A Medley of Potpourri

A Medley of Potpourri is just what it says; various thoughts, opinions, ruminations, and contemplations on a variety of subjects.

Search This Blog

Wednesday, November 2, 2022

Mathematical formulation of the Standard Model

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Mathematical_formulation_of_the_Standard_Model

Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces. It also depicts the crucial role of the Higgs boson in electroweak symmetry breaking, and shows how the properties of the various particles differ in the (high-energy) symmetric phase (top) and the (low-energy) broken-symmetry phase (bottom).

This article describes the mathematics of the Standard Model of particle physics, a gauge quantum field theory containing the internal symmetries of the unitary product group SU(3) × SU(2) × U(1). The theory is commonly viewed as describing the fundamental set of particles – the leptons, quarks, gauge bosons and the Higgs boson.

The Standard Model is renormalizable and mathematically self-consistent, however despite having huge and continued successes in providing experimental predictions it does leave some unexplained phenomena. In particular, although the physics of special relativity is incorporated, general relativity is not, and the Standard Model will fail at energies or distances where the graviton is expected to emerge. Therefore, in a modern field theory context, it is seen as an effective field theory.

Quantum field theory

The pattern of weak isospin T3, weak hypercharge YW, and color charge of all known elementary particles, rotated by the weak mixing angle to show electric charge Q, roughly along the vertical. The neutral Higgs field (gray square) breaks the electroweak symmetry and interacts with other particles to give them mass.

The standard model is a quantum field theory, meaning its fundamental objects are quantum fields which are defined at all points in spacetime. These fields are

  • the fermion fields, ψ, which account for "matter particles";
  • the electroweak boson fields W 1 , W 2 , W 3 W_{1},W_{2},W_{3}, and B;
  • the gluon field, Ga; and
  • the Higgs field, φ.

That these are quantum rather than classical fields has the mathematical consequence that they are operator-valued. In particular, values of the fields generally do not commute. As operators, they act upon a quantum state (ket vector).

Alternative presentations of the fields

As is common in quantum theory, there is more than one way to look at things. At first the basic fields given above may not seem to correspond well with the "fundamental particles" in the chart above, but there are several alternative presentations which, in particular contexts, may be more appropriate than those that are given above.

Fermions

Rather than having one fermion field ψ, it can be split up into separate components for each type of particle. This mirrors the historical evolution of quantum field theory, since the electron component ψe (describing the electron and its antiparticle the positron) is then the original ψ field of quantum electrodynamics, which was later accompanied by ψμ and ψτ fields for the muon and tauon respectively (and their antiparticles). Electroweak theory added ψ ν e , ψ ν μ \psi _{\nu _{\mathrm {e} }},\psi _{\nu _{\mu }}, and ψ ν τ \psi _{\nu _{\tau }} for the corresponding neutrinos. The quarks add still further components. In order to be four-spinors like the electron and other lepton components, there must be one quark component for every combination of flavour and colour, bringing the total to 24 (3 for charged leptons, 3 for neutrinos, and 2·3·3 = 18 for quarks). Each of these is a four component bispinor, for a total of 96 complex-valued components for the fermion field.

An important definition is the barred fermion field ψ ¯ {\bar {\psi }}, which is defined to be ψ † γ 0 \psi ^{\dagger }\gamma ^{0}, where † \dagger denotes the Hermitian adjoint of ψ, and γ0 is the zeroth gamma matrix. If ψ is thought of as an n × 1 matrix then ψ ¯ {\bar {\psi }} should be thought of as a 1 × n matrix.

A chiral theory

An independent decomposition of ψ is that into chirality components:

"Left" chirality:   ψ L = 1 2 ( 1 − γ 5 ) ψ {\displaystyle \psi ^{\rm {L}}={\frac {1}{2}}(1-\gamma _{5})\psi }
"Right" chirality:   ψ R = 1 2 ( 1 + γ 5 ) ψ {\displaystyle \psi ^{\rm {R}}={\frac {1}{2}}(1+\gamma _{5})\psi }

where γ 5 \gamma _{5} is the fifth gamma matrix. This is very important in the Standard Model because left and right chirality components are treated differently by the gauge interactions.

In particular, under weak isospin SU(2) transformations the left-handed particles are weak-isospin doublets, whereas the right-handed are singlets – i.e. the weak isospin of ψR is zero. Put more simply, the weak interaction could rotate e.g. a left-handed electron into a left-handed neutrino (with emission of a W−), but could not do so with the same right-handed particles. As an aside, the right-handed neutrino originally did not exist in the standard model – but the discovery of neutrino oscillation implies that neutrinos must have mass, and since chirality can change during the propagation of a massive particle, right-handed neutrinos must exist in reality. This does not however change the (experimentally-proven) chiral nature of the weak interaction.

Furthermore, U(1) acts differently on ψ e L {\displaystyle \psi _{\mathrm {e} }^{\rm {L}}} and ψ e R {\displaystyle \psi _{\mathrm {e} }^{\rm {R}}} (because they have different weak hypercharges).

Mass and interaction eigenstates

A distinction can thus be made between, for example, the mass and interaction eigenstates of the neutrino. The former is the state which propagates in free space, whereas the latter is the different state that participates in interactions. Which is the "fundamental" particle? For the neutrino, it is conventional to define the "flavour" (
ν
e
,
ν
μ
, or
ν
τ
) by the interaction eigenstate, whereas for the quarks we define the flavour (up, down, etc.) by the mass state. We can switch between these states using the CKM matrix for the quarks, or the PMNS matrix for the neutrinos (the charged leptons on the other hand are eigenstates of both mass and flavour).

As an aside, if a complex phase term exists within either of these matrices, it will give rise to direct CP violation, which could explain the dominance of matter over antimatter in our current universe. This has been proven for the CKM matrix, and is expected for the PMNS matrix.

Positive and negative energies

Finally, the quantum fields are sometimes decomposed into "positive" and "negative" energy parts: ψ = ψ+ + ψ−. This is not so common when a quantum field theory has been set up, but often features prominently in the process of quantizing a field theory.

Bosons

Weinberg angle θW, and relation between coupling constants g, g', and e. Adapted from T D Lee's book Particle Physics and Introduction to Field Theory (1981).

Due to the Higgs mechanism, the electroweak boson fields W 1 , W 2 , W 3 W_{1},W_{2},W_{3}, and B B "mix" to create the states which are physically observable. To retain gauge invariance, the underlying fields must be massless, but the observable states can gain masses in the process. These states are:

The massive neutral (Z) boson:

Z = cos ⁡ θ W W 3 − sin ⁡ θ W B {\displaystyle Z=\cos \theta _{\rm {W}}W_{3}-\sin \theta _{\rm {W}}B}

The massless neutral boson:

A = sin ⁡ θ W W 3 + cos ⁡ θ W B {\displaystyle A=\sin \theta _{\rm {W}}W_{3}+\cos \theta _{\rm {W}}B}

The massive charged W bosons:

W ± = 1 2 ( W 1 ∓ i W 2 ) W^{\pm }={\frac {1}{\sqrt {2}}}\left(W_{1}\mp iW_{2}\right)

where θW is the Weinberg angle.

The A field is the photon, which corresponds classically to the well-known electromagnetic four-potential – i.e. the electric and magnetic fields. The Z field actually contributes in every process the photon does, but due to its large mass, the contribution is usually negligible.

Perturbative QFT and the interaction picture

Much of the qualitative descriptions of the standard model in terms of "particles" and "forces" comes from the perturbative quantum field theory view of the model. In this, the Lagrangian is decomposed as L = L 0 + L I {\mathcal {L}}={\mathcal {L}}_{0}+{\mathcal {L}}_{\mathrm {I} } into separate free field and interaction Lagrangians. The free fields care for particles in isolation, whereas processes involving several particles arise through interactions. The idea is that the state vector should only change when particles interact, meaning a free particle is one whose quantum state is constant. This corresponds to the interaction picture in quantum mechanics.

In the more common Schrödinger picture, even the states of free particles change over time: typically the phase changes at a rate which depends on their energy. In the alternative Heisenberg picture, state vectors are kept constant, at the price of having the operators (in particular the observables) be time-dependent. The interaction picture constitutes an intermediate between the two, where some time dependence is placed in the operators (the quantum fields) and some in the state vector. In QFT, the former is called the free field part of the model, and the latter is called the interaction part. The free field model can be solved exactly, and then the solutions to the full model can be expressed as perturbations of the free field solutions, for example using the Dyson series.

It should be observed that the decomposition into free fields and interactions is in principle arbitrary. For example, renormalization in QED modifies the mass of the free field electron to match that of a physical electron (with an electromagnetic field), and will in doing so add a term to the free field Lagrangian which must be cancelled by a counterterm in the interaction Lagrangian, that then shows up as a two-line vertex in the Feynman diagrams. This is also how the Higgs field is thought to give particles mass: the part of the interaction term which corresponds to the nonzero vacuum expectation value of the Higgs field is moved from the interaction to the free field Lagrangian, where it looks just like a mass term having nothing to do with the Higgs field.

See also: Feynman diagram

Free fields

Under the usual free/interaction decomposition, which is suitable for low energies, the free fields obey the following equations:

  • The fermion field ψ satisfies the Dirac equation; ( i ℏ γ μ ∂ μ − m f c ) ψ f = 0 {\displaystyle (i\hbar \gamma ^{\mu }\partial _{\mu }-m_{\rm {f}}c)\psi _{\rm {f}}=0} for each type f f of fermion.
  • The photon field A satisfies the wave equation ∂ μ ∂ μ A ν = 0 \partial _{\mu }\partial ^{\mu }A^{\nu }=0.
  • The Higgs field φ satisfies the Klein–Gordon equation.
  • The weak interaction fields Z, W± satisfy the Proca equation.

These equations can be solved exactly. One usually does so by considering first solutions that are periodic with some period L along each spatial axis; later taking the limit: L → ∞ will lift this periodicity restriction.

In the periodic case, the solution for a field F (any of the above) can be expressed as a Fourier series of the form

F ( x ) = β ∑ p ∑ r E p − 1 2 ( a r ( p ) u r ( p ) e − i p x ℏ + b r † ( p ) v r ( p ) e i p x ℏ ) F(x)=\beta \sum _{\mathbf {p} }\sum _{r}E_{\mathbf {p} }^{-{\frac {1}{2}}}\left(a_{r}(\mathbf {p} )u_{r}(\mathbf {p} )e^{-{\frac {ipx}{\hbar }}}+b_{r}^{\dagger }(\mathbf {p} )v_{r}(\mathbf {p} )e^{\frac {ipx}{\hbar }}\right)

where:

  • β is a normalization factor; for the fermion field ψ f {\displaystyle \psi _{\rm {f}}} it is m f c 2 / V {\displaystyle {\sqrt {m_{\rm {f}}c^{2}/V}}}, where V = L 3 V=L^{3} is the volume of the fundamental cell considered; for the photon field Aμ it is ℏ c / 2 V \hbar c/{\sqrt {2V}}.
  • The sum over p is over all momenta consistent with the period L, i.e., over all vectors 2 π ℏ L ( n 1 , n 2 , n 3 ) {\frac {2\pi \hbar }{L}}(n_{1},n_{2},n_{3}) where n 1 , n 2 , n 3 n_{1},n_{2},n_{3} are integers.
  • The sum over r covers other degrees of freedom specific for the field, such as polarization or spin; it usually comes out as a sum from 1 to 2 or from 1 to 3.
  • Ep is the relativistic energy for a momentum p quantum of the field, = m 2 c 4 + c 2 p 2 ={\sqrt {m^{2}c^{4}+c^{2}\mathbf {p} ^{2}}} when the rest mass is m.
  • ar(p) and b r † ( p ) b_{r}^{\dagger }(\mathbf {p} ) are annihilation and creation operators respectively for "a-particles" and "b-particles" respectively of momentum p; "b-particles" are the antiparticles of "a-particles". Different fields have different "a-" and "b-particles". For some fields, a and b are the same.
  • ur(p) and vr(p) are non-operators which carry the vector or spinor aspects of the field (where relevant).
  • p = ( E p / c , p ) p=(E_{\mathbf {p} }/c,\mathbf {p} ) is the four-momentum for a quantum with momentum p. p x = p μ x μ px=p_{\mu }x^{\mu } denotes an inner product of four-vectors.

In the limit L → ∞, the sum would turn into an integral with help from the V hidden inside β. The numeric value of β also depends on the normalization chosen for u r ( p ) u_{r}(\mathbf {p} ) and v r ( p ) v_{r}(\mathbf {p} ).

Technically, a r † ( p ) a_{r}^{\dagger }(\mathbf {p} ) is the Hermitian adjoint of the operator ar(p) in the inner product space of ket vectors. The identification of a r † ( p ) a_{r}^{\dagger }(\mathbf {p} ) and ar(p) as creation and annihilation operators comes from comparing conserved quantities for a state before and after one of these have acted upon it. a r † ( p ) a_{r}^{\dagger }(\mathbf {p} ) can for example be seen to add one particle, because it will add 1 to the eigenvalue of the a-particle number operator, and the momentum of that particle ought to be p since the eigenvalue of the vector-valued momentum operator increases by that much. For these derivations, one starts out with expressions for the operators in terms of the quantum fields. That the operators with † \dagger are creation operators and the one without annihilation operators is a convention, imposed by the sign of the commutation relations postulated for them.

An important step in preparation for calculating in perturbative quantum field theory is to separate the "operator" factors a and b above from their corresponding vector or spinor factors u and v. The vertices of Feynman graphs come from the way that u and v from different factors in the interaction Lagrangian fit together, whereas the edges come from the way that the as and bs must be moved around in order to put terms in the Dyson series on normal form.

Interaction terms and the path integral approach

The Lagrangian can also be derived without using creation and annihilation operators (the "canonical" formalism) by using a path integral formulation, pioneered by Feynman building on the earlier work of Dirac. Feynman diagrams are pictorial representations of interaction terms. A quick derivation is indeed presented at the article on Feynman diagrams.

Lagrangian formalism

Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), mB is any boson with mass. In diagrams with multiple particle labels separated by / one particle label is chosen. In diagrams with particle labels separated by | the labels must be chosen in the same order. For example, in the four boson electroweak case the valid diagrams are WWWW, WWZZ, WWγγ, WWZγ. The conjugate of each listed vertex (reversing the direction of arrows) is also allowed.

We can now give some more detail about the aforementioned free and interaction terms appearing in the Standard Model Lagrangian density. Any such term must be both gauge and reference-frame invariant, otherwise the laws of physics would depend on an arbitrary choice or the frame of an observer. Therefore, the global Poincaré symmetry, consisting of translational symmetry, rotational symmetry and the inertial reference frame invariance central to the theory of special relativity must apply. The local SU(3) × SU(2) × U(1) gauge symmetry is the internal symmetry. The three factors of the gauge symmetry together give rise to the three fundamental interactions, after some appropriate relations have been defined, as we shall see.

A complete formulation of the Standard Model Lagrangian with all the terms written together can be found e.g. here.

Kinetic terms

A free particle can be represented by a mass term, and a kinetic term which relates to the "motion" of the fields.

Fermion fields

The kinetic term for a Dirac fermion is

i ψ ¯ γ μ ∂ μ ψ i{\bar {\psi }}\gamma ^{\mu }\partial _{\mu }\psi

where the notations are carried from earlier in the article. ψ can represent any, or all, Dirac fermions in the standard model. Generally, as below, this term is included within the couplings (creating an overall "dynamical" term).

Gauge fields

For the spin-1 fields, first define the field strength tensor

F μ ν a = ∂ μ A ν a − ∂ ν A μ a + g f a b c A μ b A ν c F_{\mu \nu }^{a}=\partial _{\mu }A_{\nu }^{a}-\partial _{\nu }A_{\mu }^{a}+gf^{abc}A_{\mu }^{b}A_{\nu }^{c}

for a given gauge field (here we use A), with gauge coupling constant g. The quantity  f abc is the structure constant of the particular gauge group, defined by the commutator

[ t a , t b ] = i f a b c t c , [t_{a},t_{b}]=if^{abc}t_{c},

where ti are the generators of the group. In an Abelian (commutative) group (such as the U(1) we use here) the structure constants vanish, since the generators ta all commute with each other. Of course, this is not the case in general – the standard model includes the non-Abelian SU(2) and SU(3) groups (such groups lead to what is called a Yang–Mills gauge theory).

We need to introduce three gauge fields corresponding to each of the subgroups SU(3) × SU(2) × U(1).

  • The gluon field tensor will be denoted by G μ ν a G_{\mu \nu }^{a}, where the index a labels elements of the 8 representation of colour SU(3). The strong coupling constant is conventionally labelled gs (or simply g where there is no ambiguity). The observations leading to the discovery of this part of the Standard Model are discussed in the article in quantum chromodynamics.
  • The notation W μ ν a W_{\mu \nu }^{a} will be used for the gauge field tensor of SU(2) where a runs over the 3 generators of this group. The coupling can be denoted gw or again simply g. The gauge field will be denoted by W μ a W_{\mu }^{a}.
  • The gauge field tensor for the U(1) of weak hypercharge will be denoted by Bμν, the coupling by g′, and the gauge field by Bμ.

The kinetic term can now be written as

L k i n = − 1 4 B μ ν B μ ν − 1 2 t r W μ ν W μ ν − 1 2 t r G μ ν G μ ν {\mathcal {L}}_{\rm {kin}}=-{1 \over 4}B_{\mu \nu }B^{\mu \nu }-{1 \over 2}\mathrm {tr} W_{\mu \nu }W^{\mu \nu }-{1 \over 2}\mathrm {tr} G_{\mu \nu }G^{\mu \nu }

where the traces are over the SU(2) and SU(3) indices hidden in W and G respectively. The two-index objects are the field strengths derived from W and G the vector fields. There are also two extra hidden parameters: the theta angles for SU(2) and SU(3).

Coupling terms

The next step is to "couple" the gauge fields to the fermions, allowing for interactions.

Electroweak sector

Main article: Electroweak interaction

The electroweak sector interacts with the symmetry group U(1) × SU(2)L, where the subscript L indicates coupling only to left-handed fermions.

