  Apr 14 (11)
      • ►  Apr 13 (19)
      • ►  Apr 12 (9)
      • ►  Apr 11 (15)
      • ►  Apr 10 (11)
      • ►  Apr 09 (14)
      • ►  Apr 08 (15)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (12)
      • ►  Apr 04 (14)
      • ►  Apr 03 (17)
      • ►  Apr 02 (16)
      • ►  Apr 01 (7)
    • ►  March (330)
      • ►  Mar 31 (7)
      • ►  Mar 30 (8)
      • ►  Mar 29 (11)
      • ►  Mar 28 (16)
      • ►  Mar 27 (10)
      • ►  Mar 26 (12)
      • ►  Mar 25 (19)
      • ►  Mar 24 (14)
      • ►  Mar 23 (14)
      • ►  Mar 22 (11)
      • ►  Mar 21 (12)
      • ►  Mar 20 (14)
      • ►  Mar 19 (15)
      • ►  Mar 18 (17)
      • ►  Mar 17 (4)
      • ►  Mar 16 (12)
      • ►  Mar 15 (18)
      • ►  Mar 14 (9)
      • ►  Mar 13 (12)
      • ►  Mar 12 (12)
      • ►  Mar 11 (14)
      • ►  Mar 10 (7)
      • ►  Mar 09 (7)
      • ►  Mar 08 (11)
      • ►  Mar 07 (9)
      • ►  Mar 06 (7)
      • ►  Mar 05 (9)
      • ►  Mar 04 (4)
      • ►  Mar 03 (5)
      • ►  Mar 02 (5)
      • ►  Mar 01 (5)
    • ►  February (76)
      • ►  Feb 28 (8)
      • ►  Feb 27 (11)
      • ►  Feb 26 (4)
      • ►  Feb 25 (4)
      • ►  Feb 24 (1)
      • ►  Feb 23 (3)
      • ►  Feb 22 (2)
      • ►  Feb 21 (1)
      • ►  Feb 20 (3)
      • ►  Feb 19 (3)
      • ►  Feb 18 (4)
      • ►  Feb 17 (8)
      • ►  Feb 16 (2)
      • ►  Feb 15 (6)
      • ►  Feb 14 (1)
      • ►  Feb 13 (3)
      • ►  Feb 12 (5)
      • ►  Feb 10 (2)
      • ►  Feb 08 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (2)
      • ►  Feb 02 (1)
    • ►  January (6)
      • ►  Jan 31 (1)
      • ►  Jan 24 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (3)
  • ►  2020 (2688)
    • ►  December (67)
      • ►  Dec 29 (1)
      • ►  Dec 28 (3)
      • ►  Dec 27 (1)
      • ►  Dec 23 (5)
      • ►  Dec 21 (4)
      • ►  Dec 19 (1)
      • ►  Dec 18 (2)
      • ►  Dec 11 (1)
      • ►  Dec 10 (6)
      • ►  Dec 09 (15)
      • ►  Dec 08 (8)
      • ►  Dec 07 (10)
      • ►  Dec 06 (5)
      • ►  Dec 05 (5)
    • ►  November (141)
      • ►  Nov 30 (5)
      • ►  Nov 29 (5)
      • ►  Nov 28 (1)
      • ►  Nov 27 (8)
      • ►  Nov 26 (20)
      • ►  Nov 25 (9)
      • ►  Nov 24 (11)
      • ►  Nov 23 (9)
      • ►  Nov 22 (11)
      • ►  Nov 21 (12)
      • ►  Nov 20 (3)
      • ►  Nov 19 (10)
      • ►  Nov 18 (7)
      • ►  Nov 17 (8)
      • ►  Nov 16 (2)
      • ►  Nov 15 (4)
      • ►  Nov 14 (8)
      • ►  Nov 13 (4)
      • ►  Nov 12 (2)
      • ►  Nov 10 (1)
      • ►  Nov 02 (1)
    • ►  October (190)
      • ►  Oct 26 (1)
      • ►  Oct 25 (4)
      • ►  Oct 24 (19)
      • ►  Oct 23 (16)
      • ►  Oct 22 (2)
      • ►  Oct 21 (1)
      • ►  Oct 20 (1)
      • ►  Oct 16 (2)
      • ►  Oct 11 (11)
      • ►  Oct 10 (8)
      • ►  Oct 09 (14)
      • ►  Oct 08 (18)
      • ►  Oct 07 (9)
      • ►  Oct 06 (17)
      • ►  Oct 05 (17)
      • ►  Oct 04 (4)
      • ►  Oct 03 (14)
      • ►  Oct 02 (13)
      • ►  Oct 01 (19)
    • ►  September (371)
      • ►  Sep 30 (12)
      • ►  Sep 29 (11)
      • ►  Sep 28 (14)
      • ►  Sep 27 (14)
      • ►  Sep 26 (13)
      • ►  Sep 25 (25)
      • ►  Sep 24 (30)
      • ►  Sep 23 (16)
      • ►  Sep 22 (11)
      • ►  Sep 21 (18)
      • ►  Sep 20 (16)
      • ►  Sep 19 (23)
      • ►  Sep 18 (22)
      • ►  Sep 17 (15)
      • ►  Sep 16 (11)
      • ►  Sep 15 (13)
      • ►  Sep 14 (9)
      • ►  Sep 13 (11)
      • ►  Sep 12 (9)
      • ►  Sep 11 (6)
      • ►  Sep 10 (1)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (7)
      • ►  Sep 06 (13)
      • ►  Sep 05 (8)
      • ►  Sep 04 (6)
      • ►  Sep 03 (1)
      • ►  Sep 02 (3)
      • ►  Sep 01 (10)
    • ►  August (112)
      • ►  Aug 31 (12)
      • ►  Aug 30 (2)
      • ►  Aug 29 (7)
      • ►  Aug 28 (2)
      • ►  Aug 27 (1)
      • ►  Aug 26 (1)
      • ►  Aug 24 (2)
      • ►  Aug 23 (2)
      • ►  Aug 21 (3)
      • ►  Aug 20 (4)
      • ►  Aug 19 (8)
      • ►  Aug 18 (5)
      • ►  Aug 17 (4)
      • ►  Aug 16 (6)
      • ►  Aug 15 (4)
      • ►  Aug 14 (1)
      • ►  Aug 13 (2)
      • ►  Aug 12 (4)
      • ►  Aug 11 (5)
      • ►  Aug 10 (7)
      • ►  Aug 09 (8)
      • ►  Aug 08 (4)
      • ►  Aug 07 (1)
      • ►  Aug 06 (5)
      • ►  Aug 05 (2)
      • ►  Aug 04 (1)
      • ►  Aug 03 (4)
      • ►  Aug 02 (1)
      • ►  Aug 01 (4)
    • ►  July (227)
      • ►  Jul 30 (3)
      • ►  Jul 29 (6)
