Search This Blog

Sunday, March 9, 2025

Fatty acid

From Wikipedia, the free encyclopedia
Three-dimensional representations of several fatty acids. Saturated fatty acids have perfectly straight chain structure. Unsaturated ones are typically bent, unless they have a trans configuration.

In chemistry, particularly in biochemistry, a fatty acid is a carboxylic acid with an aliphatic chain, which is either saturated or unsaturated. Most naturally occurring fatty acids have an unbranched chain of an even number of carbon atoms, from 4 to 28. Fatty acids are a major component of the lipids (up to 70% by weight) in some species such as microalgae but in some other organisms are not found in their standalone form, but instead exist as three main classes of esters: triglycerides, phospholipids, and cholesteryl esters. In any of these forms, fatty acids are both important dietary sources of fuel for animals and important structural components for cells.

History

The concept of fatty acid (acide gras) was introduced in 1813 by Michel Eugène Chevreul, though he initially used some variant terms: graisse acide and acide huileux ("acid fat" and "oily acid").

Types of fatty acids

Comparison of the trans isomer elaidic acid (top) and the cis isomer oleic acid (bottom)

Fatty acids are classified in many ways: by length, by saturation vs unsaturation, by even vs odd carbon content, and by linear vs branched.

Length of fatty acids

Saturated fatty acids

Saturated fatty acids have no C=C double bonds. They have the formula CH3(CH2)nCOOH, where n is some positive integer. An important saturated fatty acid is stearic acid (n = 16), which when neutralized with sodium hydroxide is the most common form of soap.

Arachidic acid, a saturated fatty acid
Examples of saturated fatty acids
Common name Chemical structure C:D
Caprylic acid CH3(CH2)6COOH 8:0
Capric acid CH3(CH2)8COOH 10:0
Lauric acid CH3(CH2)10COOH 12:0
Myristic acid CH3(CH2)12COOH 14:0
Palmitic acid CH3(CH2)14COOH 16:0
Stearic acid CH3(CH2)16COOH 18:0
Arachidic acid CH3(CH2)18COOH 20:0
Behenic acid CH3(CH2)20COOH 22:0
Lignoceric acid CH3(CH2)22COOH 24:0
Cerotic acid CH3(CH2)24COOH 26:0

Unsaturated fatty acids

Unsaturated fatty acids have one or more C=C double bonds. The C=C double bonds can give either cis or trans isomers.

cis
A cis configuration means that the two hydrogen atoms adjacent to the double bond stick out on the same side of the chain. The rigidity of the double bond freezes its conformation and, in the case of the cis isomer, causes the chain to bend and restricts the conformational freedom of the fatty acid. The more double bonds the chain has in the cis configuration, the less flexibility it has. When a chain has many cis bonds, it becomes quite curved in its most accessible conformations. For example, oleic acid, with one double bond, has a "kink" in it, whereas linoleic acid, with two double bonds, has a more pronounced bend. α-Linolenic acid, with three double bonds, favors a hooked shape. The effect of this is that, in restricted environments, such as when fatty acids are part of a phospholipid in a lipid bilayer or triglycerides in lipid droplets, cis bonds limit the ability of fatty acids to be closely packed, and therefore can affect the melting temperature of the membrane or of the fat. Cis unsaturated fatty acids, however, increase cellular membrane fluidity, whereas trans unsaturated fatty acids do not.
trans
A trans configuration, by contrast, means that the adjacent two hydrogen atoms lie on opposite sides of the chain. As a result, they do not cause the chain to bend much, and their shape is similar to straight saturated fatty acids.

In most naturally occurring unsaturated fatty acids, each double bond has three (n−3), six (n−6), or nine (n−9) carbon atoms after it, and all double bonds have a cis configuration. Most fatty acids in the trans configuration (trans fats) are not found in nature and are the result of human processing (e.g., hydrogenation). Some trans fatty acids also occur naturally in the milk and meat of ruminants (such as cattle and sheep). They are produced, by fermentation, in the rumen of these animals. They are also found in dairy products from milk of ruminants, and may be also found in breast milk of women who obtained them from their diet.

The geometric differences between the various types of unsaturated fatty acids, as well as between saturated and unsaturated fatty acids, play an important role in biological processes, and in the construction of biological structures (such as cell membranes).