L E W = ∑ ψ ψ ¯ γ μ ( i ∂ μ − g ′ 1 2 Y W B μ − g 1 2 τ W μ ) ψ {\mathcal {L}}_{\mathrm {EW} }=\sum _{\psi }{\bar {\psi }}\gamma ^{\mu }\left(i\partial _{\mu }-g^{\prime }{1 \over 2}Y_{\mathrm {W} }B_{\mu }-g{1 \over 2}{\boldsymbol {\tau }}\mathbf {W} _{\mu }\right)\psi

Where Bμ is the U(1) gauge field; YW is the weak hypercharge (the generator of the U(1) group); Wμ is the three-component SU(2) gauge field; and the components of τ are the Pauli matrices (infinitesimal generators of the SU(2) group) whose eigenvalues give the weak isospin. Note that we have to redefine a new U(1) symmetry of weak hypercharge, different from QED, in order to achieve the unification with the weak force. The electric charge Q, third component of weak isospin T3 (also called Tz, I3 or Iz) and weak hypercharge YW are related by

Q = T 3 + 1 2 Y W , {\displaystyle Q=T_{3}+{\tfrac {1}{2}}Y_{\rm {W}},}

(or by the alternative convention Q = T3 + YW). The first convention, used in this article, is equivalent to the earlier Gell-Mann–Nishijima formula. It makes the hypercharge be twice the average charge of a given isomultiplet.

One may then define the conserved current for weak isospin as

j μ = 1 2 ψ ¯ L γ μ τ ψ L {\displaystyle \mathbf {j} _{\mu }={1 \over 2}{\bar {\psi }}_{\rm {L}}\gamma _{\mu }{\boldsymbol {\tau }}\psi _{\rm {L}}}

and for weak hypercharge as

j μ Y = 2 ( j μ e m − j μ 3 )   , {\displaystyle j_{\mu }^{Y}=2(j_{\mu }^{\rm {em}}-j_{\mu }^{3})~,}

where j μ e m {\displaystyle j_{\mu }^{\rm {em}}} is the electric current and j μ 3 j_{\mu }^{3} the third weak isospin current. As explained above, these currents mix to create the physically observed bosons, which also leads to testable relations between the coupling constants.

To explain this in a simpler way, we can see the effect of the electroweak interaction by picking out terms from the Lagrangian. We see that the SU(2) symmetry acts on each (left-handed) fermion doublet contained in ψ, for example

− g 2 ( ν ¯ e e ¯ ) τ + γ μ ( W + ) μ ( ν e e ) = − g 2 ν ¯ e γ μ ( W + ) μ e {\displaystyle -{g \over 2}({\bar {\nu }}_{e}\;{\bar {e}})\tau ^{+}\gamma _{\mu }(W^{+})^{\mu }{\begin{pmatrix}{\nu _{e}}\\e\end{pmatrix}}=-{g \over 2}{\bar {\nu }}_{e}\gamma _{\mu }(W^{+})^{\mu }e}

where the particles are understood to be left-handed, and where

τ + ≡ 1 2 ( τ 1 + i τ 2 ) = ( 0 1 0 0 ) {\displaystyle \tau ^{+}\equiv {1 \over 2}(\tau ^{1}{+}i\tau ^{2})={\begin{pmatrix}0&1\\0&0\end{pmatrix}}}

This is an interaction corresponding to a "rotation in weak isospin space" or in other words, a transformation between eL and νeL via emission of a W− boson. The U(1) symmetry, on the other hand, is similar to electromagnetism, but acts on all "weak hypercharged" fermions (both left- and right-handed) via the neutral Z0, as well as the charged fermions via the photon.

Quantum chromodynamics sector

Main article: Quantum chromodynamics

The quantum chromodynamics (QCD) sector defines the interactions between quarks and gluons, with SU(3) symmetry, generated by Ta. Since leptons do not interact with gluons, they are not affected by this sector. The Dirac Lagrangian of the quarks coupled to the gluon fields is given by

L Q C D = i U ¯ ( ∂ μ − i g s G μ a T a ) γ μ U + i D ¯ ( ∂ μ − i g s G μ a T a ) γ μ D . {\mathcal {L}}_{\mathrm {QCD} }=i{\overline {U}}\left(\partial _{\mu }-ig_{s}G_{\mu }^{a}T^{a}\right)\gamma ^{\mu }U+i{\overline {D}}\left(\partial _{\mu }-ig_{s}G_{\mu }^{a}T^{a}\right)\gamma ^{\mu }D.

where U and D are the Dirac spinors associated with up and down-type quarks, and other notations are continued from the previous section.

Mass terms and the Higgs mechanism

Mass terms

The mass term arising from the Dirac Lagrangian (for any fermion ψ) is − m ψ ¯ ψ -m{\bar {\psi }}\psi which is not invariant under the electroweak symmetry. This can be seen by writing ψ in terms of left and right-handed components (skipping the actual calculation):

− m ψ ¯ ψ = − m ( ψ ¯ L ψ R + ψ ¯ R ψ L ) {\displaystyle -m{\bar {\psi }}\psi =-m({\bar {\psi }}_{\rm {L}}\psi _{\rm {R}}+{\bar {\psi }}_{\rm {R}}\psi _{\rm {L}})}

i.e. contribution from ψ ¯ L ψ L {\displaystyle {\bar {\psi }}_{\rm {L}}\psi _{\rm {L}}} and ψ ¯ R ψ R {\displaystyle {\bar {\psi }}_{\rm {R}}\psi _{\rm {R}}} terms do not appear. We see that the mass-generating interaction is achieved by constant flipping of particle chirality. The spin-half particles have no right/left chirality pair with the same SU(2) representations and equal and opposite weak hypercharges, so assuming these gauge charges are conserved in the vacuum, none of the spin-half particles could ever swap chirality, and must remain massless. Additionally, we know experimentally that the W and Z bosons are massive, but a boson mass term contains the combination e.g. AμAμ, which clearly depends on the choice of gauge. Therefore, none of the standard model fermions or bosons can "begin" with mass, but must acquire it by some other mechanism.

The Higgs mechanism

Main article: Higgs mechanism

The solution to both these problems comes from the Higgs mechanism, which involves scalar fields (the number of which depend on the exact form of Higgs mechanism) which (to give the briefest possible description) are "absorbed" by the massive bosons as degrees of freedom, and which couple to the fermions via Yukawa coupling to create what looks like mass terms.

In the Standard Model, the Higgs field is a complex scalar field of the group SU(2)L:

ϕ = 1 2 ( ϕ + ϕ 0 ) , \phi ={\frac {1}{\sqrt {2}}}{\begin{pmatrix}\phi ^{+}\\\phi ^{0}\end{pmatrix}},

where the superscripts + and 0 indicate the electric charge (Q) of the components. The weak hypercharge (YW) of both components is 1.

The Higgs part of the Lagrangian is

L H = [ ( ∂ μ − i g W μ a t a − i g ′ Y ϕ B μ ) ϕ ] 2 + μ 2 ϕ † ϕ − λ ( ϕ † ϕ ) 2 , {\displaystyle {\mathcal {L}}_{\rm {H}}=\left[\left(\partial _{\mu }-igW_{\mu }^{a}t^{a}-ig'Y_{\phi }B_{\mu }\right)\phi \right]^{2}+\mu ^{2}\phi ^{\dagger }\phi -\lambda (\phi ^{\dagger }\phi )^{2},}

where λ > 0 and μ2 > 0, so that the mechanism of spontaneous symmetry breaking can be used. There is a parameter here, at first hidden within the shape of the potential, that is very important. In a unitarity gauge one can set ϕ + = 0 {\displaystyle \phi ^{+}=0} and make ϕ 0 \phi ^{0} real. Then ⟨ ϕ 0 ⟩ = v \langle \phi ^{0}\rangle =v is the non-vanishing vacuum expectation value of the Higgs field. v v has units of mass, and it is the only parameter in the Standard Model which is not dimensionless. It is also much smaller than the Planck scale and about twice the Higgs mass, setting the scale for the mass of all other particles in the Standard Model. This is the only real fine-tuning to a small nonzero value in the Standard Model. Quadratic terms in Wμ and Bμ arise, which give masses to the W and Z bosons:

M W = 1 2 v g M Z = 1 2 v g 2 + g ′ 2 {\displaystyle {\begin{aligned}M_{\rm {W}}&={\tfrac {1}{2}}vg\\M_{\rm {Z}}&={\tfrac {1}{2}}v{\sqrt {g^{2}+{g'}^{2}}}\end{aligned}}}

The mass of the Higgs boson itself is given by M H = 2 μ 2 ≡ 2 λ v 2 . {\displaystyle M_{\rm {H}}={\sqrt {2\mu ^{2}}}\equiv {\sqrt {2\lambda v^{2}}}.}

The Yukawa interaction terms are

L Y U = U ¯ L G u U R ϕ 0 − D ¯ L G u U R ϕ − + U ¯ L G d D R ϕ + + D ¯ L G d D R ϕ 0 + h . c . {\displaystyle {\mathcal {L}}_{\rm {YU}}={\overline {U}}_{\rm {L}}G_{\rm {u}}U_{\rm {R}}\phi ^{0}-{\overline {D}}_{\rm {L}}G_{\rm {u}}U_{\rm {R}}\phi ^{-}+{\overline {U}}_{\rm {L}}G_{\rm {d}}D_{\rm {R}}\phi ^{+}+{\overline {D}}_{\rm {L}}G_{\rm {d}}D_{\rm {R}}\phi ^{0}+\mathrm {h.c.} }

where Gu,d are 3 × 3 matrices of Yukawa couplings, with the ij term giving the coupling of the generations i and j.

Neutrino masses

As previously mentioned, evidence shows neutrinos must have mass. But within the standard model, the right-handed neutrino does not exist, so even with a Yukawa coupling neutrinos remain massless. An obvious solution is to simply add a right-handed neutrino νR resulting in a Dirac mass term as usual. This field however must be a sterile neutrino, since being right-handed it experimentally belongs to an isospin singlet (T3 = 0) and also has charge Q = 0, implying YW = 0 (see above) i.e. it does not even participate in the weak interaction. The experimental evidence for sterile neutrinos is currently inconclusive.

Another possibility to consider is that the neutrino satisfies the Majorana equation, which at first seems possible due to its zero electric charge. In this case the mass term is

− m 2 ( ν ¯ C ν + ν ¯ ν C ) -{m \over 2}\left({\overline {\nu }}^{C}\nu +{\overline {\nu }}\nu ^{C}\right)

where C denotes a charge conjugated (i.e. anti-) particle, and the terms are consistently all left (or all right) chirality (note that a left-chirality projection of an antiparticle is a right-handed field; care must be taken here due to different notations sometimes used). Here we are essentially flipping between left-handed neutrinos and right-handed anti-neutrinos (it is furthermore possible but not necessary that neutrinos are their own antiparticle, so these particles are the same). However, for left-chirality neutrinos, this term changes weak hypercharge by 2 units – not possible with the standard Higgs interaction, requiring the Higgs field to be extended to include an extra triplet with weak hypercharge = 2 – whereas for right-chirality neutrinos, no Higgs extensions are necessary. For both left and right chirality cases, Majorana terms violate lepton number, but possibly at a level beyond the current sensitivity of experiments to detect such violations.

It is possible to include both Dirac and Majorana mass terms in the same theory, which (in contrast to the Dirac-mass-only approach) can provide a “natural” explanation for the smallness of the observed neutrino masses, by linking the right-handed neutrinos to yet-unknown physics around the GUT scale (see seesaw mechanism).

Since in any case new fields must be postulated to explain the experimental results, neutrinos are an obvious gateway to searching physics beyond the Standard Model.

Detailed information

This section provides more detail on some aspects, and some reference material. Explicit Lagrangian terms are also provided here.

Field content in detail

The Standard Model has the following fields. These describe one generation of leptons and quarks, and there are three generations, so there are three copies of each fermionic field. By CPT symmetry, there is a set of fermions and antifermions with opposite parity and charges. If a left-handed fermion spans some representation its antiparticle (right-handed antifermion) spans the dual representation (note that 2 ¯ = 2 {\displaystyle {\bar {\mathbf {2} }}={\mathbf {2} }} for SU(2), because it is pseudo-real). The column "representation" indicates under which representations of the gauge groups that each field transforms, in the order (SU(3), SU(2), U(1)) and for the U(1) group, the value of the weak hypercharge is listed. There are twice as many left-handed lepton field components as right-handed lepton field components in each generation, but an equal number of left-handed quark and right-handed quark field components.

Fermion content

This table is based in part on data gathered by the Particle Data Group.


Left-handed fermions in the Standard Model

  • These are not ordinary abelian charges, which can be added together, but are labels of group representations of Lie groups.

  • Mass is really a coupling between a left-handed fermion and a right-handed fermion. For example, the mass of an electron is really a coupling between a left-handed electron and a right-handed electron, which is the antiparticle of a left-handed positron. Also neutrinos show large mixings in their mass coupling, so it's not accurate to talk about neutrino masses in the flavor basis or to suggest a left-handed electron antineutrino.

  • The Standard Model assumes that neutrinos are massless. However, many contemporary experiments prove that neutrinos oscillate between their flavour states, which could not happen if all were massless. It is straightforward to extend the model to fit these data but there are many possibilities, so the mass eigenstates are still open. See neutrino mass.

  • W.-M. Yao et al. (Particle Data Group) (2006). "Review of Particle Physics: Neutrino mass, mixing, and flavor change" (PDF). Journal of Physics G. 33 (1): 1. arXiv:astro-ph/0601168. Bibcode:2006JPhG...33....1Y. doi:10.1088/0954-3899/33/1/001.

    1. The masses of baryons and hadrons and various cross-sections are the experimentally measured quantities. Since quarks can't be isolated because of QCD confinement, the quantity here is supposed to be the mass of the quark at the renormalization scale of the QCD scale.

    Free parameters

    Upon writing the most general Lagrangian with massless neutrinos, one finds that the dynamics depend on 19 parameters, whose numerical values are established by experiment. Straightforward extensions of the Standard Model with massive neutrinos need 7 more parameters (3 masses and 4 PMNS matrix parameters) for a total of 26 parameters. The neutrino parameter values are still uncertain. The 19 certain parameters are summarized here.


    Parameters of the Standard Model

    The choice of free parameters is somewhat arbitrary. In the table above, gauge couplings are listed as free parameters, therefore with this choice the Weinberg angle is not a free parameter - it is defined as tan ⁡ θ W = g 1 g 2 {\displaystyle \tan \theta _{\rm {W}}={\frac {g_{1}}{g_{2}}}}. Likewise, the fine-structure constant of QED is α = 1 4 π ( g 1 g 2 ) 2 g 1 2 + g 2 2 {\displaystyle \alpha ={\frac {1}{4\pi }}{\frac {(g_{1}g_{2})^{2}}{g_{1}^{2}+g_{2}^{2}}}}. Instead of fermion masses, dimensionless Yukawa couplings can be chosen as free parameters. For example, the electron mass depends on the Yukawa coupling of the electron to the Higgs field, and its value is m e = y e 2 v {\displaystyle m_{\rm {e}}={\frac {y_{\rm {e}}}{\sqrt {2}}}v}. Instead of the Higgs mass, the Higgs self-coupling strength λ = m H 2 2 v 2 {\displaystyle \lambda ={\frac {m_{\rm {H}}^{2}}{2v^{2}}}}, which is approximately 0.129, can be chosen as a free parameter. Instead of the Higgs vacuum expectation value, the μ 2 \mu ^{2} parameter directly from the Higgs self-interaction term μ 2 ϕ † ϕ − λ ( ϕ † ϕ ) 2 {\displaystyle \mu ^{2}\phi ^{\dagger }\phi -\lambda (\phi ^{\dagger }\phi )^{2}} can be chosen. Its value is μ 2 = λ v 2 = m H 2 2 {\displaystyle \mu ^{2}=\lambda v^{2}={\frac {m_{\rm {H}}^{2}}{2}}}, or approximately μ = 88.45 {\displaystyle \mu =88.45} GeV.

    The value of the vacuum energy (or more precisely, the renormalization scale used to calculate this energy) may also be treated as an additional free parameter. The renormalization scale may be identified with the Planck scale or fine-tuned to match the observed cosmological constant. However, both options are problematic.

    Additional symmetries of the Standard Model

    From the theoretical point of view, the Standard Model exhibits four additional global symmetries, not postulated at the outset of its construction, collectively denoted accidental symmetries, which are continuous U(1) global symmetries. The transformations leaving the Lagrangian invariant are:

    ψ q ( x ) → e i α / 3 ψ q \psi _{\text{q}}(x)\to e^{i\alpha /3}\psi _{\text{q}}
    E L → e i β E L  and  ( e R ) c → e i β ( e R ) c {\displaystyle E_{\rm {L}}\to e^{i\beta }E_{\rm {L}}{\text{ and }}(e_{\rm {R}})^{c}\to e^{i\beta }(e_{\rm {R}})^{c}}
    M L → e i β M L  and  ( μ R ) c → e i β ( μ R ) c {\displaystyle M_{\rm {L}}\to e^{i\beta }M_{\rm {L}}{\text{ and }}(\mu _{\rm {R}})^{c}\to e^{i\beta }(\mu _{\rm {R}})^{c}}
    T L → e i β T L  and  ( τ R ) c → e i β ( τ R ) c {\displaystyle T_{\rm {L}}\to e^{i\beta }T_{\rm {L}}{\text{ and }}(\tau _{\rm {R}})^{c}\to e^{i\beta }(\tau _{\rm {R}})^{c}}

    The first transformation rule is shorthand meaning that all quark fields for all generations must be rotated by an identical phase simultaneously. The fields ML, TL and ( μ R ) c , ( τ R ) c {\displaystyle (\mu _{\rm {R}})^{c},(\tau _{\rm {R}})^{c}} are the 2nd (muon) and 3rd (tau) generation analogs of EL and ( e R ) c {\displaystyle (e_{\rm {R}})^{c}} fields.

    By Noether's theorem, each symmetry above has an associated conservation law: the conservation of baryon number, electron number, muon number, and tau number. Each quark is assigned a baryon number of 1 3 {}_{\frac {1}{3}}, while each antiquark is assigned a baryon number of − 1 3 {}_{-{\frac {1}{3}}}. Conservation of baryon number implies that the number of quarks minus the number of antiquarks is a constant. Within experimental limits, no violation of this conservation law has been found.

    Similarly, each electron and its associated neutrino is assigned an electron number of +1, while the anti-electron and the associated anti-neutrino carry a −1 electron number. Similarly, the muons and their neutrinos are assigned a muon number of +1 and the tau leptons are assigned a tau lepton number of +1. The Standard Model predicts that each of these three numbers should be conserved separately in a manner similar to the way baryon number is conserved. These numbers are collectively known as lepton family numbers (LF). (This result depends on the assumption made in Standard Model that neutrinos are massless. Experimentally, neutrino oscillations demonstrate that individual electron, muon and tau numbers are not conserved.)

    In addition to the accidental (but exact) symmetries described above, the Standard Model exhibits several approximate symmetries. These are the "SU(2) custodial symmetry" and the "SU(2) or SU(3) quark flavor symmetry."