      • ►  Jul 28 (2)
      • ►  Jul 27 (1)
      • ►  Jul 26 (7)
      • ►  Jul 25 (3)
      • ►  Jul 24 (3)
      • ►  Jul 23 (14)
      • ►  Jul 22 (1)
      • ►  Jul 21 (12)
      • ►  Jul 20 (8)
      • ►  Jul 19 (10)
      • ►  Jul 18 (12)
      • ►  Jul 17 (4)
      • ►  Jul 16 (12)
      • ►  Jul 15 (12)
      • ►  Jul 14 (8)
      • ►  Jul 13 (13)
      • ►  Jul 12 (8)
      • ►  Jul 11 (14)
      • ►  Jul 10 (7)
      • ►  Jul 09 (9)
      • ►  Jul 08 (7)
      • ►  Jul 07 (10)
      • ►  Jul 06 (8)
      • ►  Jul 05 (8)
      • ►  Jul 04 (8)
      • ►  Jul 03 (6)
      • ►  Jul 02 (4)
      • ►  Jul 01 (7)
    • ►  June (243)
      • ►  Jun 30 (5)
      • ►  Jun 29 (3)
      • ►  Jun 28 (4)
      • ►  Jun 27 (6)
      • ►  Jun 26 (4)
      • ►  Jun 25 (2)
      • ►  Jun 24 (3)
      • ►  Jun 23 (5)
      • ►  Jun 22 (6)
      • ►  Jun 20 (5)
      • ►  Jun 19 (6)
      • ►  Jun 18 (5)
      • ►  Jun 17 (16)
      • ►  Jun 16 (17)
      • ►  Jun 15 (8)
      • ►  Jun 14 (11)
      • ►  Jun 13 (8)
      • ►  Jun 12 (11)
      • ►  Jun 11 (6)
      • ►  Jun 10 (15)
      • ►  Jun 09 (6)
      • ►  Jun 08 (20)
      • ►  Jun 07 (10)
      • ►  Jun 06 (11)
      • ►  Jun 05 (13)
      • ►  Jun 04 (12)
      • ►  Jun 03 (11)
      • ►  Jun 02 (6)
      • ►  Jun 01 (8)
    • ►  May (405)
      • ►  May 31 (8)
      • ►  May 30 (6)
      • ►  May 29 (16)
      • ►  May 28 (10)
      • ►  May 27 (15)
      • ►  May 26 (18)
      • ►  May 25 (14)
      • ►  May 24 (23)
      • ►  May 23 (15)
      • ►  May 22 (21)
      • ►  May 21 (13)
      • ►  May 20 (22)
      • ►  May 19 (25)
      • ►  May 18 (17)
      • ►  May 17 (21)
      • ►  May 16 (10)
      • ►  May 15 (12)
      • ►  May 14 (22)
      • ►  May 13 (13)
      • ►  May 12 (14)
      • ►  May 11 (10)
      • ►  May 10 (8)
      • ►  May 09 (15)
      • ►  May 08 (17)
      • ►  May 07 (1)
      • ►  May 06 (3)
      • ►  May 05 (11)
      • ►  May 04 (11)
      • ►  May 03 (7)
      • ►  May 02 (2)
      • ►  May 01 (5)
    • ►  April (183)
      • ►  Apr 30 (10)
      • ►  Apr 29 (6)
      • ►  Apr 28 (7)
      • ►  Apr 27 (9)
      • ►  Apr 26 (8)
      • ►  Apr 25 (10)
      • ►  Apr 24 (8)
      • ►  Apr 23 (10)
      • ►  Apr 22 (4)
      • ►  Apr 21 (10)
      • ►  Apr 20 (9)
      • ►  Apr 19 (10)
      • ►  Apr 18 (22)
      • ►  Apr 17 (8)
      • ►  Apr 16 (8)
      • ►  Apr 15 (5)
      • ►  Apr 14 (2)
      • ►  Apr 13 (4)
      • ►  Apr 12 (1)
      • ►  Apr 11 (7)
      • ►  Apr 10 (8)
      • ►  Apr 09 (1)
      • ►  Apr 07 (3)
      • ►  Apr 06 (1)
      • ►  Apr 03 (3)
      • ►  Apr 02 (3)
      • ►  Apr 01 (6)
    • ►  March (208)
      • ►  Mar 31 (10)
      • ►  Mar 30 (9)
      • ►  Mar 29 (4)
      • ►  Mar 28 (3)
      • ►  Mar 27 (11)
      • ►  Mar 26 (5)
      • ►  Mar 25 (5)
      • ►  Mar 24 (7)
      • ►  Mar 23 (5)
      • ►  Mar 22 (7)
      • ►  Mar 21 (7)
      • ►  Mar 20 (9)
      • ►  Mar 19 (8)
      • ►  Mar 18 (3)
      • ►  Mar 17 (1)
      • ►  Mar 16 (1)
      • ►  Mar 14 (5)
      • ►  Mar 13 (8)
      • ►  Mar 12 (11)
      • ►  Mar 11 (9)
      • ►  Mar 10 (6)
      • ►  Mar 09 (10)
      • ►  Mar 08 (8)
      • ►  Mar 07 (10)
      • ►  Mar 06 (7)
      • ►  Mar 05 (11)
      • ►  Mar 04 (15)
      • ►  Mar 03 (9)
      • ►  Mar 02 (4)
    • ►  February (255)
      • ►  Feb 28 (6)
      • ►  Feb 27 (7)
      • ►  Feb 26 (6)
      • ►  Feb 25 (5)
      • ►  Feb 24 (12)
      • ►  Feb 22 (9)
      • ►  Feb 21 (11)
      • ►  Feb 20 (9)
      • ►  Feb 19 (9)
      • ►  Feb 18 (4)
      • ►  Feb 17 (9)
      • ►  Feb 16 (9)
      • ►  Feb 15 (12)
      • ►  Feb 14 (15)
      • ►  Feb 13 (13)
      • ►  Feb 12 (10)
      • ►  Feb 11 (12)
      • ►  Feb 10 (14)
      • ►  Feb 09 (7)
      • ►  Feb 08 (8)
      • ►  Feb 07 (11)
      • ►  Feb 06 (8)
      • ►  Feb 05 (14)
      • ►  Feb 04 (7)
      • ►  Feb 03 (12)
      • ►  Feb 02 (12)
      • ►  Feb 01 (4)
    • ►  January (286)
      • ►  Jan 31 (10)
      • ►  Jan 30 (12)
      • ►  Jan 29 (10)
      • ►  Jan 28 (6)
      • ►  Jan 27 (11)
      • ►  Jan 26 (11)
      • ►  Jan 25 (11)
      • ►  Jan 24 (13)
      • ►  Jan 23 (17)
      • ►  Jan 22 (6)
      • ►  Jan 21 (10)
      • ►  Jan 20 (9)
      • ►  Jan 19 (12)
      • ►  Jan 18 (6)
      • ►  Jan 17 (11)
      • ►  Jan 16 (6)
      • ►  Jan 15 (7)
      • ►  Jan 14 (8)
      • ►  Jan 13 (10)