Examples of Unsaturated Fatty Acids
Common name Chemical structure Δx[b] C:D IUPAC nx
Omega−3:
Eicosapentaenoic acid CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOH cis,cis,cis,cis,cis58111417 20:5 20:5(5,8,11,14,17) n−3
α-Linolenic acid CH3CH2CH=CHCH2CH=CHCH2CH=CH(CH2)7COOH cis,cis,cis91215 18:3 18:3(9,12,15) n−3
Docosahexaenoic acid CH3CH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)2COOH cis,cis,cis,cis,cis,cis4710131619 22:6 22:6(4,7,10,13,16,19) n−3
Omega−6:
Arachidonic acid CH3(CH2)4CH=CHCH2CH=CHCH2CH=CHCH2CH=CH(CH2)3COOHNIST cis,cis,cis,cis5Δ81114 20:4 20:4(5,8,11,14) n−6
Linoleic acid CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH cis,cis912 18:2 18:2(9,12) n−6
Linoelaidic acid CH3(CH2)4CH=CHCH2CH=CH(CH2)7COOH trans,trans912 18:2 18:2(9t,12t) n−6
Omega−9:
Oleic acid CH3(CH2)7CH=CH(CH2)7COOH cis9 18:1 18:1(9) n−9
Elaidic acid CH3(CH2)7CH=CH(CH2)7COOH trans9 18:1 18:1(9t) n−9
Erucic acid CH3(CH2)7CH=CH(CH2)11COOH cis13 22:1 22:1(13) n−9
Omega−5, 7, and 10:
Myristoleic acid CH3(CH2)3CH=CH(CH2)7COOH cis9 14:1 14:1(9) n−5
Palmitoleic acid CH3(CH2)5CH=CH(CH2)7COOH cis9 16:1 16:1(9) n−7
Vaccenic acid CH3(CH2)5CH=CH(CH2)9COOH trans11 18:1 18:1(11t) n−7
Sapienic acid CH3(CH2)8CH=CH(CH2)4COOH cis6 16:1 16:1(6) n−10

Even- vs odd-chained fatty acids

Most fatty acids are even-chained, e.g. stearic (C18) and oleic (C18), meaning they are composed of an even number of carbon atoms. Some fatty acids have odd numbers of carbon atoms; they are referred to as odd-chained fatty acids (OCFA). The most common OCFA are the saturated C15 and C17 derivatives, pentadecanoic acid and heptadecanoic acid respectively, which are found in dairy products. On a molecular level, OCFAs are biosynthesized and metabolized slightly differently from the even-chained relatives.

Branching

Most common fatty acids are straight-chain compounds, with no additional carbon atoms bonded as side groups to the main hydrocarbon chain. Branched-chain fatty acids contain one or more methyl groups bonded to the hydrocarbon chain.

Nomenclature

Carbon atom numbering

Numbering of carbon atoms. The systematic (IUPAC) C-x numbers are in blue. The omega-minus "ω−x" labels are in red. The Greek letter labels are in green. Note that unsaturated fatty acids with a cis configuration are actually "kinked" rather than straight as shown here.

Most naturally occurring fatty acids have an unbranched chain of carbon atoms, with a carboxyl group (–COOH) at one end, and a methyl group (–CH3) at the other end.

The position of each carbon atom in the backbone of a fatty acid is usually indicated by counting from 1 at the −COOH end. Carbon number x is often abbreviated C-x (or sometimes Cx), with x = 1, 2, 3, etc. This is the numbering scheme recommended by the IUPAC.

Another convention uses letters of the Greek alphabet in sequence, starting with the first carbon after the carboxyl group. Thus carbon α (alpha) is C-2, carbon β (beta) is C-3, and so forth.

Although fatty acids can be of diverse lengths, in this second convention the last carbon in the chain is always labelled as ω (omega), which is the last letter in the Greek alphabet. A third numbering convention counts the carbons from that end, using the labels "ω", "ω−1", "ω−2". Alternatively, the label "ω−x" is written "n−x", where the "n" is meant to represent the number of carbons in the chain.