    Symmetries of the Standard Model and associated conservation laws

    The U(1) symmetry

    For the leptons, the gauge group can be written SU(2)l × U(1)L × U(1)R. The two U(1) factors can be combined into U(1)Y × U(1)l where l is the lepton number. Gauging of the lepton number is ruled out by experiment, leaving only the possible gauge group SU(2)L × U(1)Y. A similar argument in the quark sector also gives the same result for the electroweak theory.

    The charged and neutral current couplings and Fermi theory

    The charged currents j ∓ = j 1 ± i j 2 {\displaystyle j^{\mp }=j^{1}\pm ij^{2}} are

    j μ − = U ¯ i L γ μ D i L + ν ¯ i L γ μ l i L . {\displaystyle j_{\mu }^{-}={\overline {U}}_{i\mathrm {L} }\gamma _{\mu }D_{i\mathrm {L} }+{\overline {\nu }}_{i\mathrm {L} }\gamma _{\mu }l_{i\mathrm {L} }.}

    These charged currents are precisely those that entered the Fermi theory of beta decay. The action contains the charge current piece

    L C C = g 2 ( j μ + W − μ + j μ − W + μ ) . {\displaystyle {\mathcal {L}}_{\rm {CC}}={\frac {g}{\sqrt {2}}}(j_{\mu }^{+}W^{-\mu }+j_{\mu }^{-}W^{+\mu }).}

    For energy much less than the mass of the W-boson, the effective theory becomes the current–current contact interaction of the Fermi theory, 2 2 G F     J μ + J μ     − {\displaystyle 2{\sqrt {2}}G_{\rm {F}}~~J_{\mu }^{+}J^{\mu ~~-}}.

    However, gauge invariance now requires that the component W 3 W^{{3}} of the gauge field also be coupled to a current that lies in the triplet of SU(2). However, this mixes with the U(1), and another current in that sector is needed. These currents must be uncharged in order to conserve charge. So neutral currents are also required,

    j μ 3 = 1 2 ( U ¯ i L γ μ U i L − D ¯ i L γ μ D i L + ν ¯ i L γ μ ν i L − l ¯ i L γ μ l i L ) {\displaystyle j_{\mu }^{3}={\frac {1}{2}}({\overline {U}}_{i\mathrm {L} }\gamma _{\mu }U_{i\mathrm {L} }-{\overline {D}}_{i\mathrm {L} }\gamma _{\mu }D_{i\mathrm {L} }+{\overline {\nu }}_{i\mathrm {L} }\gamma _{\mu }\nu _{i\mathrm {L} }-{\overline {l}}_{i\mathrm {L} }\gamma _{\mu }l_{i\mathrm {L} })}
    j μ e m = 2 3 U ¯ i γ μ U i − 1 3 D ¯ i γ μ D i − l ¯ i γ μ l i . {\displaystyle j_{\mu }^{\rm {em}}={\frac {2}{3}}{\overline {U}}_{i}\gamma _{\mu }U_{i}-{\frac {1}{3}}{\overline {D}}_{i}\gamma _{\mu }D_{i}-{\overline {l}}_{i}\gamma _{\mu }l_{i}.}

    The neutral current piece in the Lagrangian is then

    L N C = e j μ e m A μ + g cos ⁡ θ W ( J μ 3 − sin 2 ⁡ θ W J μ e m ) Z μ . {\displaystyle {\mathcal {L}}_{\rm {NC}}=ej_{\mu }^{\rm {em}}A^{\mu }+{\frac {g}{\cos \theta _{\rm {W}}}}(J_{\mu }^{3}-\sin ^{2}\theta _{\rm {W}}J_{\mu }^{\rm {em}})Z^{\mu }.}
    at November 02, 2022
    Email ThisBlogThis!Share to XShare to FacebookShare to Pinterest
    Newer Post Older Post Home

    Reaction intermediate

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Reaction_intermediate   ...

    • Islamic State and the Levant
      From Wikipedia, the free encyclopedia Islamic State of Iraq and the Levant الدولة الإسلامية في العراق والشام   ( ...
    • Heart Sutra
      From Wikipedia, the free encyclopedia A reproduction of the palm -leaf manuscript in Siddham script ...
    • Environmental impact of fracking
      From Wikipedia, the free encyclopedia Fracking Shale gas drilling rig near Alvarado, Texas The environme...