      • ►  Jan 12 (9)
      • ►  Jan 11 (1)
      • ►  Jan 10 (11)
      • ►  Jan 09 (9)
      • ►  Jan 08 (10)
      • ►  Jan 07 (13)
      • ►  Jan 06 (5)
      • ►  Jan 05 (11)
      • ►  Jan 04 (8)
      • ►  Jan 03 (6)
      • ►  Jan 02 (11)
      • ►  Jan 01 (6)
  • ►  2019 (3306)
    • ►  December (344)
      • ►  Dec 31 (13)
      • ►  Dec 30 (9)
      • ►  Dec 29 (10)
      • ►  Dec 28 (15)
      • ►  Dec 27 (10)
      • ►  Dec 26 (6)
      • ►  Dec 25 (13)
      • ►  Dec 24 (10)
      • ►  Dec 23 (13)
      • ►  Dec 22 (9)
      • ►  Dec 21 (13)
      • ►  Dec 20 (14)
      • ►  Dec 19 (10)
      • ►  Dec 18 (12)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (11)
      • ►  Dec 14 (19)
      • ►  Dec 13 (10)
      • ►  Dec 12 (15)
      • ►  Dec 11 (10)
      • ►  Dec 10 (9)
      • ►  Dec 09 (12)
      • ►  Dec 08 (9)
      • ►  Dec 07 (10)
      • ►  Dec 06 (7)
      • ►  Dec 05 (10)
      • ►  Dec 04 (8)
      • ►  Dec 03 (11)
      • ►  Dec 02 (10)
      • ►  Dec 01 (7)
    • ►  November (197)
      • ►  Nov 30 (13)
      • ►  Nov 29 (14)
      • ►  Nov 28 (11)
      • ►  Nov 27 (9)
      • ►  Nov 26 (5)
      • ►  Nov 25 (3)
      • ►  Nov 24 (11)
      • ►  Nov 23 (2)
      • ►  Nov 22 (7)
      • ►  Nov 21 (4)
      • ►  Nov 20 (4)
      • ►  Nov 19 (2)
      • ►  Nov 18 (7)
      • ►  Nov 17 (3)
      • ►  Nov 16 (9)
      • ►  Nov 15 (1)
      • ►  Nov 14 (3)
      • ►  Nov 13 (14)
      • ►  Nov 12 (2)
      • ►  Nov 11 (5)
      • ►  Nov 10 (5)
      • ►  Nov 09 (4)
      • ►  Nov 08 (11)
      • ►  Nov 07 (3)
      • ►  Nov 06 (9)
      • ►  Nov 05 (7)
      • ►  Nov 04 (2)
      • ►  Nov 03 (7)
      • ►  Nov 02 (10)
      • ►  Nov 01 (10)
    • ►  October (154)
      • ►  Oct 31 (7)
      • ►  Oct 30 (8)
      • ►  Oct 29 (5)
      • ►  Oct 28 (12)
      • ►  Oct 27 (5)
      • ►  Oct 26 (12)
      • ►  Oct 25 (7)
      • ►  Oct 24 (7)
      • ►  Oct 23 (5)
      • ►  Oct 22 (14)
      • ►  Oct 21 (9)
      • ►  Oct 20 (8)
      • ►  Oct 19 (4)
      • ►  Oct 18 (2)
      • ►  Oct 17 (5)
      • ►  Oct 16 (3)
      • ►  Oct 15 (9)
      • ►  Oct 14 (7)
      • ►  Oct 13 (4)
      • ►  Oct 12 (5)
      • ►  Oct 10 (2)
      • ►  Oct 09 (10)
      • ►  Oct 07 (2)
      • ►  Oct 05 (1)
      • ►  Oct 02 (1)
    • ►  September (67)
      • ►  Sep 30 (3)
      • ►  Sep 29 (1)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (4)
      • ►  Sep 25 (3)
      • ►  Sep 22 (3)
      • ►  Sep 21 (6)
      • ►  Sep 19 (1)
      • ►  Sep 18 (3)
      • ►  Sep 16 (3)
      • ►  Sep 15 (2)
      • ►  Sep 14 (4)
      • ►  Sep 13 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (4)
      • ►  Sep 08 (4)
      • ►  Sep 07 (1)
      • ►  Sep 06 (6)
      • ►  Sep 04 (3)
      • ►  Sep 03 (6)
      • ►  Sep 01 (4)
    • ►  August (84)
      • ►  Aug 26 (2)
      • ►  Aug 25 (2)
      • ►  Aug 24 (2)
      • ►  Aug 23 (1)
      • ►  Aug 22 (3)
      • ►  Aug 21 (2)
      • ►  Aug 19 (1)
      • ►  Aug 18 (2)
      • ►  Aug 17 (1)
      • ►  Aug 14 (1)
      • ►  Aug 13 (1)
      • ►  Aug 12 (5)
      • ►  Aug 11 (4)
      • ►  Aug 10 (7)
      • ►  Aug 09 (2)
      • ►  Aug 08 (2)
      • ►  Aug 07 (5)
      • ►  Aug 06 (6)
      • ►  Aug 05 (3)
      • ►  Aug 04 (5)
      • ►  Aug 03 (9)
      • ►  Aug 02 (8)
      • ►  Aug 01 (10)
    • ►  July (217)
      • ►  Jul 31 (6)
      • ►  Jul 29 (10)
      • ►  Jul 28 (5)
      • ►  Jul 27 (10)
      • ►  Jul 25 (7)
      • ►  Jul 24 (11)
      • ►  Jul 23 (8)
      • ►  Jul 22 (4)
      • ►  Jul 21 (17)
      • ►  Jul 20 (7)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (7)
      • ►  Jul 16 (10)
      • ►  Jul 15 (6)
      • ►  Jul 14 (6)
      • ►  Jul 13 (15)
      • ►  Jul 12 (12)
      • ►  Jul 11 (3)
      • ►  Jul 10 (7)
      • ►  Jul 09 (2)
      • ►  Jul 08 (2)
      • ►  Jul 07 (7)
      • ►  Jul 06 (9)
      • ►  Jul 04 (11)
      • ►  Jul 03 (2)
      • ►  Jul 02 (4)
      • ►  Jul 01 (9)
    • ►  June (260)
      • ►  Jun 30 (7)
      • ►  Jun 29 (15)
      • ►  Jun 28 (4)
      • ►  Jun 27 (2)
      • ►  Jun 26 (6)
      • ►  Jun 25 (2)
      • ►  Jun 24 (10)
      • ►  Jun 23 (10)
      • ►  Jun 22 (8)
      • ►  Jun 21 (12)
      • ►  Jun 20 (8)
      • ►  Jun 19 (8)
      • ►  Jun 18 (12)
      • ►  Jun 17 (7)
      • ►  Jun 16 (7)
      • ►  Jun 15 (10)
      • ►  Jun 14 (11)
      • ►  Jun 13 (1)