In either numbering scheme, the position of a double bond in a fatty acid chain is always specified by giving the label of the carbon closest to the carboxyl end. Thus, in an 18 carbon fatty acid, a double bond between C-12 (or ω−6) and C-13 (or ω−5) is said to be "at" position C-12 or ω−6. The IUPAC naming of the acid, such as "octadec-12-enoic acid" (or the more pronounceable variant "12-octadecanoic acid") is always based on the "C" numbering.

The notation Δx,y,... is traditionally used to specify a fatty acid with double bonds at positions x,y,.... (The capital Greek letter "Δ" (delta) corresponds to Roman "D", for Double bond). Thus, for example, the 20-carbon arachidonic acid is Δ5,8,11,14, meaning that it has double bonds between carbons 5 and 6, 8 and 9, 11 and 12, and 14 and 15.

In the context of human diet and fat metabolism, unsaturated fatty acids are often classified by the position of the double bond closest between to the ω carbon (only), even in the case of multiple double bonds such as the essential fatty acids. Thus linoleic acid (18 carbons, Δ9,12), γ-linolenic acid (18-carbon, Δ6,9,12), and arachidonic acid (20-carbon, Δ5,8,11,14) are all classified as "ω−6" fatty acids; meaning that their formula ends with –CH=CH–CH
2
CH
2
CH
2
CH
2
CH
3
.

Fatty acids with an odd number of carbon atoms are called odd-chain fatty acids, whereas the rest are even-chain fatty acids. The difference is relevant to gluconeogenesis.

Naming of fatty acids

The following table describes the most common systems of naming fatty acids.

Nomenclature Examples Explanation
Trivial Palmitoleic acid Trivial names (or common names) are non-systematic historical names, which are the most frequent naming system used in literature. Most common fatty acids have trivial names in addition to their systematic names (see below). These names frequently do not follow any pattern, but they are concise and often unambiguous.
Systematic cis-9-octadec-9-enoic acid
(9Z)-octadec-9-enoic acid
Systematic names (or IUPAC names) derive from the standard IUPAC Rules for the Nomenclature of Organic Chemistry, published in 1979, along with a recommendation published specifically for lipids in 1977. Carbon atom numbering begins from the carboxylic end of the molecule backbone. Double bonds are labelled with cis-/trans- notation or E-/Z- notation, where appropriate. This notation is generally more verbose than common nomenclature, but has the advantage of being more technically clear and descriptive.
Δx cis9, cis12 octadecadienoic acid In Δx (or delta-x) nomenclature, each double bond is indicated by Δx, where the double bond begins at the xth carbon–carbon bond, counting from carboxylic end of the molecule backbone. Each double bond is preceded by a cis- or trans- prefix, indicating the configuration of the molecule around the bond. For example, linoleic acid is designated "cis9, cis12 octadecadienoic acid". This nomenclature has the advantage of being less verbose than systematic nomenclature, but is no more technically clear or descriptive.
nx
(or ω−x)
n−3
(or ω−3)
nx (n minus x; also ω−x or omega−x) nomenclature both provides names for individual compounds and classifies them by their likely biosynthetic properties in animals. A double bond is located on the xth carbon–carbon bond, counting from the methyl end of the molecule backbone. For example, α-linolenic acid is classified as a n−3 or omega−3 fatty acid, and so it is likely to share a biosynthetic pathway with other compounds of this type. The ω−x, omega−x, or "omega" notation is common in popular nutritional literature, but IUPAC has deprecated it in favor of nx notation in technical documents. The most commonly researched fatty acid biosynthetic pathways are n−3 and n−6.
Lipid numbers 18:3
18:3n3
18:3, cis,cis,cis91215
18:3(9,12,15)
Lipid numbers take the form C:D, where C is the number of carbon atoms in the fatty acid and D is the number of double bonds in the fatty acid. If D is more than one, the double bonds are assumed to be interrupted by CH
2
units
, i.e., at intervals of 3 carbon atoms along the chain. For instance, α-linolenic acid is an 18:3 fatty acid and its three double bonds are located at positions Δ9, Δ12, and Δ15. This notation can be ambiguous, as some different fatty acids can have the same C:D numbers. Consequently, when ambiguity exists this notation is usually paired with either a Δx or nx term. For instance, although α-linolenic acid and γ-linolenic acid are both 18:3, they may be unambiguously described as 18:3n3 and 18:3n6 fatty acids, respectively. For the same purpose, IUPAC recommends using a list of double bond positions in parentheses, appended to the C:D notation. For instance, IUPAC recommended notations for α- and γ-linolenic acid are 18:3(9,12,15) and 18:3(6,9,12), respectively.