    Search This Blog

    • Home

    About Me

    My photo
    David J Strumfels
    View my complete profile

    Blog Archive

    • ►  2025 (804)
      • ►  May (51)
        • ►  May 08 (5)
        • ►  May 07 (3)
        • ►  May 06 (8)
        • ►  May 05 (9)
        • ►  May 04 (5)
        • ►  May 03 (6)
        • ►  May 02 (5)
        • ►  May 01 (10)
      • ►  April (193)
        • ►  Apr 30 (8)
        • ►  Apr 29 (6)
        • ►  Apr 28 (5)
        • ►  Apr 27 (10)
        • ►  Apr 26 (9)
        • ►  Apr 25 (4)
        • ►  Apr 24 (11)
        • ►  Apr 23 (3)
        • ►  Apr 22 (8)
        • ►  Apr 21 (10)
        • ►  Apr 20 (14)
        • ►  Apr 19 (6)
        • ►  Apr 18 (13)
        • ►  Apr 17 (10)
        • ►  Apr 16 (8)
        • ►  Apr 15 (4)
        • ►  Apr 14 (6)
        • ►  Apr 13 (7)
        • ►  Apr 12 (7)
        • ►  Apr 11 (9)
        • ►  Apr 10 (1)
        • ►  Apr 09 (5)
        • ►  Apr 08 (4)
        • ►  Apr 07 (5)
        • ►  Apr 06 (4)
        • ►  Apr 05 (4)
        • ►  Apr 04 (2)
        • ►  Apr 03 (2)
        • ►  Apr 02 (2)
        • ►  Apr 01 (6)
      • ►  March (182)
        • ►  Mar 31 (5)
        • ►  Mar 30 (10)
        • ►  Mar 29 (12)
        • ►  Mar 28 (5)
        • ►  Mar 27 (7)
        • ►  Mar 26 (5)
        • ►  Mar 25 (7)
        • ►  Mar 24 (8)
        • ►  Mar 23 (6)
        • ►  Mar 22 (5)
        • ►  Mar 21 (5)
        • ►  Mar 20 (5)
        • ►  Mar 19 (6)
        • ►  Mar 18 (4)
        • ►  Mar 17 (7)
        • ►  Mar 16 (5)
        • ►  Mar 15 (7)
        • ►  Mar 14 (5)
        • ►  Mar 13 (2)
        • ►  Mar 12 (1)
        • ►  Mar 11 (1)
        • ►  Mar 10 (6)
        • ►  Mar 09 (8)
        • ►  Mar 08 (7)
        • ►  Mar 07 (6)
        • ►  Mar 06 (11)
        • ►  Mar 05 (6)
        • ►  Mar 04 (8)
        • ►  Mar 03 (4)
        • ►  Mar 02 (5)
        • ►  Mar 01 (3)
      • ►  February (115)
        • ►  Feb 28 (5)
        • ►  Feb 27 (5)
        • ►  Feb 26 (1)
        • ►  Feb 25 (2)
        • ►  Feb 24 (5)
        • ►  Feb 22 (2)
        • ►  Feb 21 (2)
        • ►  Feb 20 (3)
        • ►  Feb 19 (4)
        • ►  Feb 18 (4)
        • ►  Feb 17 (6)
        • ►  Feb 16 (2)
        • ►  Feb 15 (4)
        • ►  Feb 14 (4)
        • ►  Feb 13 (1)
        • ►  Feb 12 (3)
        • ►  Feb 11 (2)
        • ►  Feb 10 (7)
        • ►  Feb 09 (5)
        • ►  Feb 08 (4)
        • ►  Feb 07 (4)
        • ►  Feb 06 (5)
        • ►  Feb 05 (7)
        • ►  Feb 04 (6)
        • ►  Feb 03 (7)
        • ►  Feb 02 (7)
        • ►  Feb 01 (8)
      • ►  January (263)
        • ►  Jan 31 (7)
        • ►  Jan 30 (8)
        • ►  Jan 29 (8)
        • ►  Jan 28 (6)
        • ►  Jan 27 (7)
        • ►  Jan 26 (15)
        • ►  Jan 25 (11)
        • ►  Jan 24 (18)
        • ►  Jan 23 (10)
        • ►  Jan 22 (13)
        • ►  Jan 21 (5)
        • ►  Jan 20 (9)
        • ►  Jan 19 (2)
        • ►  Jan 18 (6)
        • ►  Jan 17 (4)
        • ►  Jan 16 (5)
        • ►  Jan 15 (7)
        • ►  Jan 14 (7)
        • ►  Jan 13 (11)
        • ►  Jan 12 (4)
        • ►  Jan 11 (16)
        • ►  Jan 10 (11)
        • ►  Jan 09 (6)
        • ►  Jan 08 (5)
        • ►  Jan 07 (9)
        • ►  Jan 06 (6)
        • ►  Jan 05 (10)
        • ►  Jan 04 (14)
        • ►  Jan 03 (4)
        • ►  Jan 02 (14)
        • ►  Jan 01 (5)
    • ►  2024 (3069)
      • ►  December (227)
        • ►  Dec 31 (6)
        • ►  Dec 30 (4)
        • ►  Dec 29 (5)
        • ►  Dec 28 (4)
        • ►  Dec 27 (4)
        • ►  Dec 26 (5)
        • ►  Dec 25 (3)
        • ►  Dec 24 (5)
        • ►  Dec 23 (6)
        • ►  Dec 22 (8)
        • ►  Dec 21 (9)
        • ►  Dec 20 (15)
        • ►  Dec 19 (4)
        • ►  Dec 18 (13)
        • ►  Dec 17 (9)
        • ►  Dec 16 (14)
        • ►  Dec 15 (14)
        • ►  Dec 14 (12)
        • ►  Dec 13 (6)
        • ►  Dec 12 (10)
        • ►  Dec 11 (11)
        • ►  Dec 10 (7)
        • ►  Dec 09 (7)
        • ►  Dec 08 (6)
        • ►  Dec 07 (13)
        • ►  Dec 06 (4)
        • ►  Dec 05 (8)
        • ►  Dec 04 (3)
        • ►  Dec 03 (2)
        • ►  Dec 02 (6)
        • ►  Dec 01 (4)
      • ►  November (223)
        • ►  Nov 30 (6)
        • ►  Nov 29 (6)
        • ►  Nov 28 (6)
        • ►  Nov 27 (4)
        • ►  Nov 26 (5)
        • ►  Nov 25 (12)
        • ►  Nov 24 (9)
        • ►  Nov 23 (9)
        • ►  Nov 22 (7)
        • ►  Nov 21 (8)
        • ►  Nov 20 (6)
        • ►  Nov 19 (5)
        • ►  Nov 18 (8)
        • ►  Nov 17 (7)
        • ►  Nov 16 (7)
        • ►  Nov 15 (8)
        • ►  Nov 14 (8)
        • ►  Nov 13 (5)
        • ►  Nov 12 (3)
        • ►  Nov 11 (7)
        • ►  Nov 10 (12)
        • ►  Nov 09 (6)
        • ►  Nov 08 (10)
        • ►  Nov 07 (8)
        • ►  Nov 06 (4)
        • ►  Nov 05 (2)
        • ►  Nov 04 (7)
        • ►  Nov 03 (19)
        • ►  Nov 02 (7)
        • ►  Nov 01 (12)
      • ►  October (231)
        • ►  Oct 31 (5)
        • ►  Oct 30 (9)
        • ►  Oct 29 (13)
        • ►  Oct 28 (11)
        • ►  Oct 27 (13)
        • ►  Oct 26 (11)
        • ►  Oct 25 (11)
        • ►  Oct 24 (8)
        • ►  Oct 23 (8)
        • ►  Oct 22 (1)
        • ►  Oct 21 (8)
        • ►  Oct 20 (2)
        • ►  Oct 17 (5)
        • ►  Oct 16 (8)
        • ►  Oct 15 (14)
        • ►  Oct 14 (15)
        • ►  Oct 13 (11)
        • ►  Oct 12 (7)
        • ►  Oct 11 (8)
        • ►  Oct 10 (4)
        • ►  Oct 09 (11)
        • ►  Oct 08 (3)
        • ►  Oct 07 (6)
        • ►  Oct 06 (3)
        • ►  Oct 05 (2)
        • ►  Oct 04 (5)
        • ►  Oct 03 (9)
        • ►  Oct 02 (8)
        • ►  Oct 01 (12)
      • ►  September (257)
        • ►  Sep 30 (3)
        • ►  Sep 29 (12)
        • ►  Sep 28 (16)
        • ►  Sep 27 (6)
        • ►  Sep 26 (2)
        • ►  Sep 25 (1)
        • ►  Sep 24 (3)
        • ►  Sep 23 (2)
        • ►  Sep 22 (6)
        • ►  Sep 21 (18)
        • ►  Sep 20 (5)
        • ►  Sep 19 (5)
        • ►  Sep 18 (2)
        • ►  Sep 17 (1)
        • ►  Sep 16 (4)
        • ►  Sep 15 (12)
        • ►  Sep 14 (4)
        • ►  Sep 13 (12)
        • ►  Sep 12 (6)
        • ►  Sep 11 (5)
        • ►  Sep 10 (4)
        • ►  Sep 09 (9)
        • ►  Sep 08 (12)
        • ►  Sep 07 (17)
        • ►  Sep 06 (13)
        • ►  Sep 05 (10)
        • ►  Sep 04 (10)
        • ►  Sep 03 (18)
        • ►  Sep 02 (20)
        • ►  Sep 01 (19)
      • ►  August (338)
        • ►  Aug 31 (16)
        • ►  Aug 30 (17)
        • ►  Aug 29 (11)
        • ►  Aug 28 (15)
        • ►  Aug 27 (16)
        • ►  Aug 26 (7)
        • ►  Aug 25 (7)
        • ►  Aug 24 (11)
        • ►  Aug 23 (9)
        • ►  Aug 22 (11)
        • ►  Aug 21 (8)
        • ►  Aug 20 (14)
        • ►  Aug 19 (9)
        • ►  Aug 18 (7)
        • ►  Aug 17 (3)
        • ►  Aug 16 (13)
        • ►  Aug 15 (7)
        • ►  Aug 14 (12)
        • ►  Aug 13 (12)
        • ►  Aug 12 (15)
        • ►  Aug 11 (13)
        • ►  Aug 10 (12)
        • ►  Aug 09 (17)
        • ►  Aug 08 (13)
        • ►  Aug 07 (8)
        • ►  Aug 06 (8)
        • ►  Aug 05 (17)
        • ►  Aug 04 (4)
        • ►  Aug 03 (7)
        • ►  Aug 02 (13)
        • ►  Aug 01 (6)
      • ►  July (305)
        • ►  Jul 31 (7)
        • ►  Jul 30 (14)
        • ►  Jul 29 (11)
        • ►  Jul 28 (17)
        • ►  Jul 27 (12)
        • ►  Jul 26 (13)
        • ►  Jul 25 (12)
        • ►  Jul 24 (4)
        • ►  Jul 23 (15)
        • ►  Jul 22 (8)
        • ►  Jul 21 (8)
        • ►  Jul 20 (11)
        • ►  Jul 19 (13)
        • ►  Jul 18 (5)
        • ►  Jul 17 (4)
        • ►  Jul 16 (7)
        • ►  Jul 15 (12)
        • ►  Jul 14 (12)
        • ►  Jul 13 (4)
        • ►  Jul 12 (11)
        • ►  Jul 11 (14)
        • ►  Jul 10 (10)
        • ►  Jul 09 (14)
        • ►  Jul 08 (10)
        • ►  Jul 07 (3)
        • ►  Jul 06 (9)
        • ►  Jul 05 (13)
        • ►  Jul 04 (9)
        • ►  Jul 03 (8)
        • ►  Jul 02 (8)
        • ►  Jul 01 (7)
      • ►  June (217)
        • ►  Jun 30 (5)
        • ►  Jun 29 (7)
        • ►  Jun 28 (6)
        • ►  Jun 27 (4)
        • ►  Jun 26 (4)
        • ►  Jun 25 (8)
        • ►  Jun 24 (9)
        • ►  Jun 23 (5)
        • ►  Jun 22 (5)
        • ►  Jun 21 (4)
        • ►  Jun 20 (4)
        • ►  Jun 19 (7)
        • ►  Jun 18 (10)
        • ►  Jun 17 (4)
        • ►  Jun 16 (10)
        • ►  Jun 15 (10)
        • ►  Jun 14 (11)
        • ►  Jun 13 (14)
        • ►  Jun 12 (9)
        • ►  Jun 11 (8)
        • ►  Jun 10 (6)
        • ►  Jun 09 (9)
        • ►  Jun 08 (14)
        • ►  Jun 07 (2)
        • ►  Jun 06 (1)
        • ►  Jun 05 (2)
        • ►  Jun 04 (11)
        • ►  Jun 03 (3)
        • ►  Jun 02 (15)
        • ►  Jun 01 (10)
      • ►  May (166)
        • ►  May 31 (3)
        • ►  May 30 (2)
        • ►  May 29 (6)
        • ►  May 28 (5)
        • ►  May 27 (9)
        • ►  May 26 (6)
        • ►  May 25 (3)
        • ►  May 24 (6)
        • ►  May 23 (6)
        • ►  May 22 (6)
        • ►  May 21 (8)
        • ►  May 20 (2)
        • ►  May 19 (5)
        • ►  May 18 (5)
        • ►  May 17 (3)
        • ►  May 16 (5)
        • ►  May 15 (6)
        • ►  May 14 (4)
        • ►  May 13 (4)
        • ►  May 12 (9)
        • ►  May 11 (12)
        • ►  May 10 (4)
        • ►  May 09 (7)
        • ►  May 08 (5)
        • ►  May 07 (8)
        • ►  May 06 (10)
        • ►  May 05 (2)
        • ►  May 04 (4)
        • ►  May 03 (2)
        • ►  May 02 (6)
        • ►  May 01 (3)
      • ►  April (275)
        • ►  Apr 29 (2)
        • ►  Apr 28 (8)
        • ►  Apr 27 (10)
        • ►  Apr 26 (11)
        • ►  Apr 25 (9)
        • ►  Apr 24 (7)
        • ►  Apr 23 (5)
        • ►  Apr 22 (8)
        • ►  Apr 21 (9)
        • ►  Apr 20 (8)
        • ►  Apr 19 (4)
        • ►  Apr 18 (9)
        • ►  Apr 17 (11)
        • ►  Apr 16 (15)
        • ►  Apr 15 (12)
        • ►  Apr 14 (15)
        • ►  Apr 13 (14)
        • ►  Apr 12 (15)
        • ►  Apr 11 (12)
        • ►  Apr 10 (14)
        • ►  Apr 09 (6)
        • ►  Apr 08 (16)
        • ►  Apr 07 (4)
        • ►  Apr 06 (9)
        • ►  Apr 05 (13)
        • ►  Apr 04 (8)
        • ►  Apr 03 (12)
        • ►  Apr 02 (5)
        • ►  Apr 01 (4)
      • ►  March (200)
        • ►  Mar 31 (6)
        • ►  Mar 30 (12)
        • ►  Mar 29 (9)
        • ►  Mar 28 (11)
        • ►  Mar 27 (13)
        • ►  Mar 26 (8)
        • ►  Mar 25 (9)
        • ►  Mar 24 (3)
        • ►  Mar 23 (7)
        • ►  Mar 22 (3)
        • ►  Mar 21 (16)
        • ►  Mar 20 (2)
        • ►  Mar 19 (7)
        • ►  Mar 18 (6)
        • ►  Mar 17 (12)
        • ►  Mar 16 (9)
        • ►  Mar 15 (10)
        • ►  Mar 14 (2)
        • ►  Mar 13 (8)
        • ►  Mar 12 (1)
        • ►  Mar 10 (4)
        • ►  Mar 09 (2)
        • ►  Mar 08 (1)
        • ►  Mar 07 (4)
        • ►  Mar 06 (6)
        • ►  Mar 05 (11)
        • ►  Mar 04 (9)
        • ►  Mar 02 (8)
        • ►  Mar 01 (1)
      • ►  February (220)
        • ►  Feb 29 (6)
        • ►  Feb 28 (1)
        • ►  Feb 27 (4)
        • ►  Feb 26 (6)
        • ►  Feb 25 (7)
        • ►  Feb 24 (4)
        • ►  Feb 23 (5)
        • ►  Feb 22 (7)
        • ►  Feb 20 (15)
        • ►  Feb 19 (4)
        • ►  Feb 18 (13)
        • ►  Feb 17 (4)
        • ►  Feb 16 (5)
        • ►  Feb 15 (10)
        • ►  Feb 14 (9)
        • ►  Feb 13 (17)
        • ►  Feb 12 (9)
        • ►  Feb 11 (10)
        • ►  Feb 10 (18)
        • ►  Feb 09 (5)
        • ►  Feb 08 (9)
        • ►  Feb 07 (11)
        • ►  Feb 06 (6)
        • ►  Feb 05 (10)
        • ►  Feb 04 (4)
        • ►  Feb 03 (5)
        • ►  Feb 02 (8)
        • ►  Feb 01 (8)
      • ►  January (410)
        • ►  Jan 31 (13)
        • ►  Jan 30 (11)
        • ►  Jan 29 (14)
        • ►  Jan 28 (11)
        • ►  Jan 27 (20)
        • ►  Jan 26 (22)
        • ►  Jan 25 (16)
        • ►  Jan 24 (14)
        • ►  Jan 23 (18)
        • ►  Jan 22 (15)
        • ►  Jan 21 (11)
        • ►  Jan 20 (16)
        • ►  Jan 19 (5)
        • ►  Jan 18 (11)
        • ►  Jan 17 (11)
        • ►  Jan 16 (8)
        • ►  Jan 15 (27)
        • ►  Jan 14 (12)
        • ►  Jan 13 (16)
        • ►  Jan 12 (4)
        • ►  Jan 11 (8)
        • ►  Jan 10 (7)
        • ►  Jan 09 (9)
        • ►  Jan 08 (10)
        • ►  Jan 07 (10)
        • ►  Jan 06 (13)
        • ►  Jan 05 (18)
        • ►  Jan 04 (9)
        • ►  Jan 03 (20)
        • ►  Jan 02 (14)
        • ►  Jan 01 (17)
    • ►  2023 (4333)
      • ►  December (314)
        • ►  Dec 31 (10)
        • ►  Dec 30 (18)
        • ►  Dec 29 (17)
        • ►  Dec 28 (8)
        • ►  Dec 27 (1)
        • ►  Dec 26 (14)
        • ►  Dec 25 (19)
        • ►  Dec 24 (20)
        • ►  Dec 23 (12)
        • ►  Dec 22 (12)
        • ►  Dec 21 (4)
        • ►  Dec 20 (18)
        • ►  Dec 19 (9)
        • ►  Dec 18 (5)
        • ►  Dec 17 (6)
        • ►  Dec 16 (17)
        • ►  Dec 15 (5)
        • ►  Dec 14 (16)
        • ►  Dec 13 (10)
        • ►  Dec 12 (7)
        • ►  Dec 11 (2)
        • ►  Dec 10 (7)
        • ►  Dec 09 (3)
        • ►  Dec 08 (5)
        • ►  Dec 07 (5)
        • ►  Dec 06 (16)
        • ►  Dec 05 (13)
        • ►  Dec 04 (11)
        • ►  Dec 03 (8)
        • ►  Dec 02 (7)
        • ►  Dec 01 (9)
      • ►  November (353)
        • ►  Nov 30 (10)
        • ►  Nov 29 (8)
        • ►  Nov 28 (7)
        • ►  Nov 27 (13)
        • ►  Nov 26 (7)
        • ►  Nov 25 (4)
        • ►  Nov 23 (11)
        • ►  Nov 22 (6)
        • ►  Nov 21 (7)
        • ►  Nov 20 (6)
        • ►  Nov 19 (5)
        • ►  Nov 18 (13)
        • ►  Nov 17 (10)
        • ►  Nov 16 (2)
        • ►  Nov 15 (16)
        • ►  Nov 14 (21)
        • ►  Nov 13 (14)
        • ►  Nov 12 (12)
        • ►  Nov 11 (19)
        • ►  Nov 10 (11)
        • ►  Nov 09 (24)
        • ►  Nov 08 (8)
        • ►  Nov 07 (11)
        • ►  Nov 06 (13)
        • ►  Nov 05 (18)
        • ►  Nov 04 (9)
        • ►  Nov 03 (21)
        • ►  Nov 02 (25)
        • ►  Nov 01 (22)
      • ►  October (549)
        • ►  Oct 31 (23)
        • ►  Oct 30 (19)
        • ►  Oct 29 (22)
        • ►  Oct 28 (30)
        • ►  Oct 27 (24)
        • ►  Oct 26 (28)
        • ►  Oct 25 (24)
        • ►  Oct 24 (20)
        • ►  Oct 23 (4)
        • ►  Oct 22 (24)
        • ►  Oct 21 (20)
        • ►  Oct 20 (17)
        • ►  Oct 19 (14)
        • ►  Oct 18 (14)
        • ►  Oct 17 (19)
        • ►  Oct 16 (12)
        • ►  Oct 15 (4)
        • ►  Oct 14 (23)
        • ►  Oct 13 (21)
        • ►  Oct 12 (22)
        • ►  Oct 11 (22)
        • ►  Oct 10 (11)
        • ►  Oct 09 (12)
        • ►  Oct 08 (19)
        • ►  Oct 07 (16)
        • ►  Oct 06 (19)
        • ►  Oct 05 (20)
        • ►  Oct 04 (11)
        • ►  Oct 03 (15)
        • ►  Oct 02 (11)
        • ►  Oct 01 (9)
      • ►  September (478)