      • ►  Jun 11 (2)
      • ►  Jun 10 (13)
      • ►  Jun 09 (16)
      • ►  Jun 08 (10)
      • ►  Jun 07 (16)
      • ►  Jun 06 (11)
      • ►  Jun 05 (17)
      • ►  Jun 04 (6)
      • ►  Jun 03 (13)
      • ►  Jun 02 (4)
      • ►  Jun 01 (12)
    • ►  May (426)
      • ►  May 31 (22)
      • ►  May 30 (14)
      • ►  May 29 (7)
      • ►  May 28 (16)
      • ►  May 27 (8)
      • ►  May 26 (9)
      • ►  May 25 (25)
      • ►  May 24 (10)
      • ►  May 23 (10)
      • ►  May 22 (13)
      • ►  May 21 (11)
      • ►  May 20 (16)
      • ►  May 19 (26)
      • ►  May 18 (8)
      • ►  May 17 (17)
      • ►  May 16 (11)
      • ►  May 15 (3)
      • ►  May 14 (17)
      • ►  May 13 (17)
      • ►  May 12 (14)
      • ►  May 11 (13)
      • ►  May 10 (18)
      • ►  May 09 (15)
      • ►  May 08 (12)
      • ►  May 07 (8)
      • ►  May 06 (12)
      • ►  May 05 (12)
      • ►  May 04 (13)
      • ►  May 03 (13)
      • ►  May 02 (16)
      • ►  May 01 (20)
    • ►  April (356)
      • ►  Apr 30 (9)
      • ►  Apr 29 (10)
      • ►  Apr 28 (11)
      • ►  Apr 27 (11)
      • ►  Apr 26 (15)
      • ►  Apr 25 (9)
      • ►  Apr 24 (12)
      • ►  Apr 23 (15)
      • ►  Apr 22 (12)
      • ►  Apr 21 (15)
      • ►  Apr 20 (13)
      • ►  Apr 19 (9)
      • ►  Apr 18 (14)
      • ►  Apr 17 (11)
      • ►  Apr 16 (8)
      • ►  Apr 15 (15)
      • ►  Apr 14 (6)
      • ►  Apr 13 (8)
      • ►  Apr 12 (10)
      • ►  Apr 11 (17)
      • ►  Apr 10 (12)
      • ►  Apr 09 (8)
      • ►  Apr 08 (13)
      • ►  Apr 07 (18)
      • ►  Apr 06 (11)
      • ►  Apr 05 (12)
      • ►  Apr 04 (16)
      • ►  Apr 03 (12)
      • ►  Apr 02 (12)
      • ►  Apr 01 (12)
    • ►  March (419)
      • ►  Mar 31 (13)
      • ►  Mar 30 (17)
      • ►  Mar 29 (13)
      • ►  Mar 28 (14)
      • ►  Mar 27 (17)
      • ►  Mar 26 (12)
      • ►  Mar 25 (9)
      • ►  Mar 24 (13)
      • ►  Mar 23 (13)
      • ►  Mar 22 (12)
      • ►  Mar 21 (12)
      • ►  Mar 20 (12)
      • ►  Mar 19 (12)
      • ►  Mar 18 (12)
      • ►  Mar 17 (12)
      • ►  Mar 16 (17)
      • ►  Mar 15 (13)
      • ►  Mar 14 (16)
      • ►  Mar 13 (8)
      • ►  Mar 12 (12)
      • ►  Mar 11 (11)
      • ►  Mar 10 (12)
      • ►  Mar 09 (15)
      • ►  Mar 08 (11)
      • ►  Mar 07 (19)
      • ►  Mar 06 (26)
      • ►  Mar 05 (14)
      • ►  Mar 04 (14)
      • ►  Mar 03 (12)
      • ►  Mar 02 (12)
      • ►  Mar 01 (14)
    • ►  February (375)
      • ►  Feb 28 (11)
      • ►  Feb 27 (10)
      • ►  Feb 26 (8)
      • ►  Feb 25 (11)
      • ►  Feb 24 (11)
      • ►  Feb 23 (5)
      • ►  Feb 22 (14)
      • ►  Feb 21 (13)
      • ►  Feb 20 (17)
      • ►  Feb 19 (14)
      • ►  Feb 18 (15)
      • ►  Feb 17 (12)
      • ►  Feb 16 (14)
      • ►  Feb 15 (14)
      • ►  Feb 14 (15)
      • ►  Feb 13 (20)
      • ►  Feb 12 (11)
      • ►  Feb 11 (21)
      • ►  Feb 10 (12)
      • ►  Feb 09 (18)
      • ►  Feb 08 (20)
      • ►  Feb 07 (13)
      • ►  Feb 06 (12)
      • ►  Feb 05 (14)
      • ►  Feb 04 (17)
      • ►  Feb 03 (8)
      • ►  Feb 02 (11)
      • ►  Feb 01 (14)
    • ►  January (407)
      • ►  Jan 31 (15)
      • ►  Jan 30 (11)
      • ►  Jan 29 (5)
      • ►  Jan 28 (19)
      • ►  Jan 27 (15)
      • ►  Jan 26 (13)
      • ►  Jan 25 (15)
      • ►  Jan 24 (13)
      • ►  Jan 23 (15)
      • ►  Jan 22 (10)
      • ►  Jan 21 (10)
      • ►  Jan 20 (18)
      • ►  Jan 19 (18)
      • ►  Jan 18 (7)
      • ►  Jan 17 (14)
      • ►  Jan 16 (17)
      • ►  Jan 15 (12)
      • ►  Jan 14 (14)
      • ►  Jan 13 (19)
      • ►  Jan 12 (8)
      • ►  Jan 11 (15)
      • ►  Jan 10 (9)
      • ►  Jan 09 (13)
      • ►  Jan 08 (12)
      • ►  Jan 07 (12)
      • ►  Jan 06 (15)
      • ►  Jan 05 (25)
      • ►  Jan 04 (11)
      • ►  Jan 03 (7)
      • ►  Jan 02 (12)
      • ►  Jan 01 (8)
  • ►  2018 (2910)
    • ►  December (343)
      • ►  Dec 31 (10)
      • ►  Dec 30 (14)
      • ►  Dec 29 (10)
      • ►  Dec 28 (7)
      • ►  Dec 27 (6)
      • ►  Dec 26 (16)
      • ►  Dec 25 (15)
      • ►  Dec 24 (11)
      • ►  Dec 23 (14)
      • ►  Dec 22 (7)
      • ►  Dec 21 (11)
      • ►  Dec 20 (9)
      • ►  Dec 19 (12)
      • ►  Dec 18 (8)
      • ►  Dec 17 (13)
      • ►  Dec 16 (16)
      • ►  Dec 15 (14)
      • ►  Dec 14 (9)
      • ►  Dec 13 (12)
      • ►  Dec 12 (11)
      • ►  Dec 11 (7)
      • ►  Dec 10 (8)
      • ►  Dec 09 (8)
