From Wikipedia, the free encyclopedia

Exponential
Probability density function
plot of the probability density function of the exponential distribution
Cumulative distribution function
 
Cumulative distribution function
Parameters rate, or inverse scale
Support
PDF
CDF
Quantile
Mean
Median
Mode
Variance
Skewness
Ex. kurtosis
Entropy
MGF
CF
Fisher information
Kullback-Leibler divergence

In probability theory and statistics, the exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

The exponential distribution is not the same as the class of exponential families of distributions, which is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes the normal distribution, binomial distribution, gamma distribution, Poisson, and many others.

Definitions

Probability density function

The probability density function (pdf) of an exponential distribution is

Here λ > 0 is the parameter of the distribution, often called the rate parameter. The distribution is supported on the interval [0, ∞). If a random variable X has this distribution, we write X ~ Exp(λ).

The exponential distribution exhibits infinite divisibility.

Cumulative distribution function

The cumulative distribution function is given by

Alternative parametrization

The exponential distribution is sometimes parametrized in terms of the scale parameter β = 1/λ, which is also the mean:

Properties

Mean, variance, moments, and median