        • ►  Sep 30 (25)
        • ►  Sep 29 (19)
        • ►  Sep 28 (28)
        • ►  Sep 27 (17)
        • ►  Sep 26 (21)
        • ►  Sep 25 (21)
        • ►  Sep 24 (6)
        • ►  Sep 23 (13)
        • ►  Sep 22 (6)
        • ►  Sep 21 (11)
        • ►  Sep 20 (9)
        • ►  Sep 19 (4)
        • ►  Sep 18 (6)
        • ►  Sep 17 (4)
        • ►  Sep 16 (11)
        • ►  Sep 15 (13)
        • ►  Sep 14 (22)
        • ►  Sep 13 (9)
        • ►  Sep 12 (11)
        • ►  Sep 11 (13)
        • ►  Sep 10 (25)
        • ►  Sep 09 (26)
        • ►  Sep 08 (23)
        • ►  Sep 07 (20)
        • ►  Sep 06 (27)
        • ►  Sep 05 (20)
        • ►  Sep 04 (18)
        • ►  Sep 03 (11)
        • ►  Sep 02 (24)
        • ►  Sep 01 (15)
      • ►  August (464)
        • ►  Aug 31 (20)
        • ►  Aug 30 (24)
        • ►  Aug 29 (10)
        • ►  Aug 28 (17)
        • ►  Aug 27 (15)
        • ►  Aug 26 (20)
        • ►  Aug 25 (12)
        • ►  Aug 24 (8)
        • ►  Aug 23 (16)
        • ►  Aug 22 (12)
        • ►  Aug 21 (21)
        • ►  Aug 20 (18)
        • ►  Aug 19 (10)
        • ►  Aug 18 (19)
        • ►  Aug 17 (14)
        • ►  Aug 16 (15)
        • ►  Aug 15 (22)
        • ►  Aug 14 (22)
        • ►  Aug 13 (11)
        • ►  Aug 12 (18)
        • ►  Aug 11 (15)
        • ►  Aug 10 (15)
        • ►  Aug 09 (22)
        • ►  Aug 08 (19)
        • ►  Aug 07 (24)
        • ►  Aug 06 (17)
        • ►  Aug 05 (3)
        • ►  Aug 04 (7)
        • ►  Aug 03 (2)
        • ►  Aug 02 (6)
        • ►  Aug 01 (10)
      • ►  July (359)
        • ►  Jul 31 (21)
        • ►  Jul 30 (5)
        • ►  Jul 29 (15)
        • ►  Jul 28 (10)
        • ►  Jul 27 (12)
        • ►  Jul 26 (12)
        • ►  Jul 25 (2)
        • ►  Jul 23 (17)
        • ►  Jul 22 (5)
        • ►  Jul 21 (15)
        • ►  Jul 20 (9)
        • ►  Jul 19 (11)
        • ►  Jul 18 (24)
        • ►  Jul 17 (10)
        • ►  Jul 16 (12)
        • ►  Jul 15 (6)
        • ►  Jul 14 (10)
        • ►  Jul 13 (7)
        • ►  Jul 12 (14)
        • ►  Jul 11 (14)
        • ►  Jul 10 (8)
        • ►  Jul 09 (8)
        • ►  Jul 08 (10)
        • ►  Jul 07 (12)
        • ►  Jul 06 (18)
        • ►  Jul 05 (19)
        • ►  Jul 04 (8)
        • ►  Jul 03 (17)
        • ►  Jul 02 (9)
        • ►  Jul 01 (19)
      • ►  June (397)
        • ►  Jun 30 (17)
        • ►  Jun 29 (15)
        • ►  Jun 28 (6)
        • ►  Jun 27 (8)
        • ►  Jun 26 (15)
        • ►  Jun 25 (18)
        • ►  Jun 24 (11)
        • ►  Jun 23 (23)
        • ►  Jun 22 (30)
        • ►  Jun 21 (20)
        • ►  Jun 20 (18)
        • ►  Jun 19 (18)
        • ►  Jun 18 (20)
        • ►  Jun 17 (16)
        • ►  Jun 16 (13)
        • ►  Jun 15 (8)
        • ►  Jun 14 (11)
        • ►  Jun 13 (7)
        • ►  Jun 12 (5)
        • ►  Jun 11 (4)
        • ►  Jun 10 (4)
        • ►  Jun 09 (4)
        • ►  Jun 08 (5)
        • ►  Jun 07 (3)
        • ►  Jun 06 (3)
        • ►  Jun 05 (21)
        • ►  Jun 04 (24)
        • ►  Jun 03 (12)
        • ►  Jun 02 (18)
        • ►  Jun 01 (20)
      • ►  May (395)
        • ►  May 31 (15)
        • ►  May 30 (25)
        • ►  May 29 (24)
        • ►  May 28 (26)
        • ►  May 27 (21)
        • ►  May 26 (23)
        • ►  May 25 (14)
        • ►  May 24 (7)
        • ►  May 23 (6)
        • ►  May 22 (4)
        • ►  May 21 (6)
        • ►  May 20 (2)
        • ►  May 19 (9)
        • ►  May 18 (8)
        • ►  May 17 (11)
        • ►  May 16 (8)
        • ►  May 15 (14)
        • ►  May 14 (15)
        • ►  May 13 (12)
        • ►  May 12 (10)
        • ►  May 11 (16)
        • ►  May 10 (10)
        • ►  May 09 (15)
        • ►  May 08 (12)
        • ►  May 07 (6)
        • ►  May 06 (8)
        • ►  May 05 (13)
        • ►  May 04 (14)
        • ►  May 03 (17)
        • ►  May 02 (12)
        • ►  May 01 (12)
      • ►  April (292)
        • ►  Apr 30 (13)
        • ►  Apr 29 (12)
        • ►  Apr 28 (19)
        • ►  Apr 27 (15)
        • ►  Apr 26 (18)
        • ►  Apr 25 (14)
        • ►  Apr 24 (24)
        • ►  Apr 23 (7)
        • ►  Apr 22 (21)
        • ►  Apr 21 (14)
        • ►  Apr 20 (10)
        • ►  Apr 19 (10)
        • ►  Apr 18 (12)
        • ►  Apr 17 (7)
        • ►  Apr 16 (8)
        • ►  Apr 15 (11)
        • ►  Apr 14 (9)
        • ►  Apr 13 (11)
        • ►  Apr 12 (12)
        • ►  Apr 11 (10)
        • ►  Apr 10 (13)
        • ►  Apr 09 (7)
        • ►  Apr 08 (10)
        • ►  Apr 07 (2)
        • ►  Apr 02 (1)
        • ►  Apr 01 (2)
      • ►  March (306)
        • ►  Mar 28 (1)
        • ►  Mar 27 (2)
        • ►  Mar 26 (3)
        • ►  Mar 25 (3)
        • ►  Mar 24 (5)
        • ►  Mar 22 (3)
        • ►  Mar 21 (3)
        • ►  Mar 20 (6)
        • ►  Mar 19 (17)
        • ►  Mar 18 (7)
        • ►  Mar 17 (23)
        • ►  Mar 16 (24)
        • ►  Mar 15 (18)
        • ►  Mar 14 (30)
        • ►  Mar 13 (24)
        • ►  Mar 12 (26)
        • ►  Mar 11 (13)
        • ►  Mar 10 (24)
        • ►  Mar 09 (22)
        • ►  Mar 08 (18)
        • ►  Mar 06 (9)
        • ►  Mar 05 (6)
        • ►  Mar 04 (7)
        • ►  Mar 03 (7)
        • ►  Mar 02 (3)
        • ►  Mar 01 (2)
      • ►  February (210)
        • ►  Feb 27 (1)
        • ►  Feb 26 (4)
        • ►  Feb 24 (12)
        • ►  Feb 23 (9)
        • ►  Feb 22 (9)
        • ►  Feb 21 (9)
        • ►  Feb 19 (4)
        • ►  Feb 16 (9)
        • ►  Feb 15 (2)
        • ►  Feb 14 (5)
        • ►  Feb 13 (1)
        • ►  Feb 12 (1)
        • ►  Feb 11 (13)
        • ►  Feb 10 (8)
        • ►  Feb 09 (12)
        • ►  Feb 08 (10)
        • ►  Feb 07 (19)
        • ►  Feb 06 (9)
        • ►  Feb 05 (18)
        • ►  Feb 04 (10)
        • ►  Feb 03 (13)
        • ►  Feb 02 (12)
        • ►  Feb 01 (20)
      • ►  January (216)
        • ►  Jan 31 (8)
        • ►  Jan 30 (11)
        • ►  Jan 29 (13)
        • ►  Jan 28 (7)
        • ►  Jan 27 (13)
        • ►  Jan 26 (13)
        • ►  Jan 25 (4)
        • ►  Jan 24 (2)
        • ►  Jan 23 (6)
        • ►  Jan 22 (7)
        • ►  Jan 21 (4)
        • ►  Jan 20 (5)
        • ►  Jan 19 (1)
        • ►  Jan 18 (3)
        • ►  Jan 17 (2)
        • ►  Jan 15 (1)
        • ►  Jan 14 (2)
        • ►  Jan 13 (13)
        • ►  Jan 12 (25)
        • ►  Jan 11 (13)
        • ►  Jan 10 (18)
        • ►  Jan 09 (18)
        • ►  Jan 07 (9)
        • ►  Jan 06 (2)
        • ►  Jan 05 (11)
        • ►  Jan 04 (3)
        • ►  Jan 03 (2)
    • ▼  2022 (2401)
      • ►  December (115)
        • ►  Dec 31 (1)
        • ►  Dec 30 (2)
        • ►  Dec 10 (7)
        • ►  Dec 09 (8)
        • ►  Dec 08 (8)
        • ►  Dec 07 (12)
        • ►  Dec 06 (16)
        • ►  Dec 05 (11)
        • ►  Dec 04 (15)
        • ►  Dec 03 (15)
        • ►  Dec 02 (8)
        • ►  Dec 01 (12)
      • ▼  November (498)
        • ►  Nov 30 (2)
        • ►  Nov 29 (11)
        • ►  Nov 28 (13)
        • ►  Nov 27 (1)
        • ►  Nov 26 (9)
        • ►  Nov 25 (13)
        • ►  Nov 24 (16)
        • ►  Nov 23 (8)
        • ►  Nov 22 (16)
        • ►  Nov 21 (21)
        • ►  Nov 20 (13)
        • ►  Nov 19 (24)
        • ►  Nov 18 (23)
        • ►  Nov 17 (28)
        • ►  Nov 16 (15)
        • ►  Nov 15 (22)
        • ►  Nov 14 (32)
        • ►  Nov 13 (20)
        • ►  Nov 12 (22)
        • ►  Nov 11 (30)
        • ►  Nov 10 (4)
        • ►  Nov 09 (21)
        • ►  Nov 08 (21)
        • ►  Nov 07 (21)
        • ►  Nov 06 (14)
        • ►  Nov 05 (19)
        • ►  Nov 04 (17)
        • ►  Nov 03 (14)
        • ▼  Nov 02 (12)
          • Mathematical formulation of the Standard Model
          • Mining
          • Social model of disability
          • X-ray microtomography
          • Neuroregeneration
          • Regeneration (biology)
          • Quantum chromodynamics
          • Environmental effects of mining
          • Societal and cultural aspects of autism
          • 3D scanning
          • Tooth
          • International Space Station programme
        • ►  Nov 01 (16)
      • ►  October (272)
        • ►  Oct 31 (14)
        • ►  Oct 30 (12)
        • ►  Oct 29 (13)
        • ►  Oct 28 (9)
        • ►  Oct 27 (10)
        • ►  Oct 26 (6)
        • ►  Oct 25 (15)
        • ►  Oct 24 (11)
        • ►  Oct 23 (12)
        • ►  Oct 22 (9)
        • ►  Oct 21 (5)
        • ►  Oct 19 (5)
        • ►  Oct 18 (8)
        • ►  Oct 17 (4)
        • ►  Oct 16 (4)
        • ►  Oct 15 (10)
        • ►  Oct 14 (6)
        • ►  Oct 13 (8)
        • ►  Oct 12 (9)
        • ►  Oct 11 (14)
        • ►  Oct 10 (15)
        • ►  Oct 09 (9)
        • ►  Oct 08 (12)
        • ►  Oct 07 (14)
        • ►  Oct 06 (7)
        • ►  Oct 05 (13)
        • ►  Oct 04 (8)
        • ►  Oct 03 (10)
      • ►  September (149)
        • ►  Sep 30 (4)
        • ►  Sep 29 (6)
        • ►  Sep 28 (4)
        • ►  Sep 27 (3)
        • ►  Sep 26 (6)
        • ►  Sep 25 (1)
        • ►  Sep 24 (1)
        • ►  Sep 23 (6)
        • ►  Sep 22 (1)
        • ►  Sep 21 (6)
        • ►  Sep 20 (5)
        • ►  Sep 19 (6)
        • ►  Sep 17 (5)
        • ►  Sep 16 (2)
        • ►  Sep 15 (4)
        • ►  Sep 14 (6)
        • ►  Sep 13 (3)
        • ►  Sep 12 (5)
        • ►  Sep 11 (5)
        • ►  Sep 10 (4)
        • ►  Sep 09 (11)
        • ►  Sep 08 (6)
        • ►  Sep 07 (7)
        • ►  Sep 06 (6)
        • ►  Sep 05 (8)
        • ►  Sep 04 (5)
        • ►  Sep 03 (12)
        • ►  Sep 02 (2)
        • ►  Sep 01 (9)
      • ►  August (231)
        • ►  Aug 31 (7)
        • ►  Aug 30 (9)
        • ►  Aug 29 (8)
        • ►  Aug 28 (10)
        • ►  Aug 27 (6)
        • ►  Aug 26 (10)
        • ►  Aug 25 (9)
        • ►  Aug 24 (8)
        • ►  Aug 23 (12)
        • ►  Aug 22 (6)
        • ►  Aug 21 (4)
        • ►  Aug 20 (10)
        • ►  Aug 19 (12)
        • ►  Aug 18 (7)
        • ►  Aug 17 (10)
        • ►  Aug 16 (9)
        • ►  Aug 15 (10)
        • ►  Aug 14 (7)
        • ►  Aug 13 (9)
        • ►  Aug 12 (7)
        • ►  Aug 11 (8)
        • ►  Aug 10 (5)
        • ►  Aug 09 (7)
        • ►  Aug 08 (8)
        • ►  Aug 07 (9)
        • ►  Aug 06 (10)
        • ►  Aug 05 (10)
        • ►  Aug 04 (4)
      • ►  July (258)
        • ►  Jul 31 (1)
        • ►  Jul 30 (3)
        • ►  Jul 29 (3)
        • ►  Jul 28 (1)
        • ►  Jul 27 (5)
        • ►  Jul 26 (5)
        • ►  Jul 25 (4)
        • ►  Jul 24 (4)
        • ►  Jul 23 (6)
        • ►  Jul 22 (5)
        • ►  Jul 21 (2)
        • ►  Jul 20 (10)
        • ►  Jul 19 (5)
        • ►  Jul 18 (8)
        • ►  Jul 17 (1)
        • ►  Jul 15 (6)
        • ►  Jul 14 (11)
        • ►  Jul 13 (9)
        • ►  Jul 12 (8)
        • ►  Jul 11 (17)
        • ►  Jul 10 (16)
        • ►  Jul 09 (14)
        • ►  Jul 08 (18)
        • ►  Jul 07 (12)
        • ►  Jul 06 (12)
        • ►  Jul 05 (17)
        • ►  Jul 04 (13)
        • ►  Jul 03 (15)
        • ►  Jul 02 (12)
        • ►  Jul 01 (15)
      • ►  June (133)
        • ►  Jun 30 (10)
        • ►  Jun 29 (9)
        • ►  Jun 28 (9)
        • ►  Jun 27 (9)
        • ►  Jun 26 (11)
        • ►  Jun 25 (12)
        • ►  Jun 24 (12)
        • ►  Jun 23 (10)
        • ►  Jun 22 (10)
        • ►  Jun 21 (4)
        • ►  Jun 20 (3)
        • ►  Jun 19 (8)
        • ►  Jun 18 (2)
        • ►  Jun 17 (2)
        • ►  Jun 15 (3)
        • ►  Jun 14 (1)
        • ►  Jun 13 (1)
        • ►  Jun 07 (1)
        • ►  Jun 04 (5)
        • ►  Jun 03 (2)
        • ►  Jun 02 (7)
        • ►  Jun 01 (2)
      • ►  May (168)
        • ►  May 31 (1)
        • ►  May 30 (2)
        • ►  May 29 (1)
        • ►  May 28 (1)
        • ►  May 26 (4)
        • ►  May 24 (1)
        • ►  May 23 (1)
        • ►  May 21 (3)
        • ►  May 20 (3)
        • ►  May 19 (2)
        • ►  May 18 (5)
        • ►  May 17 (3)
        • ►  May 16 (5)
        • ►  May 15 (11)
        • ►  May 14 (7)
        • ►  May 13 (8)
        • ►  May 12 (8)
        • ►  May 11 (7)
        • ►  May 10 (10)
        • ►  May 09 (11)
        • ►  May 08 (14)
        • ►  May 07 (7)
        • ►  May 06 (9)
        • ►  May 05 (6)
        • ►  May 04 (12)
        • ►  May 03 (10)
        • ►  May 02 (7)
        • ►  May 01 (9)
      • ►  April (59)
        • ►  Apr 30 (8)
        • ►  Apr 29 (11)
        • ►  Apr 28 (3)
        • ►  Apr 27 (5)
        • ►  Apr 26 (4)
        • ►  Apr 23 (1)
        • ►  Apr 22 (1)
        • ►  Apr 16 (2)
        • ►  Apr 15 (1)
        • ►  Apr 14 (2)
        • ►  Apr 13 (1)
        • ►  Apr 11 (2)
        • ►  Apr 09 (1)
        • ►  Apr 08 (4)
        • ►  Apr 07 (1)
        • ►  Apr 06 (4)
        • ►  Apr 05 (7)
        • ►  Apr 04 (1)
      • ►  March (114)
        • ►  Mar 27 (1)
        • ►  Mar 26 (8)
        • ►  Mar 25 (1)
        • ►  Mar 23 (4)
        • ►  Mar 22 (4)
        • ►  Mar 21 (2)
        • ►  Mar 20 (8)
        • ►  Mar 17 (4)
        • ►  Mar 16 (1)
        • ►  Mar 15 (8)
        • ►  Mar 14 (1)
        • ►  Mar 13 (4)
        • ►  Mar 12 (6)
        • ►  Mar 11 (4)
        • ►  Mar 10 (6)
        • ►  Mar 09 (6)
        • ►  Mar 08 (12)
        • ►  Mar 07 (5)
        • ►  Mar 06 (3)
        • ►  Mar 05 (4)
        • ►  Mar 04 (2)
        • ►  Mar 03 (6)
        • ►  Mar 02 (6)
        • ►  Mar 01 (8)
      • ►  February (136)
        • ►  Feb 28 (3)
        • ►  Feb 27 (3)
        • ►  Feb 26 (4)
        • ►  Feb 25 (1)
        • ►  Feb 24 (1)
        • ►  Feb 23 (4)
        • ►  Feb 22 (6)
        • ►  Feb 21 (3)
        • ►  Feb 19 (4)
        • ►  Feb 18 (2)
        • ►  Feb 17 (4)
        • ►  Feb 16 (5)
        • ►  Feb 15 (7)
        • ►  Feb 14 (5)
        • ►  Feb 13 (6)
        • ►  Feb 12 (3)
        • ►  Feb 11 (7)
        • ►  Feb 10 (5)
        • ►  Feb 09 (4)
        • ►  Feb 08 (3)
        • ►  Feb 07 (2)
        • ►  Feb 06 (5)
        • ►  Feb 05 (6)
        • ►  Feb 04 (4)
        • ►  Feb 03 (11)
        • ►  Feb 02 (13)
        • ►  Feb 01 (15)
      • ►  January (268)
        • ►  Jan 31 (16)
        • ►  Jan 30 (21)
        • ►  Jan 29 (11)
        • ►  Jan 28 (14)
        • ►  Jan 27 (11)
        • ►  Jan 26 (14)
        • ►  Jan 25 (5)
        • ►  Jan 23 (1)
        • ►  Jan 22 (2)
        • ►  Jan 19 (2)
        • ►  Jan 17 (9)
        • ►  Jan 16 (3)
        • ►  Jan 14 (14)
        • ►  Jan 13 (5)
        • ►  Jan 12 (6)
        • ►  Jan 11 (8)
        • ►  Jan 10 (13)
        • ►  Jan 09 (4)
        • ►  Jan 08 (14)
        • ►  Jan 07 (9)
        • ►  Jan 06 (10)
        • ►  Jan 05 (15)
        • ►  Jan 04 (13)
        • ►  Jan 03 (14)
        • ►  Jan 02 (19)
        • ►  Jan 01 (15)
    • ►  2021 (3238)
      • ►  December (507)
        • ►  Dec 31 (10)
        • ►  Dec 30 (9)
        • ►  Dec 29 (14)
        • ►  Dec 28 (11)
        • ►  Dec 27 (18)
        • ►  Dec 26 (12)
        • ►  Dec 25 (18)
        • ►  Dec 24 (13)