Free fatty acids

When circulating in the plasma (plasma fatty acids), not in their ester, fatty acids are known as non-esterified fatty acids (NEFAs) or free fatty acids (FFAs). FFAs are always bound to a transport protein, such as albumin.

FFAs also form from triglyceride food oils and fats by hydrolysis, contributing to the characteristic rancid odor. An analogous process happens in biodiesel with risk of part corrosion.

Production

Industrial

Fatty acids are usually produced industrially by the hydrolysis of triglycerides, with the removal of glycerol (see oleochemicals). Phospholipids represent another source. Some fatty acids are produced synthetically by hydrocarboxylation of alkenes.

By animals

In animals, fatty acids are formed from carbohydrates predominantly in the liver, adipose tissue, and the mammary glands during lactation.

Carbohydrates are converted into pyruvate by glycolysis as the first important step in the conversion of carbohydrates into fatty acids. Pyruvate is then decarboxylated to form acetyl-CoA in the mitochondrion. However, this acetyl CoA needs to be transported into cytosol where the synthesis of fatty acids occurs. This cannot occur directly. To obtain cytosolic acetyl-CoA, citrate (produced by the condensation of acetyl-CoA with oxaloacetate) is removed from the citric acid cycle and carried across the inner mitochondrial membrane into the cytosol. There it is cleaved by ATP citrate lyase into acetyl-CoA and oxaloacetate. The oxaloacetate is returned to the mitochondrion as malate. The cytosolic acetyl-CoA is carboxylated by acetyl-CoA carboxylase into malonyl-CoA, the first committed step in the synthesis of fatty acids.

Malonyl-CoA is then involved in a repeating series of reactions that lengthens the growing fatty acid chain by two carbons at a time. Almost all natural fatty acids, therefore, have even numbers of carbon atoms. When synthesis is complete the free fatty acids are nearly always combined with glycerol (three fatty acids to one glycerol molecule) to form triglycerides, the main storage form of fatty acids, and thus of energy in animals. However, fatty acids are also important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the cell wall, and the membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus).

The "uncombined fatty acids" or "free fatty acids" found in the circulation of animals come from the breakdown (or lipolysis) of stored triglycerides. Because they are insoluble in water, these fatty acids are transported bound to plasma albumin. The levels of "free fatty acids" in the blood are limited by the availability of albumin binding sites. They can be taken up from the blood by all cells that have mitochondria (with the exception of the cells of the central nervous system). Fatty acids can only be broken down in mitochondria, by means of beta-oxidation followed by further combustion in the citric acid cycle to CO2 and water. Cells in the central nervous system, although they possess mitochondria, cannot take free fatty acids up from the blood, as the blood–brain barrier is impervious to most free fatty acids, excluding short-chain fatty acids and medium-chain fatty acids. These cells have to manufacture their own fatty acids from carbohydrates, as described above, in order to produce and maintain the phospholipids of their cell membranes, and those of their organelles.

Variation between animal species

Studies on the cell membranes of mammals and reptiles discovered that mammalian cell membranes are composed of a higher proportion of polyunsaturated fatty acids (DHA, omega−3 fatty acid) than reptiles. Studies on bird fatty acid composition have noted similar proportions to mammals but with 1/3rd less omega−3 fatty acids as compared to omega−6 for a given body size. This fatty acid composition results in a more fluid cell membrane but also one that is permeable to various ions (H+ & Na+), resulting in cell membranes that are more costly to maintain. This maintenance cost has been argued to be one of the key causes for the high metabolic rates and concomitant warm-bloodedness of mammals and birds. However polyunsaturation of cell membranes may also occur in response to chronic cold temperatures as well. In fish increasingly cold environments lead to increasingly high cell membrane content of both monounsaturated and polyunsaturated fatty acids, to maintain greater membrane fluidity (and functionality) at the lower temperatures.

Fatty acids in dietary fats

The following table gives the fatty acid, vitamin E and cholesterol composition of some common dietary fats.