      • ►  Dec 08 (14)
      • ►  Dec 07 (16)
      • ►  Dec 06 (12)
      • ►  Dec 05 (14)
      • ►  Dec 04 (8)
      • ►  Dec 03 (10)
      • ►  Dec 02 (3)
      • ►  Dec 01 (18)
    • ►  November (319)
      • ►  Nov 30 (11)
      • ►  Nov 29 (14)
      • ►  Nov 28 (9)
      • ►  Nov 27 (4)
      • ►  Nov 26 (10)
      • ►  Nov 25 (18)
      • ►  Nov 24 (14)
      • ►  Nov 23 (9)
      • ►  Nov 22 (15)
      • ►  Nov 21 (4)
      • ►  Nov 20 (6)
      • ►  Nov 19 (9)
      • ►  Nov 18 (3)
      • ►  Nov 17 (10)
      • ►  Nov 16 (5)
      • ►  Nov 15 (13)
      • ►  Nov 14 (11)
      • ►  Nov 13 (11)
      • ►  Nov 12 (16)
      • ►  Nov 11 (8)
      • ►  Nov 10 (14)
      • ►  Nov 09 (6)
      • ►  Nov 08 (6)
      • ►  Nov 07 (6)
      • ►  Nov 06 (14)
      • ►  Nov 05 (6)
      • ►  Nov 04 (18)
      • ►  Nov 03 (22)
      • ►  Nov 02 (7)
      • ►  Nov 01 (20)
    • ►  October (304)
      • ►  Oct 31 (6)
      • ►  Oct 30 (10)
      • ►  Oct 29 (17)
      • ►  Oct 28 (10)
      • ►  Oct 27 (11)
      • ►  Oct 26 (11)
      • ►  Oct 25 (12)
      • ►  Oct 24 (13)
      • ►  Oct 23 (13)
      • ►  Oct 22 (10)
      • ►  Oct 21 (9)
      • ►  Oct 20 (11)
      • ►  Oct 19 (7)
      • ►  Oct 18 (7)
      • ►  Oct 17 (14)
      • ►  Oct 16 (5)
      • ►  Oct 15 (13)
      • ►  Oct 14 (8)
      • ►  Oct 13 (13)
      • ►  Oct 12 (6)
      • ►  Oct 11 (17)
      • ►  Oct 10 (17)
      • ►  Oct 09 (1)
      • ►  Oct 08 (10)
      • ►  Oct 07 (2)
      • ►  Oct 06 (11)
      • ►  Oct 05 (16)
      • ►  Oct 04 (6)
      • ►  Oct 03 (9)
      • ►  Oct 02 (6)
      • ►  Oct 01 (3)
    • ►  September (324)
      • ►  Sep 30 (5)
      • ►  Sep 29 (8)
      • ►  Sep 28 (9)
      • ►  Sep 27 (9)
      • ►  Sep 26 (11)
      • ►  Sep 25 (13)
      • ►  Sep 24 (16)
      • ►  Sep 23 (7)
      • ►  Sep 22 (18)
      • ►  Sep 21 (8)
      • ►  Sep 20 (8)
      • ►  Sep 19 (8)
      • ►  Sep 18 (11)
      • ►  Sep 17 (6)
      • ►  Sep 16 (9)
      • ►  Sep 15 (13)
      • ►  Sep 14 (7)
      • ►  Sep 13 (13)
      • ►  Sep 12 (4)
      • ►  Sep 11 (14)
      • ►  Sep 10 (12)
      • ►  Sep 09 (9)
      • ►  Sep 08 (14)
      • ►  Sep 07 (11)
      • ►  Sep 06 (13)
      • ►  Sep 05 (17)
      • ►  Sep 04 (12)
      • ►  Sep 03 (17)
      • ►  Sep 02 (10)
      • ►  Sep 01 (12)
    • ►  August (453)
      • ►  Aug 31 (6)
      • ►  Aug 30 (12)
      • ►  Aug 29 (13)
      • ►  Aug 28 (7)
      • ►  Aug 27 (6)
      • ►  Aug 26 (9)
      • ►  Aug 25 (11)
      • ►  Aug 24 (6)
      • ►  Aug 23 (10)
      • ►  Aug 22 (18)
      • ►  Aug 21 (8)
      • ►  Aug 20 (18)
      • ►  Aug 19 (5)
      • ►  Aug 18 (8)
      • ►  Aug 17 (16)
      • ►  Aug 16 (18)
      • ►  Aug 15 (7)
      • ►  Aug 14 (8)
      • ►  Aug 13 (17)
      • ►  Aug 12 (18)
      • ►  Aug 11 (21)
      • ►  Aug 10 (10)
      • ►  Aug 09 (14)
      • ►  Aug 08 (25)
      • ►  Aug 07 (25)
      • ►  Aug 06 (22)
      • ►  Aug 05 (32)
      • ►  Aug 04 (24)
      • ►  Aug 03 (15)
      • ►  Aug 02 (26)
      • ►  Aug 01 (18)
    • ►  July (443)
      • ►  Jul 31 (28)
      • ►  Jul 30 (13)
      • ►  Jul 29 (20)
      • ►  Jul 28 (16)
      • ►  Jul 27 (30)
      • ►  Jul 26 (14)
      • ►  Jul 25 (16)
      • ►  Jul 24 (26)
      • ►  Jul 23 (14)
      • ►  Jul 22 (15)
      • ►  Jul 21 (21)
      • ►  Jul 20 (10)
      • ►  Jul 19 (11)
      • ►  Jul 18 (9)
      • ►  Jul 17 (12)
      • ►  Jul 16 (10)
      • ►  Jul 15 (10)
      • ►  Jul 14 (11)
      • ►  Jul 13 (12)
      • ►  Jul 12 (7)
      • ►  Jul 11 (12)
      • ►  Jul 10 (8)
      • ►  Jul 09 (16)
      • ►  Jul 08 (7)
      • ►  Jul 07 (11)
      • ►  Jul 06 (8)
      • ►  Jul 05 (22)
      • ►  Jul 04 (15)
      • ►  Jul 03 (15)
      • ►  Jul 02 (13)
      • ►  Jul 01 (11)
    • ►  June (335)
      • ►  Jun 30 (18)
      • ►  Jun 29 (16)
      • ►  Jun 28 (27)
      • ►  Jun 27 (8)
      • ►  Jun 26 (9)
      • ►  Jun 25 (15)
      • ►  Jun 24 (6)
      • ►  Jun 23 (12)
      • ►  Jun 22 (8)
      • ►  Jun 21 (6)
      • ►  Jun 20 (8)
      • ►  Jun 19 (15)
      • ►  Jun 18 (7)
      • ►  Jun 17 (7)
      • ►  Jun 16 (16)
      • ►  Jun 15 (9)
      • ►  Jun 14 (10)
      • ►  Jun 13 (14)
      • ►  Jun 12 (9)
      • ►  Jun 11 (20)
      • ►  Jun 10 (16)
      • ►  Jun 09 (10)
      • ►  Jun 08 (9)
      • ►  Jun 07 (9)
      • ►  Jun 06 (6)
      • ►  Jun 05 (9)
      • ►  Jun 04 (9)