        • ►  Dec 23 (13)
        • ►  Dec 22 (9)
        • ►  Dec 21 (6)
        • ►  Dec 20 (15)
        • ►  Dec 19 (12)
        • ►  Dec 18 (11)
        • ►  Dec 17 (19)
        • ►  Dec 16 (13)
        • ►  Dec 15 (22)
        • ►  Dec 14 (25)
        • ►  Dec 13 (23)
        • ►  Dec 12 (21)
        • ►  Dec 11 (21)
        • ►  Dec 10 (22)
        • ►  Dec 09 (18)
        • ►  Dec 08 (23)
        • ►  Dec 07 (25)
        • ►  Dec 06 (19)
        • ►  Dec 05 (11)
        • ►  Dec 04 (20)
        • ►  Dec 03 (19)
        • ►  Dec 02 (25)
        • ►  Dec 01 (10)
      • ►  November (305)
        • ►  Nov 30 (16)
        • ►  Nov 29 (20)
        • ►  Nov 28 (11)
        • ►  Nov 27 (16)
        • ►  Nov 26 (17)
        • ►  Nov 25 (20)
        • ►  Nov 24 (14)
        • ►  Nov 23 (15)
        • ►  Nov 22 (16)
        • ►  Nov 21 (16)
        • ►  Nov 20 (16)
        • ►  Nov 19 (11)
        • ►  Nov 18 (12)
        • ►  Nov 17 (10)
        • ►  Nov 16 (13)
        • ►  Nov 15 (9)
        • ►  Nov 14 (6)
        • ►  Nov 13 (5)
        • ►  Nov 12 (10)
        • ►  Nov 11 (3)
        • ►  Nov 10 (6)
        • ►  Nov 09 (7)
        • ►  Nov 08 (2)
        • ►  Nov 07 (1)
        • ►  Nov 06 (5)
        • ►  Nov 05 (4)
        • ►  Nov 04 (2)
        • ►  Nov 03 (5)
        • ►  Nov 02 (3)
        • ►  Nov 01 (14)
      • ►  October (238)
        • ►  Oct 31 (16)
        • ►  Oct 30 (6)
        • ►  Oct 29 (13)
        • ►  Oct 28 (16)
        • ►  Oct 27 (10)
        • ►  Oct 26 (8)
        • ►  Oct 25 (8)
        • ►  Oct 24 (5)
        • ►  Oct 23 (11)
        • ►  Oct 22 (5)
        • ►  Oct 21 (12)
        • ►  Oct 20 (4)
        • ►  Oct 19 (2)
        • ►  Oct 18 (2)
        • ►  Oct 17 (2)
        • ►  Oct 16 (1)
        • ►  Oct 15 (4)
        • ►  Oct 12 (2)
        • ►  Oct 11 (4)
        • ►  Oct 10 (9)
        • ►  Oct 09 (13)
        • ►  Oct 08 (4)
        • ►  Oct 07 (6)
        • ►  Oct 06 (6)
        • ►  Oct 05 (9)
        • ►  Oct 04 (12)
        • ►  Oct 03 (12)
        • ►  Oct 02 (20)
        • ►  Oct 01 (16)
      • ►  September (358)
        • ►  Sep 30 (16)
        • ►  Sep 29 (18)
        • ►  Sep 28 (10)
        • ►  Sep 27 (17)
        • ►  Sep 26 (11)
        • ►  Sep 25 (15)
        • ►  Sep 24 (11)
        • ►  Sep 23 (12)
        • ►  Sep 22 (7)
        • ►  Sep 21 (8)
        • ►  Sep 20 (19)
        • ►  Sep 19 (14)
        • ►  Sep 18 (16)
        • ►  Sep 17 (17)
        • ►  Sep 16 (20)
        • ►  Sep 15 (17)
        • ►  Sep 14 (8)
        • ►  Sep 13 (19)
        • ►  Sep 12 (13)
        • ►  Sep 11 (11)
        • ►  Sep 10 (10)
        • ►  Sep 09 (13)
        • ►  Sep 08 (8)
        • ►  Sep 07 (9)
        • ►  Sep 06 (6)
        • ►  Sep 05 (10)
        • ►  Sep 04 (8)
        • ►  Sep 03 (6)
        • ►  Sep 02 (4)
        • ►  Sep 01 (5)
      • ►  August (213)
        • ►  Aug 31 (6)
        • ►  Aug 30 (10)
        • ►  Aug 29 (4)
        • ►  Aug 26 (3)
        • ►  Aug 25 (2)
        • ►  Aug 23 (4)
        • ►  Aug 22 (2)
        • ►  Aug 21 (10)
        • ►  Aug 20 (12)
        • ►  Aug 19 (10)
        • ►  Aug 18 (13)
        • ►  Aug 17 (8)
        • ►  Aug 16 (12)
        • ►  Aug 15 (15)
        • ►  Aug 14 (12)
        • ►  Aug 13 (10)
        • ►  Aug 12 (3)
        • ►  Aug 11 (7)
        • ►  Aug 10 (7)
        • ►  Aug 09 (5)
        • ►  Aug 08 (7)
        • ►  Aug 07 (9)
        • ►  Aug 06 (9)
        • ►  Aug 05 (6)
        • ►  Aug 04 (5)
        • ►  Aug 03 (4)
        • ►  Aug 02 (6)
        • ►  Aug 01 (12)
      • ►  July (213)
        • ►  Jul 31 (18)
        • ►  Jul 30 (7)
        • ►  Jul 29 (17)
        • ►  Jul 28 (16)
        • ►  Jul 27 (6)
        • ►  Jul 25 (1)
        • ►  Jul 24 (7)
        • ►  Jul 23 (5)
        • ►  Jul 22 (13)
        • ►  Jul 21 (3)
        • ►  Jul 20 (8)
        • ►  Jul 19 (11)
        • ►  Jul 18 (9)
        • ►  Jul 17 (6)
        • ►  Jul 16 (16)
        • ►  Jul 15 (7)
        • ►  Jul 14 (8)
        • ►  Jul 13 (8)
        • ►  Jul 12 (5)
        • ►  Jul 11 (1)
        • ►  Jul 09 (4)
        • ►  Jul 08 (3)
        • ►  Jul 07 (1)
        • ►  Jul 05 (1)
        • ►  Jul 04 (2)
        • ►  Jul 03 (8)
        • ►  Jul 02 (5)
        • ►  Jul 01 (17)
      • ►  June (292)
        • ►  Jun 30 (13)
        • ►  Jun 29 (19)
        • ►  Jun 28 (17)
        • ►  Jun 27 (12)
        • ►  Jun 26 (27)
        • ►  Jun 25 (18)
        • ►  Jun 24 (11)
        • ►  Jun 23 (12)
        • ►  Jun 22 (11)
        • ►  Jun 21 (16)
        • ►  Jun 20 (7)
        • ►  Jun 19 (9)
        • ►  Jun 18 (14)
        • ►  Jun 17 (7)
        • ►  Jun 16 (11)
        • ►  Jun 15 (9)
        • ►  Jun 14 (12)
        • ►  Jun 13 (2)
        • ►  Jun 12 (4)
        • ►  Jun 11 (8)
        • ►  Jun 10 (6)
        • ►  Jun 09 (2)
        • ►  Jun 08 (5)
        • ►  Jun 07 (4)
        • ►  Jun 06 (3)
        • ►  Jun 05 (4)
        • ►  Jun 04 (4)
        • ►  Jun 03 (8)
        • ►  Jun 02 (6)
        • ►  Jun 01 (11)
      • ►  May (302)
        • ►  May 31 (14)
        • ►  May 30 (21)
        • ►  May 29 (11)
        • ►  May 28 (21)
        • ►  May 27 (8)
        • ►  May 26 (5)
        • ►  May 25 (11)
        • ►  May 24 (13)
        • ►  May 23 (5)
        • ►  May 22 (13)
        • ►  May 21 (8)
        • ►  May 20 (8)
        • ►  May 19 (8)
        • ►  May 18 (11)
        • ►  May 17 (12)
        • ►  May 16 (17)
        • ►  May 15 (13)
        • ►  May 14 (10)
        • ►  May 13 (8)
        • ►  May 12 (16)
        • ►  May 11 (11)
        • ►  May 10 (16)
        • ►  May 09 (9)
        • ►  May 08 (7)
        • ►  May 07 (5)
        • ►  May 06 (7)
        • ►  May 05 (1)
        • ►  May 04 (1)
        • ►  May 03 (3)
        • ►  May 02 (1)
        • ►  May 01 (8)
      • ►  April (398)
        • ►  Apr 30 (7)
        • ►  Apr 29 (6)
        • ►  Apr 28 (11)
        • ►  Apr 27 (5)
        • ►  Apr 26 (21)
        • ►  Apr 25 (18)
        • ►  Apr 24 (16)
        • ►  Apr 23 (21)
        • ►  Apr 22 (19)
        • ►  Apr 21 (14)
        • ►  Apr 20 (16)
        • ►  Apr 19 (25)
        • ►  Apr 18 (11)
        • ►  Apr 17 (3)
        • ►  Apr 16 (9)
        • ►  Apr 15 (8)
        • ►  Apr 14 (11)
        • ►  Apr 13 (19)
        • ►  Apr 12 (9)
        • ►  Apr 11 (15)
        • ►  Apr 10 (11)
        • ►  Apr 09 (14)
        • ►  Apr 08 (15)
        • ►  Apr 07 (15)
        • ►  Apr 06 (13)
        • ►  Apr 05 (12)
        • ►  Apr 04 (14)
        • ►  Apr 03 (17)
        • ►  Apr 02 (16)
        • ►  Apr 01 (7)
      • ►  March (330)
        • ►  Mar 31 (7)
        • ►  Mar 30 (8)
        • ►  Mar 29 (11)
        • ►  Mar 28 (16)
        • ►  Mar 27 (10)
        • ►  Mar 26 (12)
        • ►  Mar 25 (19)
        • ►  Mar 24 (14)
        • ►  Mar 23 (14)
        • ►  Mar 22 (11)
        • ►  Mar 21 (12)
        • ►  Mar 20 (14)
        • ►  Mar 19 (15)
        • ►  Mar 18 (17)
        • ►  Mar 17 (4)
        • ►  Mar 16 (12)
        • ►  Mar 15 (18)
        • ►  Mar 14 (9)
        • ►  Mar 13 (12)
        • ►  Mar 12 (12)
        • ►  Mar 11 (14)
        • ►  Mar 10 (7)
        • ►  Mar 09 (7)
        • ►  Mar 08 (11)
        • ►  Mar 07 (9)
        • ►  Mar 06 (7)
        • ►  Mar 05 (9)
        • ►  Mar 04 (4)
        • ►  Mar 03 (5)
        • ►  Mar 02 (5)
        • ►  Mar 01 (5)
      • ►  February (76)
        • ►  Feb 28 (8)
        • ►  Feb 27 (11)
        • ►  Feb 26 (4)
        • ►  Feb 25 (4)
        • ►  Feb 24 (1)
        • ►  Feb 23 (3)
        • ►  Feb 22 (2)
        • ►  Feb 21 (1)
        • ►  Feb 20 (3)
        • ►  Feb 19 (3)
        • ►  Feb 18 (4)
        • ►  Feb 17 (8)
        • ►  Feb 16 (2)
        • ►  Feb 15 (6)
        • ►  Feb 14 (1)
        • ►  Feb 13 (3)
        • ►  Feb 12 (5)
        • ►  Feb 10 (2)
        • ►  Feb 08 (1)
        • ►  Feb 06 (1)
        • ►  Feb 05 (2)
        • ►  Feb 02 (1)
      • ►  January (6)
        • ►  Jan 31 (1)
        • ►  Jan 24 (1)
        • ►  Jan 15 (1)
        • ►  Jan 14 (3)
    • ►  2020 (2688)
      • ►  December (67)
        • ►  Dec 29 (1)
        • ►  Dec 28 (3)
        • ►  Dec 27 (1)
        • ►  Dec 23 (5)
        • ►  Dec 21 (4)
        • ►  Dec 19 (1)
        • ►  Dec 18 (2)
        • ►  Dec 11 (1)
        • ►  Dec 10 (6)
        • ►  Dec 09 (15)
        • ►  Dec 08 (8)
        • ►  Dec 07 (10)
        • ►  Dec 06 (5)
        • ►  Dec 05 (5)
      • ►  November (141)
        • ►  Nov 30 (5)
        • ►  Nov 29 (5)
        • ►  Nov 28 (1)
        • ►  Nov 27 (8)
        • ►  Nov 26 (20)
        • ►  Nov 25 (9)
        • ►  Nov 24 (11)
        • ►  Nov 23 (9)
        • ►  Nov 22 (11)
        • ►  Nov 21 (12)
        • ►  Nov 20 (3)
        • ►  Nov 19 (10)
        • ►  Nov 18 (7)
        • ►  Nov 17 (8)
        • ►  Nov 16 (2)
        • ►  Nov 15 (4)
        • ►  Nov 14 (8)
        • ►  Nov 13 (4)
        • ►  Nov 12 (2)
        • ►  Nov 10 (1)
        • ►  Nov 02 (1)
      • ►  October (190)
        • ►  Oct 26 (1)
        • ►  Oct 25 (4)
        • ►  Oct 24 (19)
        • ►  Oct 23 (16)
        • ►  Oct 22 (2)
        • ►  Oct 21 (1)
        • ►  Oct 20 (1)
        • ►  Oct 16 (2)
        • ►  Oct 11 (11)
        • ►  Oct 10 (8)
        • ►  Oct 09 (14)
        • ►  Oct 08 (18)
        • ►  Oct 07 (9)
        • ►  Oct 06 (17)
        • ►  Oct 05 (17)
        • ►  Oct 04 (4)
        • ►  Oct 03 (14)
        • ►  Oct 02 (13)
        • ►  Oct 01 (19)
      • ►  September (371)
        • ►  Sep 30 (12)
        • ►  Sep 29 (11)
        • ►  Sep 28 (14)
        • ►  Sep 27 (14)
        • ►  Sep 26 (13)
        • ►  Sep 25 (25)
        • ►  Sep 24 (30)
        • ►  Sep 23 (16)
        • ►  Sep 22 (11)
        • ►  Sep 21 (18)
        • ►  Sep 20 (16)
        • ►  Sep 19 (23)
        • ►  Sep 18 (22)
        • ►  Sep 17 (15)
        • ►  Sep 16 (11)
        • ►  Sep 15 (13)
        • ►  Sep 14 (9)
        • ►  Sep 13 (11)
        • ►  Sep 12 (9)
        • ►  Sep 11 (6)
        • ►  Sep 10 (1)
        • ►  Sep 09 (9)
        • ►  Sep 08 (14)
        • ►  Sep 07 (7)
        • ►  Sep 06 (13)
        • ►  Sep 05 (8)
        • ►  Sep 04 (6)
        • ►  Sep 03 (1)
        • ►  Sep 02 (3)
        • ►  Sep 01 (10)
      • ►  August (112)
        • ►  Aug 31 (12)
        • ►  Aug 30 (2)
        • ►  Aug 29 (7)
        • ►  Aug 28 (2)
        • ►  Aug 27 (1)
        • ►  Aug 26 (1)
        • ►  Aug 24 (2)
        • ►  Aug 23 (2)
        • ►  Aug 21 (3)
        • ►  Aug 20 (4)
        • ►  Aug 19 (8)
        • ►  Aug 18 (5)
        • ►  Aug 17 (4)
        • ►  Aug 16 (6)
        • ►  Aug 15 (4)
        • ►  Aug 14 (1)
        • ►  Aug 13 (2)
        • ►  Aug 12 (4)
        • ►  Aug 11 (5)
        • ►  Aug 10 (7)
        • ►  Aug 09 (8)
        • ►  Aug 08 (4)
        • ►  Aug 07 (1)
        • ►  Aug 06 (5)
        • ►  Aug 05 (2)
        • ►  Aug 04 (1)
        • ►  Aug 03 (4)
        • ►  Aug 02 (1)
        • ►  Aug 01 (4)
      • ►  July (227)
        • ►  Jul 30 (3)
        • ►  Jul 29 (6)
        • ►  Jul 28 (2)
        • ►  Jul 27 (1)
        • ►  Jul 26 (7)
        • ►  Jul 25 (3)
        • ►  Jul 24 (3)
        • ►  Jul 23 (14)
        • ►  Jul 22 (1)
        • ►  Jul 21 (12)
        • ►  Jul 20 (8)
        • ►  Jul 19 (10)
        • ►  Jul 18 (12)
        • ►  Jul 17 (4)
        • ►  Jul 16 (12)
        • ►  Jul 15 (12)
        • ►  Jul 14 (8)
        • ►  Jul 13 (13)
        • ►  Jul 12 (8)
        • ►  Jul 11 (14)
        • ►  Jul 10 (7)
        • ►  Jul 09 (9)
        • ►  Jul 08 (7)
        • ►  Jul 07 (10)
        • ►  Jul 06 (8)
        • ►  Jul 05 (8)
        • ►  Jul 04 (8)
        • ►  Jul 03 (6)
        • ►  Jul 02 (4)
        • ►  Jul 01 (7)
      • ►  June (243)
        • ►  Jun 30 (5)
        • ►  Jun 29 (3)
        • ►  Jun 28 (4)
        • ►  Jun 27 (6)
        • ►  Jun 26 (4)
        • ►  Jun 25 (2)
        • ►  Jun 24 (3)
        • ►  Jun 23 (5)
        • ►  Jun 22 (6)
        • ►  Jun 20 (5)
        • ►  Jun 19 (6)
        • ►  Jun 18 (5)
        • ►  Jun 17 (16)
        • ►  Jun 16 (17)
        • ►  Jun 15 (8)
        • ►  Jun 14 (11)
        • ►  Jun 13 (8)
        • ►  Jun 12 (11)
        • ►  Jun 11 (6)
        • ►  Jun 10 (15)
        • ►  Jun 09 (6)
        • ►  Jun 08 (20)
        • ►  Jun 07 (10)
        • ►  Jun 06 (11)
        • ►  Jun 05 (13)
        • ►  Jun 04 (12)
        • ►  Jun 03 (11)
        • ►  Jun 02 (6)
        • ►  Jun 01 (8)
      • ►  May (405)
        • ►  May 31 (8)
        • ►  May 30 (6)
        • ►  May 29 (16)
        • ►  May 28 (10)
        • ►  May 27 (15)
        • ►  May 26 (18)
        • ►  May 25 (14)
        • ►  May 24 (23)
        • ►  May 23 (15)
        • ►  May 22 (21)
        • ►  May 21 (13)
        • ►  May 20 (22)
        • ►  May 19 (25)
        • ►  May 18 (17)
        • ►  May 17 (21)
        • ►  May 16 (10)
        • ►  May 15 (12)
        • ►  May 14 (22)
        • ►  May 13 (13)
        • ►  May 12 (14)
        • ►  May 11 (10)
        • ►  May 10 (8)
        • ►  May 09 (15)
        • ►  May 08 (17)
        • ►  May 07 (1)
        • ►  May 06 (3)
        • ►  May 05 (11)
        • ►  May 04 (11)
        • ►  May 03 (7)
        • ►  May 02 (2)
        • ►  May 01 (5)
      • ►  April (183)
        • ►  Apr 30 (10)
        • ►  Apr 29 (6)
        • ►  Apr 28 (7)
        • ►  Apr 27 (9)
        • ►  Apr 26 (8)
        • ►  Apr 25 (10)
        • ►  Apr 24 (8)
        • ►  Apr 23 (10)
        • ►  Apr 22 (4)
        • ►  Apr 21 (10)
        • ►  Apr 20 (9)
        • ►  Apr 19 (10)
        • ►  Apr 18 (22)
        • ►  Apr 17 (8)
        • ►  Apr 16 (8)
        • ►  Apr 15 (5)
        • ►  Apr 14 (2)
        • ►  Apr 13 (4)
        • ►  Apr 12 (1)
        • ►  Apr 11 (7)
        • ►  Apr 10 (8)
        • ►  Apr 09 (1)
        • ►  Apr 07 (3)
        • ►  Apr 06 (1)
        • ►  Apr 03 (3)
        • ►  Apr 02 (3)
        • ►  Apr 01 (6)
      • ►  March (208)
        • ►  Mar 31 (10)
        • ►  Mar 30 (9)
        • ►  Mar 29 (4)
        • ►  Mar 28 (3)
        • ►  Mar 27 (11)
        • ►  Mar 26 (5)
        • ►  Mar 25 (5)
        • ►  Mar 24 (7)
        • ►  Mar 23 (5)
        • ►  Mar 22 (7)
        • ►  Mar 21 (7)
        • ►  Mar 20 (9)
        • ►  Mar 19 (8)
        • ►  Mar 18 (3)
        • ►  Mar 17 (1)
        • ►  Mar 16 (1)
        • ►  Mar 14 (5)
        • ►  Mar 13 (8)
        • ►  Mar 12 (11)
        • ►  Mar 11 (9)
        • ►  Mar 10 (6)
        • ►  Mar 09 (10)
        • ►  Mar 08 (8)
        • ►  Mar 07 (10)
        • ►  Mar 06 (7)
        • ►  Mar 05 (11)
        • ►  Mar 04 (15)
        • ►  Mar 03 (9)
        • ►  Mar 02 (4)
      • ►  February (255)
        • ►  Feb 28 (6)
        • ►  Feb 27 (7)
        • ►  Feb 26 (6)
        • ►  Feb 25 (5)
        • ►  Feb 24 (12)
        • ►  Feb 22 (9)
        • ►  Feb 21 (11)
        • ►  Feb 20 (9)
