From Wikipedia, the free encyclopedia
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy,
if nothing is known about a distribution except that it belongs to a
certain class (usually defined in terms of specified properties or
measures), then the distribution with the largest entropy should be
chosen as the least-informative default. The motivation is twofold:
first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.
Definition of entropy and differential entropy
If is a discrete random variable with distribution given by
then the entropy of is defined as
If is a continuous random variable with probability density , then the differential entropy of is defined as
The quantity is understood to be zero whenever .
This is a special case of more general forms described in the articles Entropy (information theory), Principle of maximum entropy, and differential entropy. In connection with maximum entropy distributions, this is the only one needed, because maximizing will also maximize the more general forms.
The base of the logarithm
is not important as long as the same one is used consistently: change
of base merely results in a rescaling of the entropy. Information
theorists may prefer to use base 2 in order to express the entropy in bits; mathematicians and physicists will often prefer the natural logarithm, resulting in a unit of nats for the entropy.
The choice of the measure
is however crucial in determining the entropy and the resulting maximum
entropy distribution, even though the usual recourse to the Lebesgue measure is often defended as "natural".
Distributions with measured constants
Many statistical distributions of applicable interest are those for which the moments or other measurable quantities are constrained to be constants. The following theorem by Ludwig Boltzmann gives the form of the probability density under these constraints.
Continuous case
Suppose S is a closed subset of the real numbers R and we choose to specify n measurable functions f1,...,fn and n numbers a1,...,an. We consider the class C of all real-valued random variables which are supported on S
(i.e. whose density function is zero outside of S) and which satisfy
the n moment conditions:
If there is a member in C whose density function is positive everywhere in S, and if there exists a maximal entropy distribution for C, then its probability density p(x) has the following shape:
where we assume that . The constant and the n Lagrange multipliers solve the constrained optimization problem with (this condition ensures that integrates to unity):
Using the Karush–Kuhn–Tucker conditions,
it can be shown that the optimization problem has a unique solution,
because the objective function in the optimization is concave in .
Note that if the moment conditions are equalities (instead of inequalities), that is,
then the constraint condition is dropped, making the optimization over the Lagrange multipliers unconstrained.
Discrete case
Suppose is a (finite or infinite) discrete subset of the reals and we choose to specify functions f1,...,fn and n numbers a1,...,an. We consider the class C of all discrete random variables X which are supported on S and which satisfy the n moment conditions
If there exists a member of C which assigns positive probability to all members of S and if there exists a maximum entropy distribution for C, then this distribution has the following shape:
where we assume that and the constants solve the constrained optimization problem with :
Again, if the moment conditions are equalities (instead of inequalities), then the constraint condition is not present in the optimization.
Proof in the case of equality constraints
In the case of equality constraints, this theorem is proved with the calculus of variations and Lagrange multipliers. The constraints can be written as
We consider the functional
where and are the Lagrange multipliers. The zeroth constraint ensures the second axiom of probability. The other constraints are that the measurements of the function are given constants up to order . The entropy attains an extremum when the functional derivative is equal to zero:
It is an exercise for the reader
that this extremum is indeed a maximum. Therefore, the maximum entropy
probability distribution in this case must be of the form ()
The proof of the discrete version is essentially the same.
Uniqueness of the maximum
Suppose , are distributions satisfying the expectation-constraints. Letting and considering the distribution it is clear that this distribution satisfies the expectation-constraints and furthermore has as support . From basic facts about entropy, it holds that . Taking limits and respectively yields .
It follows that a distribution satisfying the
expectation-constraints and maximising entropy must necessarily have
full support — i. e. the distribution is almost everywhere
positive. It follows that the maximising distribution must be an
internal point in the space of distributions satisfying the
expectation-constraints, that is, it must be a local extreme. Thus it
suffices to show that the local extreme is unique, in order to show both
that the entropy-maximising distribution is unique (and this also shows
that the local extreme is the global maximum).
Suppose are local extremes. Reformulating the above computations these are characterised by parameters via and similarly for , where .
We now note a series of identities: Via the satisfaction of the
expectation-constraints and utilising gradients/directional derivatives,
one has and similarly for . Letting one obtains:
where for some . Computing further one has
where is similar to the distribution above, only parameterised by . Assuming that no non-trivial linear combination of the observables is almost everywhere (a.e.) constant, (which e.g. holds if the observables are independent and not a.e. constant), it holds that has non-zero variance, unless . By the above equation it is thus clear, that the latter must be the case. Hence , so the parameters characterising the local extrema
are identical, which means that the distributions themselves are
identical. Thus, the local extreme is unique and by the above
discussion, the maximum is unique—provided a local extreme actually
exists.
Caveats
Note
that not all classes of distributions contain a maximum entropy
distribution. It is possible that a class contain distributions of
arbitrarily large entropy (e.g. the class of all continuous
distributions on R with mean 0 but arbitrary standard deviation),
or that the entropies are bounded above but there is no distribution
which attains the maximal entropy. It is also possible that the expected value restrictions for the class C force the probability distribution to be zero in certain subsets of S. In that case our theorem doesn't apply, but one can work around this by shrinking the set S.
Examples
Every
probability distribution is trivially a maximum entropy probability
distribution under the constraint that the distribution has its own
entropy. To see this, rewrite the density as and compare to the expression of the theorem above. By choosing to be the measurable function and
to be the constant, is the maximum entropy probability distribution under the constraint
- .
Nontrivial examples are distributions that are subject to multiple
constraints that are different from the assignment of the entropy.
These are often found by starting with the same procedure and finding that can be separated into parts.