      • ►  Jun 03 (6)
      • ►  Jun 02 (9)
      • ►  Jun 01 (12)
    • ►  May (298)
      • ►  May 31 (15)
      • ►  May 30 (10)
      • ►  May 29 (12)
      • ►  May 28 (13)
      • ►  May 27 (12)
      • ►  May 26 (23)
      • ►  May 25 (13)
      • ►  May 24 (7)
      • ►  May 23 (4)
      • ►  May 22 (10)
      • ►  May 21 (7)
      • ►  May 20 (13)
      • ►  May 19 (10)
      • ►  May 18 (10)
      • ►  May 17 (8)
      • ►  May 16 (8)
      • ►  May 15 (12)
      • ►  May 14 (10)
      • ►  May 13 (19)
      • ►  May 12 (7)
      • ►  May 11 (6)
      • ►  May 10 (11)
      • ►  May 09 (7)
      • ►  May 08 (4)
      • ►  May 07 (4)
      • ►  May 06 (12)
      • ►  May 05 (6)
      • ►  May 04 (3)
      • ►  May 03 (7)
      • ►  May 02 (13)
      • ►  May 01 (2)
    • ►  April (36)
      • ►  Apr 30 (3)
      • ►  Apr 29 (11)
      • ►  Apr 28 (2)
      • ►  Apr 27 (2)
      • ►  Apr 26 (4)
      • ►  Apr 23 (1)
      • ►  Apr 22 (3)
      • ►  Apr 21 (1)
      • ►  Apr 20 (4)
      • ►  Apr 16 (1)
      • ►  Apr 14 (1)
      • ►  Apr 08 (1)
      • ►  Apr 07 (2)
    • ►  March (24)
      • ►  Mar 30 (3)
      • ►  Mar 25 (1)
      • ►  Mar 24 (1)
      • ►  Mar 23 (1)
      • ►  Mar 22 (1)
      • ►  Mar 17 (1)
      • ►  Mar 15 (2)
      • ►  Mar 13 (1)
      • ►  Mar 12 (2)
      • ►  Mar 11 (2)
      • ►  Mar 10 (1)
      • ►  Mar 09 (1)
      • ►  Mar 06 (1)
      • ►  Mar 05 (2)
      • ►  Mar 03 (1)
      • ►  Mar 02 (2)
      • ►  Mar 01 (1)
    • ►  February (19)
      • ►  Feb 28 (4)
      • ►  Feb 26 (1)
      • ►  Feb 23 (1)
      • ►  Feb 21 (1)
      • ►  Feb 20 (1)
      • ►  Feb 19 (1)
      • ►  Feb 18 (2)
      • ►  Feb 17 (1)
      • ►  Feb 16 (1)
      • ►  Feb 15 (3)
      • ►  Feb 07 (1)
      • ►  Feb 06 (1)
      • ►  Feb 05 (1)
    • ►  January (12)
      • ►  Jan 28 (3)
      • ►  Jan 26 (5)
      • ►  Jan 24 (2)
      • ►  Jan 07 (1)
      • ►  Jan 05 (1)
  • ►  2017 (105)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 27 (2)
      • ►  Dec 24 (1)
      • ►  Dec 15 (1)
      • ►  Dec 02 (4)
    • ►  November (8)
      • ►  Nov 24 (1)
      • ►  Nov 23 (1)
      • ►  Nov 17 (1)
      • ►  Nov 16 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (2)
    • ►  October (1)
      • ►  Oct 09 (1)
    • ►  August (2)
      • ►  Aug 12 (1)
      • ►  Aug 04 (1)
    • ►  July (18)
      • ►  Jul 28 (1)
      • ►  Jul 27 (1)
      • ►  Jul 26 (4)
      • ►  Jul 19 (1)
      • ►  Jul 17 (1)
      • ►  Jul 15 (2)
      • ►  Jul 14 (2)
      • ►  Jul 13 (1)
      • ►  Jul 12 (2)
      • ►  Jul 02 (3)
    • ►  June (9)
      • ►  Jun 25 (1)
      • ►  Jun 18 (1)
      • ►  Jun 16 (1)
      • ►  Jun 14 (2)
      • ►  Jun 08 (1)
      • ►  Jun 05 (2)
      • ►  Jun 04 (1)
    • ►  May (22)
      • ►  May 29 (1)
      • ►  May 20 (2)
      • ►  May 19 (1)
      • ►  May 18 (1)
      • ►  May 17 (1)
      • ►  May 14 (3)
      • ►  May 13 (1)
      • ►  May 09 (1)
      • ►  May 07 (3)
      • ►  May 06 (2)
      • ►  May 05 (1)
      • ►  May 04 (2)
      • ►  May 03 (1)
      • ►  May 02 (1)
      • ►  May 01 (1)
    • ►  April (25)
      • ►  Apr 30 (1)
      • ►  Apr 29 (1)
      • ►  Apr 27 (1)
      • ►  Apr 24 (2)
      • ►  Apr 23 (1)
      • ►  Apr 18 (1)
      • ►  Apr 17 (2)
      • ►  Apr 16 (1)
      • ►  Apr 14 (2)
      • ►  Apr 12 (2)
      • ►  Apr 11 (1)
      • ►  Apr 08 (1)
      • ►  Apr 06 (1)
      • ►  Apr 05 (1)
      • ►  Apr 04 (1)
      • ►  Apr 03 (2)
      • ►  Apr 02 (2)
      • ►  Apr 01 (2)
    • ►  March (11)
      • ►  Mar 31 (2)
      • ►  Mar 30 (2)
      • ►  Mar 28 (1)
      • ►  Mar 27 (3)
      • ►  Mar 25 (2)
      • ►  Mar 11 (1)
  • ►  2016 (31)
    • ►  August (1)
      • ►  Aug 10 (1)
    • ►  March (3)
      • ►  Mar 17 (1)
      • ►  Mar 12 (1)
      • ►  Mar 04 (1)
    • ►  February (11)
      • ►  Feb 29 (1)
      • ►  Feb 24 (1)
      • ►  Feb 22 (1)
      • ►  Feb 21 (2)
      • ►  Feb 11 (1)
      • ►  Feb 09 (2)
      • ►  Feb 03 (1)
      • ►  Feb 02 (1)
      • ►  Feb 01 (1)
    • ►  January (16)
      • ►  Jan 26 (2)
      • ►  Jan 24 (1)
      • ►  Jan 22 (2)
      • ►  Jan 21 (1)
      • ►  Jan 20 (1)
      • ►  Jan 19 (2)
      • ►  Jan 16 (1)
      • ►  Jan 14 (3)
      • ►  Jan 13 (1)
      • ►  Jan 12 (1)
      • ►  Jan 07 (1)
  • ►  2015 (1803)
    • ►  December (9)
      • ►  Dec 31 (1)
      • ►  Dec 26 (1)