        • ►  Feb 19 (9)
        • ►  Feb 18 (4)
        • ►  Feb 17 (9)
        • ►  Feb 16 (9)
        • ►  Feb 15 (12)
        • ►  Feb 14 (15)
        • ►  Feb 13 (13)
        • ►  Feb 12 (10)
        • ►  Feb 11 (12)
        • ►  Feb 10 (14)
        • ►  Feb 09 (7)
        • ►  Feb 08 (8)
        • ►  Feb 07 (11)
        • ►  Feb 06 (8)
        • ►  Feb 05 (14)
        • ►  Feb 04 (7)
        • ►  Feb 03 (12)
        • ►  Feb 02 (12)
        • ►  Feb 01 (4)
      • ►  January (286)
        • ►  Jan 31 (10)
        • ►  Jan 30 (12)
        • ►  Jan 29 (10)
        • ►  Jan 28 (6)
        • ►  Jan 27 (11)
        • ►  Jan 26 (11)
        • ►  Jan 25 (11)
        • ►  Jan 24 (13)
        • ►  Jan 23 (17)
        • ►  Jan 22 (6)
        • ►  Jan 21 (10)
        • ►  Jan 20 (9)
        • ►  Jan 19 (12)
        • ►  Jan 18 (6)
        • ►  Jan 17 (11)
        • ►  Jan 16 (6)
        • ►  Jan 15 (7)
        • ►  Jan 14 (8)
        • ►  Jan 13 (10)
        • ►  Jan 12 (9)
        • ►  Jan 11 (1)
        • ►  Jan 10 (11)
        • ►  Jan 09 (9)
        • ►  Jan 08 (10)
        • ►  Jan 07 (13)
        • ►  Jan 06 (5)
        • ►  Jan 05 (11)
        • ►  Jan 04 (8)
        • ►  Jan 03 (6)
        • ►  Jan 02 (11)
        • ►  Jan 01 (6)
    • ►  2019 (3306)
      • ►  December (344)
        • ►  Dec 31 (13)
        • ►  Dec 30 (9)
        • ►  Dec 29 (10)
        • ►  Dec 28 (15)
        • ►  Dec 27 (10)
        • ►  Dec 26 (6)
        • ►  Dec 25 (13)
        • ►  Dec 24 (10)
        • ►  Dec 23 (13)
        • ►  Dec 22 (9)
        • ►  Dec 21 (13)
        • ►  Dec 20 (14)
        • ►  Dec 19 (10)
        • ►  Dec 18 (12)
        • ►  Dec 17 (13)
        • ►  Dec 16 (16)
        • ►  Dec 15 (11)
        • ►  Dec 14 (19)
        • ►  Dec 13 (10)
        • ►  Dec 12 (15)
        • ►  Dec 11 (10)
        • ►  Dec 10 (9)
        • ►  Dec 09 (12)
        • ►  Dec 08 (9)
        • ►  Dec 07 (10)
        • ►  Dec 06 (7)
        • ►  Dec 05 (10)
        • ►  Dec 04 (8)
        • ►  Dec 03 (11)
        • ►  Dec 02 (10)
        • ►  Dec 01 (7)
      • ►  November (197)
        • ►  Nov 30 (13)
        • ►  Nov 29 (14)
        • ►  Nov 28 (11)
        • ►  Nov 27 (9)
        • ►  Nov 26 (5)
        • ►  Nov 25 (3)
        • ►  Nov 24 (11)
        • ►  Nov 23 (2)
        • ►  Nov 22 (7)
        • ►  Nov 21 (4)
        • ►  Nov 20 (4)
        • ►  Nov 19 (2)
        • ►  Nov 18 (7)
        • ►  Nov 17 (3)
        • ►  Nov 16 (9)
        • ►  Nov 15 (1)
        • ►  Nov 14 (3)
        • ►  Nov 13 (14)
        • ►  Nov 12 (2)
        • ►  Nov 11 (5)
        • ►  Nov 10 (5)
        • ►  Nov 09 (4)
        • ►  Nov 08 (11)
        • ►  Nov 07 (3)
        • ►  Nov 06 (9)
        • ►  Nov 05 (7)
        • ►  Nov 04 (2)
        • ►  Nov 03 (7)
        • ►  Nov 02 (10)
        • ►  Nov 01 (10)
      • ►  October (154)
        • ►  Oct 31 (7)
        • ►  Oct 30 (8)
        • ►  Oct 29 (5)
        • ►  Oct 28 (12)
        • ►  Oct 27 (5)
        • ►  Oct 26 (12)
        • ►  Oct 25 (7)
        • ►  Oct 24 (7)
        • ►  Oct 23 (5)
        • ►  Oct 22 (14)
        • ►  Oct 21 (9)
        • ►  Oct 20 (8)
        • ►  Oct 19 (4)
        • ►  Oct 18 (2)
        • ►  Oct 17 (5)
        • ►  Oct 16 (3)
        • ►  Oct 15 (9)
        • ►  Oct 14 (7)
        • ►  Oct 13 (4)
        • ►  Oct 12 (5)
        • ►  Oct 10 (2)
        • ►  Oct 09 (10)
        • ►  Oct 07 (2)
        • ►  Oct 05 (1)
        • ►  Oct 02 (1)
      • ►  September (67)
        • ►  Sep 30 (3)
        • ►  Sep 29 (1)
        • ►  Sep 28 (2)
        • ►  Sep 27 (2)
        • ►  Sep 26 (4)
        • ►  Sep 25 (3)
        • ►  Sep 22 (3)
        • ►  Sep 21 (6)
        • ►  Sep 19 (1)
        • ►  Sep 18 (3)
        • ►  Sep 16 (3)
        • ►  Sep 15 (2)
        • ►  Sep 14 (4)
        • ►  Sep 13 (1)
        • ►  Sep 11 (1)
        • ►  Sep 09 (4)
        • ►  Sep 08 (4)
        • ►  Sep 07 (1)
        • ►  Sep 06 (6)
        • ►  Sep 04 (3)
        • ►  Sep 03 (6)
        • ►  Sep 01 (4)
      • ►  August (84)
        • ►  Aug 26 (2)
        • ►  Aug 25 (2)
        • ►  Aug 24 (2)
        • ►  Aug 23 (1)
        • ►  Aug 22 (3)
        • ►  Aug 21 (2)
        • ►  Aug 19 (1)
        • ►  Aug 18 (2)
        • ►  Aug 17 (1)
        • ►  Aug 14 (1)
        • ►  Aug 13 (1)
        • ►  Aug 12 (5)
        • ►  Aug 11 (4)
        • ►  Aug 10 (7)
        • ►  Aug 09 (2)
        • ►  Aug 08 (2)
        • ►  Aug 07 (5)
        • ►  Aug 06 (6)
        • ►  Aug 05 (3)
        • ►  Aug 04 (5)
        • ►  Aug 03 (9)
        • ►  Aug 02 (8)
        • ►  Aug 01 (10)
      • ►  July (217)
        • ►  Jul 31 (6)
        • ►  Jul 29 (10)
        • ►  Jul 28 (5)
        • ►  Jul 27 (10)
        • ►  Jul 25 (7)
        • ►  Jul 24 (11)
        • ►  Jul 23 (8)
        • ►  Jul 22 (4)
        • ►  Jul 21 (17)
        • ►  Jul 20 (7)
        • ►  Jul 19 (11)
        • ►  Jul 18 (9)
        • ►  Jul 17 (7)
        • ►  Jul 16 (10)
        • ►  Jul 15 (6)
        • ►  Jul 14 (6)
        • ►  Jul 13 (15)
        • ►  Jul 12 (12)
        • ►  Jul 11 (3)
        • ►  Jul 10 (7)
        • ►  Jul 09 (2)
        • ►  Jul 08 (2)
        • ►  Jul 07 (7)
        • ►  Jul 06 (9)
        • ►  Jul 04 (11)
        • ►  Jul 03 (2)
        • ►  Jul 02 (4)
        • ►  Jul 01 (9)
      • ►  June (260)
        • ►  Jun 30 (7)
        • ►  Jun 29 (15)
        • ►  Jun 28 (4)
        • ►  Jun 27 (2)
        • ►  Jun 26 (6)
        • ►  Jun 25 (2)
        • ►  Jun 24 (10)
        • ►  Jun 23 (10)
        • ►  Jun 22 (8)
        • ►  Jun 21 (12)
        • ►  Jun 20 (8)
        • ►  Jun 19 (8)
        • ►  Jun 18 (12)
        • ►  Jun 17 (7)
        • ►  Jun 16 (7)
        • ►  Jun 15 (10)
        • ►  Jun 14 (11)
        • ►  Jun 13 (1)
        • ►  Jun 11 (2)
        • ►  Jun 10 (13)
        • ►  Jun 09 (16)
        • ►  Jun 08 (10)
        • ►  Jun 07 (16)
        • ►  Jun 06 (11)
        • ►  Jun 05 (17)
        • ►  Jun 04 (6)
        • ►  Jun 03 (13)
        • ►  Jun 02 (4)
        • ►  Jun 01 (12)
      • ►  May (426)
        • ►  May 31 (22)
        • ►  May 30 (14)
        • ►  May 29 (7)
        • ►  May 28 (16)
        • ►  May 27 (8)
        • ►  May 26 (9)
        • ►  May 25 (25)
        • ►  May 24 (10)
        • ►  May 23 (10)
        • ►  May 22 (13)
        • ►  May 21 (11)
        • ►  May 20 (16)
        • ►  May 19 (26)
        • ►  May 18 (8)
        • ►  May 17 (17)
        • ►  May 16 (11)
        • ►  May 15 (3)
        • ►  May 14 (17)
        • ►  May 13 (17)
        • ►  May 12 (14)
        • ►  May 11 (13)
        • ►  May 10 (18)
        • ►  May 09 (15)
        • ►  May 08 (12)
        • ►  May 07 (8)
        • ►  May 06 (12)
        • ►  May 05 (12)
        • ►  May 04 (13)
        • ►  May 03 (13)
        • ►  May 02 (16)
        • ►  May 01 (20)
      • ►  April (356)
        • ►  Apr 30 (9)
        • ►  Apr 29 (10)
        • ►  Apr 28 (11)
        • ►  Apr 27 (11)
        • ►  Apr 26 (15)
        • ►  Apr 25 (9)
        • ►  Apr 24 (12)
        • ►  Apr 23 (15)
        • ►  Apr 22 (12)
        • ►  Apr 21 (15)
        • ►  Apr 20 (13)
        • ►  Apr 19 (9)
        • ►  Apr 18 (14)
        • ►  Apr 17 (11)
        • ►  Apr 16 (8)
        • ►  Apr 15 (15)
        • ►  Apr 14 (6)
        • ►  Apr 13 (8)
        • ►  Apr 12 (10)
        • ►  Apr 11 (17)
        • ►  Apr 10 (12)
        • ►  Apr 09 (8)
        • ►  Apr 08 (13)
        • ►  Apr 07 (18)
        • ►  Apr 06 (11)
        • ►  Apr 05 (12)
        • ►  Apr 04 (16)
        • ►  Apr 03 (12)
        • ►  Apr 02 (12)
        • ►  Apr 01 (12)
      • ►  March (419)
        • ►  Mar 31 (13)
        • ►  Mar 30 (17)
        • ►  Mar 29 (13)
        • ►  Mar 28 (14)
        • ►  Mar 27 (17)
        • ►  Mar 26 (12)
        • ►  Mar 25 (9)
        • ►  Mar 24 (13)
        • ►  Mar 23 (13)
        • ►  Mar 22 (12)
        • ►  Mar 21 (12)
        • ►  Mar 20 (12)
        • ►  Mar 19 (12)
        • ►  Mar 18 (12)
        • ►  Mar 17 (12)
        • ►  Mar 16 (17)
        • ►  Mar 15 (13)
        • ►  Mar 14 (16)
        • ►  Mar 13 (8)
        • ►  Mar 12 (12)
        • ►  Mar 11 (11)
        • ►  Mar 10 (12)
        • ►  Mar 09 (15)
        • ►  Mar 08 (11)
        • ►  Mar 07 (19)
        • ►  Mar 06 (26)
        • ►  Mar 05 (14)
        • ►  Mar 04 (14)
        • ►  Mar 03 (12)
        • ►  Mar 02 (12)
        • ►  Mar 01 (14)
      • ►  February (375)
        • ►  Feb 28 (11)
        • ►  Feb 27 (10)
        • ►  Feb 26 (8)
        • ►  Feb 25 (11)
        • ►  Feb 24 (11)
        • ►  Feb 23 (5)
        • ►  Feb 22 (14)
        • ►  Feb 21 (13)
        • ►  Feb 20 (17)
        • ►  Feb 19 (14)
        • ►  Feb 18 (15)
        • ►  Feb 17 (12)
        • ►  Feb 16 (14)
        • ►  Feb 15 (14)
        • ►  Feb 14 (15)
        • ►  Feb 13 (20)
        • ►  Feb 12 (11)
        • ►  Feb 11 (21)
        • ►  Feb 10 (12)
        • ►  Feb 09 (18)
        • ►  Feb 08 (20)
        • ►  Feb 07 (13)
        • ►  Feb 06 (12)
        • ►  Feb 05 (14)
        • ►  Feb 04 (17)
        • ►  Feb 03 (8)
        • ►  Feb 02 (11)
        • ►  Feb 01 (14)
      • ►  January (407)
        • ►  Jan 31 (15)
        • ►  Jan 30 (11)
        • ►  Jan 29 (5)
        • ►  Jan 28 (19)
        • ►  Jan 27 (15)
        • ►  Jan 26 (13)
        • ►  Jan 25 (15)
        • ►  Jan 24 (13)
        • ►  Jan 23 (15)
        • ►  Jan 22 (10)
        • ►  Jan 21 (10)
        • ►  Jan 20 (18)
        • ►  Jan 19 (18)
        • ►  Jan 18 (7)
        • ►  Jan 17 (14)
        • ►  Jan 16 (17)
        • ►  Jan 15 (12)
        • ►  Jan 14 (14)
        • ►  Jan 13 (19)
        • ►  Jan 12 (8)
        • ►  Jan 11 (15)
        • ►  Jan 10 (9)
        • ►  Jan 09 (13)
        • ►  Jan 08 (12)
        • ►  Jan 07 (12)
        • ►  Jan 06 (15)
        • ►  Jan 05 (25)
        • ►  Jan 04 (11)
        • ►  Jan 03 (7)
        • ►  Jan 02 (12)
        • ►  Jan 01 (8)
    • ►  2018 (2910)
      • ►  December (343)
        • ►  Dec 31 (10)
        • ►  Dec 30 (14)
        • ►  Dec 29 (10)
        • ►  Dec 28 (7)
        • ►  Dec 27 (6)
        • ►  Dec 26 (16)
        • ►  Dec 25 (15)
        • ►  Dec 24 (11)
        • ►  Dec 23 (14)
        • ►  Dec 22 (7)
        • ►  Dec 21 (11)
        • ►  Dec 20 (9)
        • ►  Dec 19 (12)
        • ►  Dec 18 (8)
        • ►  Dec 17 (13)
        • ►  Dec 16 (16)
        • ►  Dec 15 (14)
        • ►  Dec 14 (9)
        • ►  Dec 13 (12)
        • ►  Dec 12 (11)
        • ►  Dec 11 (7)
        • ►  Dec 10 (8)
        • ►  Dec 09 (8)
        • ►  Dec 08 (14)
        • ►  Dec 07 (16)
        • ►  Dec 06 (12)
        • ►  Dec 05 (14)
        • ►  Dec 04 (8)
        • ►  Dec 03 (10)
        • ►  Dec 02 (3)
        • ►  Dec 01 (18)
      • ►  November (319)
        • ►  Nov 30 (11)
        • ►  Nov 29 (14)
        • ►  Nov 28 (9)
        • ►  Nov 27 (4)
        • ►  Nov 26 (10)
        • ►  Nov 25 (18)
        • ►  Nov 24 (14)
        • ►  Nov 23 (9)
        • ►  Nov 22 (15)
        • ►  Nov 21 (4)
        • ►  Nov 20 (6)
        • ►  Nov 19 (9)
        • ►  Nov 18 (3)
        • ►  Nov 17 (10)
        • ►  Nov 16 (5)
        • ►  Nov 15 (13)
        • ►  Nov 14 (11)
        • ►  Nov 13 (11)
        • ►  Nov 12 (16)
        • ►  Nov 11 (8)
        • ►  Nov 10 (14)
        • ►  Nov 09 (6)
        • ►  Nov 08 (6)
        • ►  Nov 07 (6)
        • ►  Nov 06 (14)
        • ►  Nov 05 (6)
        • ►  Nov 04 (18)
        • ►  Nov 03 (22)
        • ►  Nov 02 (7)
        • ►  Nov 01 (20)
      • ►  October (304)
        • ►  Oct 31 (6)
        • ►  Oct 30 (10)
        • ►  Oct 29 (17)
        • ►  Oct 28 (10)
        • ►  Oct 27 (11)
        • ►  Oct 26 (11)
        • ►  Oct 25 (12)
        • ►  Oct 24 (13)
        • ►  Oct 23 (13)
        • ►  Oct 22 (10)
        • ►  Oct 21 (9)
        • ►  Oct 20 (11)
        • ►  Oct 19 (7)
        • ►  Oct 18 (7)
        • ►  Oct 17 (14)
        • ►  Oct 16 (5)
        • ►  Oct 15 (13)
        • ►  Oct 14 (8)
        • ►  Oct 13 (13)
        • ►  Oct 12 (6)
        • ►  Oct 11 (17)
        • ►  Oct 10 (17)
        • ►  Oct 09 (1)
        • ►  Oct 08 (10)
        • ►  Oct 07 (2)
        • ►  Oct 06 (11)
        • ►  Oct 05 (16)
        • ►  Oct 04 (6)
        • ►  Oct 03 (9)
        • ►  Oct 02 (6)
        • ►  Oct 01 (3)
      • ►  September (324)
        • ►  Sep 30 (5)
        • ►  Sep 29 (8)
        • ►  Sep 28 (9)
        • ►  Sep 27 (9)
        • ►  Sep 26 (11)
        • ►  Sep 25 (13)
        • ►  Sep 24 (16)
        • ►  Sep 23 (7)
        • ►  Sep 22 (18)
        • ►  Sep 21 (8)
        • ►  Sep 20 (8)
        • ►  Sep 19 (8)
        • ►  Sep 18 (11)
        • ►  Sep 17 (6)
        • ►  Sep 16 (9)
        • ►  Sep 15 (13)
        • ►  Sep 14 (7)
        • ►  Sep 13 (13)
        • ►  Sep 12 (4)
        • ►  Sep 11 (14)
        • ►  Sep 10 (12)
        • ►  Sep 09 (9)
        • ►  Sep 08 (14)
        • ►  Sep 07 (11)
        • ►  Sep 06 (13)
        • ►  Sep 05 (17)
        • ►  Sep 04 (12)
        • ►  Sep 03 (17)
        • ►  Sep 02 (10)
        • ►  Sep 01 (12)
      • ►  August (453)
        • ►  Aug 31 (6)
        • ►  Aug 30 (12)
        • ►  Aug 29 (13)
        • ►  Aug 28 (7)
        • ►  Aug 27 (6)
        • ►  Aug 26 (9)
        • ►  Aug 25 (11)
        • ►  Aug 24 (6)
        • ►  Aug 23 (10)
        • ►  Aug 22 (18)
        • ►  Aug 21 (8)
        • ►  Aug 20 (18)
        • ►  Aug 19 (5)
        • ►  Aug 18 (8)
        • ►  Aug 17 (16)
        • ►  Aug 16 (18)
        • ►  Aug 15 (7)
        • ►  Aug 14 (8)
        • ►  Aug 13 (17)
        • ►  Aug 12 (18)
        • ►  Aug 11 (21)
        • ►  Aug 10 (10)
        • ►  Aug 09 (14)
        • ►  Aug 08 (25)
        • ►  Aug 07 (25)
        • ►  Aug 06 (22)
        • ►  Aug 05 (32)
        • ►  Aug 04 (24)
        • ►  Aug 03 (15)
        • ►  Aug 02 (26)
        • ►  Aug 01 (18)
      • ►  July (443)
        • ►  Jul 31 (28)
        • ►  Jul 30 (13)
        • ►  Jul 29 (20)
        • ►  Jul 28 (16)
        • ►  Jul 27 (30)
        • ►  Jul 26 (14)
        • ►  Jul 25 (16)
        • ►  Jul 24 (26)
        • ►  Jul 23 (14)
        • ►  Jul 22 (15)
        • ►  Jul 21 (21)
        • ►  Jul 20 (10)
        • ►  Jul 19 (11)
        • ►  Jul 18 (9)
        • ►  Jul 17 (12)
        • ►  Jul 16 (10)
        • ►  Jul 15 (10)
        • ►  Jul 14 (11)
        • ►  Jul 13 (12)
        • ►  Jul 12 (7)
        • ►  Jul 11 (12)
        • ►  Jul 10 (8)
        • ►  Jul 09 (16)
        • ►  Jul 08 (7)
        • ►  Jul 07 (11)
        • ►  Jul 06 (8)
        • ►  Jul 05 (22)
        • ►  Jul 04 (15)
        • ►  Jul 03 (15)
        • ►  Jul 02 (13)
        • ►  Jul 01 (11)
      • ►  June (335)
        • ►  Jun 30 (18)
        • ►  Jun 29 (16)
        • ►  Jun 28 (27)
        • ►  Jun 27 (8)
        • ►  Jun 26 (9)
        • ►  Jun 25 (15)
        • ►  Jun 24 (6)
        • ►  Jun 23 (12)