A table of examples of maximum entropy distributions is given in Lisman (1972) and Park & Bera (2009).
Uniform and piecewise uniform distributions
The uniform distribution on the interval [a,b] is the maximum entropy distribution among all continuous distributions which are supported in the interval [a, b], and thus the probability density is 0 outside of the interval. This uniform density can be related to Laplace's principle of indifference, sometimes called the principle of insufficient reason. More generally, if we are given a subdivision a=a0 < a1 < ... < ak = b of the interval [a,b] and probabilities p1,...,pk that add up to one, then we can consider the class of all continuous distributions such that
The density of the maximum entropy distribution for this class is constant on each of the intervals [aj-1,aj). The uniform distribution on the finite set {x1,...,xn} (which assigns a probability of 1/n to each of these values) is the maximum entropy distribution among all discrete distributions supported on this set.
Positive and specified mean: the exponential distribution
The exponential distribution, for which the density function is
is the maximum entropy distribution among all continuous distributions supported in [0,∞) that have a specified mean of 1/λ.
Specified mean and variance: the normal distribution
The normal distribution N(μ,σ2), for which the density function is
has maximum entropy among all real-valued distributions supported on (−∞,∞) with a specified variance σ2 (a particular moment). Therefore, the assumption of normality imposes the minimal prior structural constraint beyond this moment. (See the differential entropy article for a derivation.)
In the case of distributions supported on [0,∞), the maximum
entropy distribution depends on relationships between the first and
second moments. In specific cases, it may be the exponential
distribution, or may be another distribution, or may be undefinable.
Discrete distributions with specified mean
Among all the discrete distributions supported on the set {x1,...,xn} with a specified mean μ, the maximum entropy distribution has the following shape:
where the positive constants C and r can be determined by the requirements that the sum of all the probabilities must be 1 and the expected value must be μ.
For example, if a large number N of dice are thrown, and you are told that the sum of all the shown numbers is S.
Based on this information alone, what would be a reasonable assumption
for the number of dice showing 1, 2, ..., 6? This is an instance of the
situation considered above, with {x1,...,x6} = {1,...,6} and μ = S/N.
Finally, among all the discrete distributions supported on the infinite set with mean μ, the maximum entropy distribution has the shape:
where again the constants C and r were determined by
the requirements that the sum of all the probabilities must be 1 and the
expected value must be μ. For example, in the case that xk = k, this gives
such that respective maximum entropy distribution is the geometric distribution.
Circular random variables
For a continuous random variable distributed about the unit circle, the Von Mises distribution maximizes the entropy when the real and imaginary parts of the first circular moment are specified or, equivalently, the circular mean and circular variance are specified.
When the mean and variance of the angles modulo are specified, the wrapped normal distribution maximizes the entropy.
Maximizer for specified mean, variance and skew
There exists an upper bound on the entropy of continuous random variables on with a specified mean, variance, and skew. However, there is no distribution which achieves this upper bound, because is unbounded when (see Cover & Thomas (2006: chapter 12)).
However, the maximum entropy is ε-achievable:
a distribution's entropy can be arbitrarily close to the upper bound.
Start with a normal distribution of the specified mean and variance. To
introduce a positive skew, perturb the normal distribution upward by a
small amount at a value many σ
larger than the mean. The skewness, being proportional to the third
moment, will be affected more than the lower order moments.
This is a special case of the general case in which the exponential of any odd-order polynomial in x will be unbounded on . For example, will likewise be unbounded on , but when the support is limited to a bounded or semi-bounded interval the upper entropy bound may be achieved (e.g. if x lies in the interval [0,∞] and λ< 0, the exponential distribution will result).
Maximizer for specified mean and deviation risk measure
Every distribution with log-concave density is a maximal entropy distribution with specified mean μ and Deviation risk measure D.
In particular, the maximal entropy distribution with specified mean and deviation is:
- The normal distribution , if is the standard deviation;
- The Laplace distribution, if is the average absolute deviation;
- The distribution with density of the form if is the standard lower semi-deviation, where , and a,b,c are constants.
Other examples
In
the table below, each listed distribution maximizes the entropy for a
particular set of functional constraints listed in the third column, and
the constraint that x be included in the support of the probability
density, which is listed in the fourth column.
Several examples (Bernoulli, geometric, exponential, Laplace, Pareto)
listed are trivially true because their associated constraints are
equivalent to the assignment of their entropy. They are included anyway
because their constraint is related to a common or easily measured
quantity. For reference, is the gamma function, is the digamma function, is the beta function, and γE is the Euler-Mascheroni constant.
Table of probability distributions and corresponding maximum entropy constraints
Distribution Name |
Probability density/mass function |
Maximum Entropy Constraint |
Support
|
Uniform (discrete) |
|
None |
|
Uniform (continuous) |
|
None |
|
Bernoulli |
|
|
|
Geometric |
|
|
|
Exponential |
|
|
|
Laplace |
|
|
|
Asymmetric Laplace |
|
|
|
Pareto |
|
|
|
Normal |
|
|
|
Truncated normal |
(see article) |
|
|
von Mises |
|
|
|
Rayleigh |
|
|
|
Beta |
for |
|
|
Cauchy |
|
|
|
Chi |
|
|
|
Chi-squared |
|
|
|
Erlang |
|
|
|
Gamma |
|
|
|
Lognormal |
|
|
|
Maxwell–Boltzmann |
|
|
|
Weibull |
|
|
|
Multivariate normal |
|
|
|
Binomial |
|
|
|
Poisson |
|
|
|
Logistic |
|
|
|
The maximum entropy principle can be used to upper bound the entropy of statistical mixtures.