      • ►  Dec 25 (1)
      • ►  Dec 23 (1)
      • ►  Dec 22 (2)
      • ►  Dec 19 (1)
      • ►  Dec 01 (2)
    • ►  November (11)
      • ►  Nov 28 (2)
      • ►  Nov 13 (1)
      • ►  Nov 11 (1)
      • ►  Nov 09 (3)
      • ►  Nov 07 (1)
      • ►  Nov 05 (1)
      • ►  Nov 03 (1)
      • ►  Nov 02 (1)
    • ►  October (31)
      • ►  Oct 31 (1)
      • ►  Oct 30 (2)
      • ►  Oct 29 (1)
      • ►  Oct 28 (3)
      • ►  Oct 26 (1)
      • ►  Oct 24 (1)
      • ►  Oct 22 (1)
      • ►  Oct 21 (1)
      • ►  Oct 19 (1)
      • ►  Oct 17 (1)
      • ►  Oct 16 (1)
      • ►  Oct 15 (1)
      • ►  Oct 14 (1)
      • ►  Oct 11 (2)
      • ►  Oct 09 (4)
      • ►  Oct 08 (1)
      • ►  Oct 07 (6)
      • ►  Oct 06 (1)
      • ►  Oct 02 (1)
    • ►  September (34)
      • ►  Sep 29 (4)
      • ►  Sep 28 (2)
      • ►  Sep 27 (2)
      • ►  Sep 26 (3)
      • ►  Sep 25 (1)
      • ►  Sep 24 (1)
      • ►  Sep 23 (2)
      • ►  Sep 22 (4)
      • ►  Sep 21 (6)
      • ►  Sep 14 (1)
      • ►  Sep 13 (1)
      • ►  Sep 12 (1)
      • ►  Sep 11 (1)
      • ►  Sep 09 (2)
      • ►  Sep 08 (1)
      • ►  Sep 05 (1)
      • ►  Sep 04 (1)
    • ►  August (6)
      • ►  Aug 22 (1)
      • ►  Aug 20 (1)
      • ►  Aug 08 (1)
      • ►  Aug 07 (2)
      • ►  Aug 06 (1)
    • ►  July (29)
      • ►  Jul 21 (1)
      • ►  Jul 18 (1)
      • ►  Jul 15 (1)
      • ►  Jul 14 (3)
      • ►  Jul 13 (1)
      • ►  Jul 12 (1)
      • ►  Jul 10 (2)
      • ►  Jul 09 (1)
      • ►  Jul 08 (1)
      • ►  Jul 06 (4)
      • ►  Jul 05 (3)
      • ►  Jul 04 (1)
      • ►  Jul 03 (6)
      • ►  Jul 02 (1)
      • ►  Jul 01 (2)
    • ►  June (9)
      • ►  Jun 28 (2)
      • ►  Jun 24 (2)
      • ►  Jun 22 (1)
      • ►  Jun 18 (1)
      • ►  Jun 17 (1)
      • ►  Jun 02 (2)
    • ►  May (141)
      • ►  May 31 (3)
      • ►  May 30 (7)
      • ►  May 29 (8)
      • ►  May 28 (4)
      • ►  May 27 (4)
      • ►  May 26 (5)
      • ►  May 25 (1)
      • ►  May 24 (4)
      • ►  May 23 (8)
      • ►  May 22 (6)
      • ►  May 21 (4)
      • ►  May 20 (4)
      • ►  May 19 (7)
      • ►  May 18 (3)
      • ►  May 17 (2)
      • ►  May 16 (7)
      • ►  May 15 (10)
      • ►  May 14 (7)
      • ►  May 13 (5)
      • ►  May 12 (2)
      • ►  May 11 (2)
      • ►  May 10 (4)
      • ►  May 09 (3)
      • ►  May 08 (3)
      • ►  May 07 (5)
      • ►  May 06 (4)
      • ►  May 05 (4)
      • ►  May 04 (2)
      • ►  May 03 (3)
      • ►  May 02 (4)
      • ►  May 01 (6)
    • ►  April (150)
      • ►  Apr 29 (4)
      • ►  Apr 28 (5)
      • ►  Apr 24 (3)
      • ►  Apr 22 (1)
      • ►  Apr 19 (3)
      • ►  Apr 17 (2)
      • ►  Apr 16 (2)
      • ►  Apr 15 (1)
      • ►  Apr 14 (1)
      • ►  Apr 12 (3)
      • ►  Apr 10 (13)
      • ►  Apr 09 (18)
      • ►  Apr 08 (8)
      • ►  Apr 07 (15)
      • ►  Apr 06 (13)
      • ►  Apr 05 (17)
      • ►  Apr 04 (9)
      • ►  Apr 03 (4)
      • ►  Apr 02 (14)
      • ►  Apr 01 (14)
    • ►  March (609)
      • ►  Mar 31 (29)
      • ►  Mar 30 (24)
      • ►  Mar 29 (18)
      • ►  Mar 28 (15)
      • ►  Mar 27 (7)
      • ►  Mar 26 (14)
      • ►  Mar 25 (6)
      • ►  Mar 23 (11)
      • ►  Mar 22 (22)
      • ►  Mar 21 (29)
      • ►  Mar 20 (41)
      • ►  Mar 19 (34)
      • ►  Mar 18 (34)
      • ►  Mar 17 (41)
      • ►  Mar 16 (31)
      • ►  Mar 15 (1)
      • ►  Mar 14 (3)
      • ►  Mar 13 (17)
      • ►  Mar 12 (12)
      • ►  Mar 11 (12)
      • ►  Mar 10 (19)
      • ►  Mar 09 (25)
      • ►  Mar 08 (20)
      • ►  Mar 07 (17)
      • ►  Mar 06 (20)
      • ►  Mar 05 (19)
      • ►  Mar 04 (30)
      • ►  Mar 03 (5)
      • ►  Mar 02 (18)
      • ►  Mar 01 (35)
    • ►  February (652)
      • ►  Feb 28 (19)
      • ►  Feb 27 (19)
      • ►  Feb 26 (28)
      • ►  Feb 25 (18)
      • ►  Feb 24 (8)
      • ►  Feb 23 (26)
      • ►  Feb 22 (15)
      • ►  Feb 21 (40)
      • ►  Feb 20 (24)
      • ►  Feb 19 (40)
      • ►  Feb 18 (38)
      • ►  Feb 17 (39)
      • ►  Feb 16 (53)
      • ►  Feb 15 (28)
      • ►  Feb 14 (31)
      • ►  Feb 13 (14)
      • ►  Feb 12 (26)
      • ►  Feb 11 (18)
      • ►  Feb 10 (32)
      • ►  Feb 09 (15)
      • ►  Feb 08 (7)
      • ►  Feb 07 (24)
      • ►  Feb 06 (15)
      • ►  Feb 05 (16)
      • ►  Feb 04 (21)
      • ►  Feb 03 (9)
      • ►  Feb 02 (23)
      • ►  Feb 01 (6)
    • ►  January (122)
      • ►  Jan 31 (10)