        • ►  Jun 22 (8)
        • ►  Jun 21 (6)
        • ►  Jun 20 (8)
        • ►  Jun 19 (15)
        • ►  Jun 18 (7)
        • ►  Jun 17 (7)
        • ►  Jun 16 (16)
        • ►  Jun 15 (9)
        • ►  Jun 14 (10)
        • ►  Jun 13 (14)
        • ►  Jun 12 (9)
        • ►  Jun 11 (20)
        • ►  Jun 10 (16)
        • ►  Jun 09 (10)
        • ►  Jun 08 (9)
        • ►  Jun 07 (9)
        • ►  Jun 06 (6)
        • ►  Jun 05 (9)
        • ►  Jun 04 (9)
        • ►  Jun 03 (6)
        • ►  Jun 02 (9)
        • ►  Jun 01 (12)
      • ►  May (298)
        • ►  May 31 (15)
        • ►  May 30 (10)
        • ►  May 29 (12)
        • ►  May 28 (13)
        • ►  May 27 (12)
        • ►  May 26 (23)
        • ►  May 25 (13)
        • ►  May 24 (7)
        • ►  May 23 (4)
        • ►  May 22 (10)
        • ►  May 21 (7)
        • ►  May 20 (13)
        • ►  May 19 (10)
        • ►  May 18 (10)
        • ►  May 17 (8)
        • ►  May 16 (8)
        • ►  May 15 (12)
        • ►  May 14 (10)
        • ►  May 13 (19)
        • ►  May 12 (7)
        • ►  May 11 (6)
        • ►  May 10 (11)
        • ►  May 09 (7)
        • ►  May 08 (4)
        • ►  May 07 (4)
        • ►  May 06 (12)
        • ►  May 05 (6)
        • ►  May 04 (3)
        • ►  May 03 (7)
        • ►  May 02 (13)
        • ►  May 01 (2)
      • ►  April (36)
        • ►  Apr 30 (3)
        • ►  Apr 29 (11)
        • ►  Apr 28 (2)
        • ►  Apr 27 (2)
        • ►  Apr 26 (4)
        • ►  Apr 23 (1)
        • ►  Apr 22 (3)
        • ►  Apr 21 (1)
        • ►  Apr 20 (4)
        • ►  Apr 16 (1)
        • ►  Apr 14 (1)
        • ►  Apr 08 (1)
        • ►  Apr 07 (2)
      • ►  March (24)
        • ►  Mar 30 (3)
        • ►  Mar 25 (1)
        • ►  Mar 24 (1)
        • ►  Mar 23 (1)
        • ►  Mar 22 (1)
        • ►  Mar 17 (1)
        • ►  Mar 15 (2)
        • ►  Mar 13 (1)
        • ►  Mar 12 (2)
        • ►  Mar 11 (2)
        • ►  Mar 10 (1)
        • ►  Mar 09 (1)
        • ►  Mar 06 (1)
        • ►  Mar 05 (2)
        • ►  Mar 03 (1)
        • ►  Mar 02 (2)
        • ►  Mar 01 (1)
      • ►  February (19)
        • ►  Feb 28 (4)
        • ►  Feb 26 (1)
        • ►  Feb 23 (1)
        • ►  Feb 21 (1)
        • ►  Feb 20 (1)
        • ►  Feb 19 (1)
        • ►  Feb 18 (2)
        • ►  Feb 17 (1)
        • ►  Feb 16 (1)
        • ►  Feb 15 (3)
        • ►  Feb 07 (1)
        • ►  Feb 06 (1)
        • ►  Feb 05 (1)
      • ►  January (12)
        • ►  Jan 28 (3)
        • ►  Jan 26 (5)
        • ►  Jan 24 (2)
        • ►  Jan 07 (1)
        • ►  Jan 05 (1)
    • ►  2017 (105)
      • ►  December (9)
        • ►  Dec 31 (1)
        • ►  Dec 27 (2)
        • ►  Dec 24 (1)
        • ►  Dec 15 (1)
        • ►  Dec 02 (4)
      • ►  November (8)
        • ►  Nov 24 (1)
        • ►  Nov 23 (1)
        • ►  Nov 17 (1)
        • ►  Nov 16 (2)
        • ►  Nov 13 (1)
        • ►  Nov 11 (2)
      • ►  October (1)
        • ►  Oct 09 (1)
      • ►  August (2)
        • ►  Aug 12 (1)
        • ►  Aug 04 (1)
      • ►  July (18)
        • ►  Jul 28 (1)
        • ►  Jul 27 (1)
        • ►  Jul 26 (4)
        • ►  Jul 19 (1)
        • ►  Jul 17 (1)
        • ►  Jul 15 (2)
        • ►  Jul 14 (2)
        • ►  Jul 13 (1)
        • ►  Jul 12 (2)
        • ►  Jul 02 (3)
      • ►  June (9)
        • ►  Jun 25 (1)
        • ►  Jun 18 (1)
        • ►  Jun 16 (1)
        • ►  Jun 14 (2)
        • ►  Jun 08 (1)
        • ►  Jun 05 (2)
        • ►  Jun 04 (1)
      • ►  May (22)
        • ►  May 29 (1)
        • ►  May 20 (2)
        • ►  May 19 (1)
        • ►  May 18 (1)
        • ►  May 17 (1)
        • ►  May 14 (3)
        • ►  May 13 (1)
        • ►  May 09 (1)
        • ►  May 07 (3)
        • ►  May 06 (2)
        • ►  May 05 (1)
        • ►  May 04 (2)
        • ►  May 03 (1)
        • ►  May 02 (1)
        • ►  May 01 (1)
      • ►  April (25)
        • ►  Apr 30 (1)
        • ►  Apr 29 (1)
        • ►  Apr 27 (1)
        • ►  Apr 24 (2)
        • ►  Apr 23 (1)
        • ►  Apr 18 (1)
        • ►  Apr 17 (2)
        • ►  Apr 16 (1)
        • ►  Apr 14 (2)
        • ►  Apr 12 (2)
        • ►  Apr 11 (1)
        • ►  Apr 08 (1)
        • ►  Apr 06 (1)
        • ►  Apr 05 (1)
        • ►  Apr 04 (1)
        • ►  Apr 03 (2)
        • ►  Apr 02 (2)
        • ►  Apr 01 (2)
      • ►  March (11)
        • ►  Mar 31 (2)
        • ►  Mar 30 (2)
        • ►  Mar 28 (1)
        • ►  Mar 27 (3)
        • ►  Mar 25 (2)
        • ►  Mar 11 (1)
    • ►  2016 (31)
      • ►  August (1)
        • ►  Aug 10 (1)
      • ►  March (3)
        • ►  Mar 17 (1)
        • ►  Mar 12 (1)
        • ►  Mar 04 (1)
      • ►  February (11)
        • ►  Feb 29 (1)
        • ►  Feb 24 (1)
        • ►  Feb 22 (1)
        • ►  Feb 21 (2)
        • ►  Feb 11 (1)
        • ►  Feb 09 (2)
        • ►  Feb 03 (1)
        • ►  Feb 02 (1)
        • ►  Feb 01 (1)
      • ►  January (16)
        • ►  Jan 26 (2)
        • ►  Jan 24 (1)
        • ►  Jan 22 (2)
        • ►  Jan 21 (1)
        • ►  Jan 20 (1)
        • ►  Jan 19 (2)
        • ►  Jan 16 (1)
        • ►  Jan 14 (3)
        • ►  Jan 13 (1)
        • ►  Jan 12 (1)
        • ►  Jan 07 (1)
    • ►  2015 (1803)
      • ►  December (9)
        • ►  Dec 31 (1)
        • ►  Dec 26 (1)
        • ►  Dec 25 (1)
        • ►  Dec 23 (1)
        • ►  Dec 22 (2)
        • ►  Dec 19 (1)
        • ►  Dec 01 (2)
      • ►  November (11)
        • ►  Nov 28 (2)
        • ►  Nov 13 (1)
        • ►  Nov 11 (1)
        • ►  Nov 09 (3)
        • ►  Nov 07 (1)
        • ►  Nov 05 (1)
        • ►  Nov 03 (1)
        • ►  Nov 02 (1)
      • ►  October (31)
        • ►  Oct 31 (1)
        • ►  Oct 30 (2)
        • ►  Oct 29 (1)
        • ►  Oct 28 (3)
        • ►  Oct 26 (1)
        • ►  Oct 24 (1)
        • ►  Oct 22 (1)
        • ►  Oct 21 (1)
        • ►  Oct 19 (1)
        • ►  Oct 17 (1)
        • ►  Oct 16 (1)
        • ►  Oct 15 (1)
        • ►  Oct 14 (1)
        • ►  Oct 11 (2)
        • ►  Oct 09 (4)
        • ►  Oct 08 (1)
        • ►  Oct 07 (6)
        • ►  Oct 06 (1)
        • ►  Oct 02 (1)
      • ►  September (34)
        • ►  Sep 29 (4)
        • ►  Sep 28 (2)
        • ►  Sep 27 (2)
        • ►  Sep 26 (3)
        • ►  Sep 25 (1)
        • ►  Sep 24 (1)
        • ►  Sep 23 (2)
        • ►  Sep 22 (4)
        • ►  Sep 21 (6)
        • ►  Sep 14 (1)
        • ►  Sep 13 (1)
        • ►  Sep 12 (1)
        • ►  Sep 11 (1)
        • ►  Sep 09 (2)
        • ►  Sep 08 (1)
        • ►  Sep 05 (1)
        • ►  Sep 04 (1)
      • ►  August (6)
        • ►  Aug 22 (1)
        • ►  Aug 20 (1)
        • ►  Aug 08 (1)
        • ►  Aug 07 (2)
        • ►  Aug 06 (1)
      • ►  July (29)
        • ►  Jul 21 (1)
        • ►  Jul 18 (1)
        • ►  Jul 15 (1)
        • ►  Jul 14 (3)
        • ►  Jul 13 (1)
        • ►  Jul 12 (1)
        • ►  Jul 10 (2)
        • ►  Jul 09 (1)
        • ►  Jul 08 (1)
        • ►  Jul 06 (4)
        • ►  Jul 05 (3)
        • ►  Jul 04 (1)
        • ►  Jul 03 (6)
        • ►  Jul 02 (1)
        • ►  Jul 01 (2)
      • ►  June (9)
        • ►  Jun 28 (2)
        • ►  Jun 24 (2)
        • ►  Jun 22 (1)
        • ►  Jun 18 (1)
        • ►  Jun 17 (1)
        • ►  Jun 02 (2)
      • ►  May (141)
        • ►  May 31 (3)
        • ►  May 30 (7)
        • ►  May 29 (8)
        • ►  May 28 (4)
        • ►  May 27 (4)
        • ►  May 26 (5)
        • ►  May 25 (1)
        • ►  May 24 (4)
        • ►  May 23 (8)
        • ►  May 22 (6)
        • ►  May 21 (4)
        • ►  May 20 (4)
        • ►  May 19 (7)
        • ►  May 18 (3)
        • ►  May 17 (2)
        • ►  May 16 (7)
        • ►  May 15 (10)
        • ►  May 14 (7)
        • ►  May 13 (5)
        • ►  May 12 (2)
        • ►  May 11 (2)
        • ►  May 10 (4)
        • ►  May 09 (3)
        • ►  May 08 (3)
        • ►  May 07 (5)
        • ►  May 06 (4)
        • ►  May 05 (4)
        • ►  May 04 (2)
        • ►  May 03 (3)
        • ►  May 02 (4)
        • ►  May 01 (6)
      • ►  April (150)
        • ►  Apr 29 (4)
        • ►  Apr 28 (5)
        • ►  Apr 24 (3)
        • ►  Apr 22 (1)
        • ►  Apr 19 (3)
        • ►  Apr 17 (2)
        • ►  Apr 16 (2)
        • ►  Apr 15 (1)
        • ►  Apr 14 (1)
        • ►  Apr 12 (3)
        • ►  Apr 10 (13)
        • ►  Apr 09 (18)
        • ►  Apr 08 (8)
        • ►  Apr 07 (15)
        • ►  Apr 06 (13)
        • ►  Apr 05 (17)
        • ►  Apr 04 (9)
        • ►  Apr 03 (4)
        • ►  Apr 02 (14)
        • ►  Apr 01 (14)
      • ►  March (609)
        • ►  Mar 31 (29)
        • ►  Mar 30 (24)
        • ►  Mar 29 (18)
        • ►  Mar 28 (15)
        • ►  Mar 27 (7)
        • ►  Mar 26 (14)
        • ►  Mar 25 (6)
        • ►  Mar 23 (11)
        • ►  Mar 22 (22)
        • ►  Mar 21 (29)
        • ►  Mar 20 (41)
        • ►  Mar 19 (34)
        • ►  Mar 18 (34)
        • ►  Mar 17 (41)
        • ►  Mar 16 (31)
        • ►  Mar 15 (1)
        • ►  Mar 14 (3)
        • ►  Mar 13 (17)
        • ►  Mar 12 (12)
        • ►  Mar 11 (12)
        • ►  Mar 10 (19)
        • ►  Mar 09 (25)
        • ►  Mar 08 (20)
        • ►  Mar 07 (17)
        • ►  Mar 06 (20)
        • ►  Mar 05 (19)
        • ►  Mar 04 (30)
        • ►  Mar 03 (5)
        • ►  Mar 02 (18)
        • ►  Mar 01 (35)
      • ►  February (652)
        • ►  Feb 28 (19)
        • ►  Feb 27 (19)
        • ►  Feb 26 (28)
        • ►  Feb 25 (18)
        • ►  Feb 24 (8)
        • ►  Feb 23 (26)
        • ►  Feb 22 (15)
        • ►  Feb 21 (40)
        • ►  Feb 20 (24)
        • ►  Feb 19 (40)
        • ►  Feb 18 (38)
        • ►  Feb 17 (39)
        • ►  Feb 16 (53)
        • ►  Feb 15 (28)
        • ►  Feb 14 (31)
        • ►  Feb 13 (14)
        • ►  Feb 12 (26)
        • ►  Feb 11 (18)
        • ►  Feb 10 (32)
        • ►  Feb 09 (15)
        • ►  Feb 08 (7)
        • ►  Feb 07 (24)
        • ►  Feb 06 (15)
        • ►  Feb 05 (16)
        • ►  Feb 04 (21)
        • ►  Feb 03 (9)
        • ►  Feb 02 (23)
        • ►  Feb 01 (6)
      • ►  January (122)
        • ►  Jan 31 (10)
        • ►  Jan 30 (21)
        • ►  Jan 29 (4)
        • ►  Jan 28 (5)
        • ►  Jan 27 (9)
        • ►  Jan 26 (3)
        • ►  Jan 25 (6)
        • ►  Jan 24 (9)
        • ►  Jan 23 (5)
        • ►  Jan 22 (4)
        • ►  Jan 21 (3)
        • ►  Jan 20 (1)
        • ►  Jan 17 (1)
        • ►  Jan 16 (2)
        • ►  Jan 15 (2)
        • ►  Jan 14 (2)
        • ►  Jan 13 (8)
        • ►  Jan 12 (4)
        • ►  Jan 11 (4)
        • ►  Jan 10 (2)
        • ►  Jan 09 (6)
        • ►  Jan 08 (6)
        • ►  Jan 07 (5)
    • ►  2014 (1062)
      • ►  November (6)
        • ►  Nov 26 (2)
        • ►  Nov 25 (3)
        • ►  Nov 24 (1)
      • ►  October (10)
        • ►  Oct 23 (2)
        • ►  Oct 16 (3)
        • ►  Oct 12 (4)
        • ►  Oct 06 (1)
      • ►  September (270)
        • ►  Sep 21 (34)
        • ►  Sep 20 (15)
        • ►  Sep 17 (9)
        • ►  Sep 13 (10)
        • ►  Sep 12 (33)
        • ►  Sep 11 (30)
        • ►  Sep 10 (1)
        • ►  Sep 09 (14)
        • ►  Sep 08 (23)
        • ►  Sep 07 (5)
        • ►  Sep 06 (19)
        • ►  Sep 05 (18)
        • ►  Sep 04 (24)
        • ►  Sep 03 (18)
        • ►  Sep 02 (10)
        • ►  Sep 01 (7)
      • ►  August (497)
        • ►  Aug 31 (15)
        • ►  Aug 30 (20)
        • ►  Aug 28 (1)
        • ►  Aug 25 (10)
        • ►  Aug 24 (26)
        • ►  Aug 23 (23)
        • ►  Aug 22 (14)
        • ►  Aug 21 (22)
        • ►  Aug 20 (21)
        • ►  Aug 19 (18)
        • ►  Aug 18 (66)
        • ►  Aug 17 (21)
        • ►  Aug 16 (16)
        • ►  Aug 15 (34)
        • ►  Aug 14 (25)
        • ►  Aug 13 (12)
        • ►  Aug 11 (7)
        • ►  Aug 10 (18)
        • ►  Aug 09 (13)
        • ►  Aug 08 (13)
        • ►  Aug 07 (26)
        • ►  Aug 06 (21)
        • ►  Aug 05 (7)
        • ►  Aug 04 (15)
        • ►  Aug 03 (20)
        • ►  Aug 02 (5)
        • ►  Aug 01 (8)
      • ►  July (85)
        • ►  Jul 31 (5)
        • ►  Jul 30 (26)
        • ►  Jul 29 (21)
        • ►  Jul 28 (33)
      • ►  March (3)
        • ►  Mar 25 (1)
        • ►  Mar 12 (1)
        • ►  Mar 09 (1)
      • ►  February (23)
        • ►  Feb 14 (1)
        • ►  Feb 06 (2)
        • ►  Feb 04 (4)
        • ►  Feb 03 (1)
        • ►  Feb 02 (6)
        • ►  Feb 01 (9)
      • ►  January (168)
        • ►  Jan 31 (10)
        • ►  Jan 30 (6)
        • ►  Jan 29 (4)
        • ►  Jan 27 (6)
        • ►  Jan 26 (1)
        • ►  Jan 25 (7)
        • ►  Jan 24 (13)
        • ►  Jan 23 (11)
        • ►  Jan 22 (3)
        • ►  Jan 21 (6)
        • ►  Jan 20 (3)
        • ►  Jan 19 (8)
        • ►  Jan 18 (7)
        • ►  Jan 17 (7)
        • ►  Jan 16 (13)
        • ►  Jan 15 (1)
        • ►  Jan 12 (1)
        • ►  Jan 11 (1)
        • ►  Jan 09 (3)
        • ►  Jan 08 (6)
        • ►  Jan 07 (7)
        • ►  Jan 06 (14)
        • ►  Jan 05 (10)
        • ►  Jan 04 (2)
        • ►  Jan 02 (6)
        • ►  Jan 01 (12)
    • ►  2013 (210)
      • ►  December (199)
        • ►  Dec 30 (5)
        • ►  Dec 29 (8)
        • ►  Dec 28 (6)
        • ►  Dec 27 (11)
        • ►  Dec 26 (9)
        • ►  Dec 25 (7)
        • ►  Dec 24 (15)
        • ►  Dec 23 (13)
        • ►  Dec 22 (3)
        • ►  Dec 21 (9)
        • ►  Dec 20 (10)
        • ►  Dec 19 (7)
        • ►  Dec 18 (4)
        • ►  Dec 17 (7)
        • ►  Dec 16 (6)
        • ►  Dec 15 (5)
        • ►  Dec 14 (3)
        • ►  Dec 13 (5)
        • ►  Dec 12 (2)
        • ►  Dec 11 (4)
        • ►  Dec 10 (9)
        • ►  Dec 09 (11)
        • ►  Dec 08 (11)
        • ►  Dec 07 (14)
        • ►  Dec 06 (3)
        • ►  Dec 05 (3)
        • ►  Dec 04 (6)
        • ►  Dec 03 (1)
        • ►  Dec 02 (2)
      • ►  September (2)
        • ►  Sep 25 (2)
      • ►  April (1)
        • ►  Apr 30 (1)
      • ►  January (8)
        • ►  Jan 22 (1)
        • ►  Jan 20 (4)
        • ►  Jan 16 (1)
        • ►  Jan 15 (1)
        • ►  Jan 14 (1)
    • ►  2012 (2)
      • ►  December (1)
        • ►  Dec 21 (1)
      • ►  January (1)
        • ►  Jan 11 (1)
    • ►  2011 (26)
      • ►  December (25)
        • ►  Dec 22 (1)
        • ►  Dec 17 (3)
        • ►  Dec 16 (2)
        • ►  Dec 15 (1)
        • ►  Dec 14 (1)
        • ►  Dec 13 (2)
        • ►  Dec 12 (1)
        • ►  Dec 11 (1)
        • ►  Dec 10 (1)
        • ►  Dec 07 (4)
        • ►  Dec 06 (2)
        • ►  Dec 04 (1)
        • ►  Dec 03 (2)
        • ►  Dec 02 (3)
      • ►  November (1)
        • ►  Nov 19 (1)
    • ►  2010 (2)
      • ►  September (1)
        • ►  Sep 11 (1)
      • ►  January (1)
        • ►  Jan 16 (1)
    • ►  2008 (1)
      • ►  April (1)
        • ►  Apr 05 (1)

    Labels

    • Estradiol

    Report Abuse

    Followers

    Total Pageviews

    Translate

    Simple theme. Theme images by merrymoonmary. Powered by Blogger.