From Wikipedia, the free encyclopedia
 
Poisson Distribution
Probability mass function
Poisson pmf.svg
The horizontal axis is the index k, the number of occurrences. λ is the expected rate of occurrences. The vertical axis is the probability of k occurrences given λ. The function is defined only at integer values of k; the connecting lines are only guides for the eye.
 
Cumulative distribution function
Poisson cdf.svg
The horizontal axis is the index k, the number of occurrences. The CDF is discontinuous at the integers of k and flat everywhere else because a variable that is Poisson distributed takes on only integer values.
Notation
Parameters (rate)
Support (Natural numbers starting from 0)
PMF
CDF

, or , or

(for , where is the upper incomplete gamma function, is the floor function, and Q is the regularized gamma function)
Mean
Median
Mode
Variance
Skewness
Ex. kurtosis
Entropy

(for large )

MGF
CF
PGF
Fisher information

In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson (/ˈpwɑːsɒn/; French pronunciation: ​[pwasɔ̃]). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area or volume.

For instance, a call center receives an average of 180 calls per hour, 24 hours a day. The calls are independent; receiving one does not change the probability of when the next one will arrive. The number of calls received during any minute has a Poisson probability distribution: the most likely numbers are 2 and 3 but 1 and 4 are also likely and there is a small probability of it being as low as zero and a very small probability it could be 10. Another example is the number of decay events that occur from a radioactive source during a defined observation period.

History