      • ►  Jan 30 (21)
      • ►  Jan 29 (4)
      • ►  Jan 28 (5)
      • ►  Jan 27 (9)
      • ►  Jan 26 (3)
      • ►  Jan 25 (6)
      • ►  Jan 24 (9)
      • ►  Jan 23 (5)
      • ►  Jan 22 (4)
      • ►  Jan 21 (3)
      • ►  Jan 20 (1)
      • ►  Jan 17 (1)
      • ►  Jan 16 (2)
      • ►  Jan 15 (2)
      • ►  Jan 14 (2)
      • ►  Jan 13 (8)
      • ►  Jan 12 (4)
      • ►  Jan 11 (4)
      • ►  Jan 10 (2)
      • ►  Jan 09 (6)
      • ►  Jan 08 (6)
      • ►  Jan 07 (5)
  • ►  2014 (1062)
    • ►  November (6)
      • ►  Nov 26 (2)
      • ►  Nov 25 (3)
      • ►  Nov 24 (1)
    • ►  October (10)
      • ►  Oct 23 (2)
      • ►  Oct 16 (3)
      • ►  Oct 12 (4)
      • ►  Oct 06 (1)
    • ►  September (270)
      • ►  Sep 21 (34)
      • ►  Sep 20 (15)
      • ►  Sep 17 (9)
      • ►  Sep 13 (10)
      • ►  Sep 12 (33)
      • ►  Sep 11 (30)
      • ►  Sep 10 (1)
      • ►  Sep 09 (14)
      • ►  Sep 08 (23)
      • ►  Sep 07 (5)
      • ►  Sep 06 (19)
      • ►  Sep 05 (18)
      • ►  Sep 04 (24)
      • ►  Sep 03 (18)
      • ►  Sep 02 (10)
      • ►  Sep 01 (7)
    • ►  August (497)
      • ►  Aug 31 (15)
      • ►  Aug 30 (20)
      • ►  Aug 28 (1)
      • ►  Aug 25 (10)
      • ►  Aug 24 (26)
      • ►  Aug 23 (23)
      • ►  Aug 22 (14)
      • ►  Aug 21 (22)
      • ►  Aug 20 (21)
      • ►  Aug 19 (18)
      • ►  Aug 18 (66)
      • ►  Aug 17 (21)
      • ►  Aug 16 (16)
      • ►  Aug 15 (34)
      • ►  Aug 14 (25)
      • ►  Aug 13 (12)
      • ►  Aug 11 (7)
      • ►  Aug 10 (18)
      • ►  Aug 09 (13)
      • ►  Aug 08 (13)
      • ►  Aug 07 (26)
      • ►  Aug 06 (21)
      • ►  Aug 05 (7)
      • ►  Aug 04 (15)
      • ►  Aug 03 (20)
      • ►  Aug 02 (5)
      • ►  Aug 01 (8)
    • ►  July (85)
      • ►  Jul 31 (5)
      • ►  Jul 30 (26)
      • ►  Jul 29 (21)
      • ►  Jul 28 (33)
    • ►  March (3)
      • ►  Mar 25 (1)
      • ►  Mar 12 (1)
      • ►  Mar 09 (1)
    • ►  February (23)
      • ►  Feb 14 (1)
      • ►  Feb 06 (2)
      • ►  Feb 04 (4)
      • ►  Feb 03 (1)
      • ►  Feb 02 (6)
      • ►  Feb 01 (9)
    • ►  January (168)
      • ►  Jan 31 (10)
      • ►  Jan 30 (6)
      • ►  Jan 29 (4)
      • ►  Jan 27 (6)
      • ►  Jan 26 (1)
      • ►  Jan 25 (7)
      • ►  Jan 24 (13)
      • ►  Jan 23 (11)
      • ►  Jan 22 (3)
      • ►  Jan 21 (6)
      • ►  Jan 20 (3)
      • ►  Jan 19 (8)
      • ►  Jan 18 (7)
      • ►  Jan 17 (7)
      • ►  Jan 16 (13)
      • ►  Jan 15 (1)
      • ►  Jan 12 (1)
      • ►  Jan 11 (1)
      • ►  Jan 09 (3)
      • ►  Jan 08 (6)
      • ►  Jan 07 (7)
      • ►  Jan 06 (14)
      • ►  Jan 05 (10)
      • ►  Jan 04 (2)
      • ►  Jan 02 (6)
      • ►  Jan 01 (12)
  • ►  2013 (210)
    • ►  December (199)
      • ►  Dec 30 (5)
      • ►  Dec 29 (8)
      • ►  Dec 28 (6)
      • ►  Dec 27 (11)
      • ►  Dec 26 (9)
      • ►  Dec 25 (7)
      • ►  Dec 24 (15)
      • ►  Dec 23 (13)
      • ►  Dec 22 (3)
      • ►  Dec 21 (9)
      • ►  Dec 20 (10)
      • ►  Dec 19 (7)
      • ►  Dec 18 (4)
      • ►  Dec 17 (7)
      • ►  Dec 16 (6)
      • ►  Dec 15 (5)
      • ►  Dec 14 (3)
      • ►  Dec 13 (5)
      • ►  Dec 12 (2)
      • ►  Dec 11 (4)
      • ►  Dec 10 (9)
      • ►  Dec 09 (11)
      • ►  Dec 08 (11)
      • ►  Dec 07 (14)
      • ►  Dec 06 (3)
      • ►  Dec 05 (3)
      • ►  Dec 04 (6)
      • ►  Dec 03 (1)
      • ►  Dec 02 (2)
    • ►  September (2)
      • ►  Sep 25 (2)
    • ►  April (1)
      • ►  Apr 30 (1)
    • ►  January (8)
      • ►  Jan 22 (1)
      • ►  Jan 20 (4)
      • ►  Jan 16 (1)
      • ►  Jan 15 (1)
      • ►  Jan 14 (1)
  • ►  2012 (2)
    • ►  December (1)
      • ►  Dec 21 (1)
    • ►  January (1)
      • ►  Jan 11 (1)
  • ►  2011 (26)
    • ►  December (25)
      • ►  Dec 22 (1)
      • ►  Dec 17 (3)
      • ►  Dec 16 (2)
      • ►  Dec 15 (1)
      • ►  Dec 14 (1)
      • ►  Dec 13 (2)
      • ►  Dec 12 (1)
      • ►  Dec 11 (1)
      • ►  Dec 10 (1)
      • ►  Dec 07 (4)
      • ►  Dec 06 (2)
      • ►  Dec 04 (1)
      • ►  Dec 03 (2)
      • ►  Dec 02 (3)
    • ►  November (1)
      • ►  Nov 19 (1)
  • ►  2010 (2)
    • ►  September (1)
      • ►  Sep 11 (1)
    • ►  January (1)
      • ►  Jan 16 (1)
  • ►  2008 (1)
    • ►  April (1)
      • ►  Apr 05 (1)

Labels

  • Estradiol

Report Abuse

Followers

Total Pageviews

Translate

Simple theme. Theme images by merrymoonmary. Powered by Blogger.