Saturated Monounsaturated Polyunsaturated Cholesterol Vitamin E

g/100g g/100g g/100g mg/100g mg/100g
Animal fats
Duck fat 33.2 49.3 12.9 100 2.70
Lard 40.8 43.8 9.6 93 0.60
Tallow 49.8 41.8 4.0 109 2.70
Butter 54.0 19.8 2.6 230 2.00
Vegetable fats
Coconut oil 85.2 6.6 1.7 0 .66
Cocoa butter 60.0 32.9 3.0 0 1.8
Palm kernel oil 81.5 11.4 1.6 0 3.80
Palm oil 45.3 41.6 8.3 0 33.12
Cottonseed oil 25.5 21.3 48.1 0 42.77
Wheat germ oil 18.8 15.9 60.7 0 136.65
Soybean oil 14.5 23.2 56.5 0 16.29
Olive oil 14.0 69.7 11.2 0 5.10
Corn oil 12.7 24.7 57.8 0 17.24
Sunflower oil 11.9 20.2 63.0 0 49.00
Safflower oil 10.2 12.6 72.1 0 40.68
Hemp oil 10 15 75 0 12.34
Canola/Rapeseed oil 5.3 64.3 24.8 0 22.21

Reactions of fatty acids

Fatty acids exhibit reactions like other carboxylic acids, i.e. they undergo esterification and acid-base reactions.

Transesterification

All fatty acids transesterify. Typically, transesterification is practiced in the conversion of fats to fatty acid methyl esters. These esters are used for biodiesel. They are also hydrogenated to give fatty alcohols. Even vinyl esters can be made by transesterification using vinyl acetate.

Acid-base reactions

Fatty acids do not show a great variation in their acidities, as indicated by their respective pKa. Nonanoic acid, for example, has a pKa of 4.96, being only slightly weaker than acetic acid (4.76). As the chain length increases, the solubility of the fatty acids in water decreases, so that the longer-chain fatty acids have minimal effect on the pH of an aqueous solution. Near neutral pH, fatty acids exist at their conjugate bases, i.e. oleate, etc.

Solutions of fatty acids in ethanol can be titrated with sodium hydroxide solution using phenolphthalein as an indicator. This analysis is used to determine the free fatty acid content of fats; i.e., the proportion of the triglycerides that have been hydrolyzed.

Neutralization of fatty acids, like saponification, is a widely practiced route to metallic soaps.

Hydrogenation and hardening

Hydrogenation of unsaturated fatty acids is widely practiced. Typical conditions involve 2.0–3.0 MPa of H2 pressure, 150 °C, and nickel supported on silica as a catalyst. This treatment affords saturated fatty acids. The extent of hydrogenation is indicated by the iodine number. Hydrogenated fatty acids are less prone toward rancidification. Since the saturated fatty acids are higher melting than the unsaturated precursors, the process is called hardening. Related technology is used to convert vegetable oils into margarine. The hydrogenation of triglycerides (vs fatty acids) is advantageous because the carboxylic acids degrade the nickel catalysts, affording nickel soaps. During partial hydrogenation, unsaturated fatty acids can be isomerized from cis to trans configuration.

More forcing hydrogenation, i.e. using higher pressures of H2 and higher temperatures, converts fatty acids into fatty alcohols. Fatty alcohols are, however, more easily produced from simpler fatty acid esters, like the fatty acid methyl esters ("FAME"s).

Decarboxylation

Ketonic decarboxylation is a method useful for producing symmetrical ketones from carboxylic acids. The process involves reactions of the carboxylic acid with an inorganic base. Stearone is prepared by heating magnesium stearate.

Chemistry of saturated vs unsaturated acids

The reactivity of saturated fatty acids is usually associated with the carboxylic acid or the adjacent methylene group By conversion to their acid chlorides, they can be converted to the symmetrical fatty ketone laurone (O=C(CnH(2n+1))2). Treatment with sulfur trioxide gives the α-sulfonic acids.

The reactivity of unsaturated fatty acids is often dominated by the site of unsaturation. These reactions are the basis of ozonolysis, hydrogenation, and the iodine number. Ozonolysis (degradation by ozone) is practiced in the production of azelaic acid ((CH2)7(CO2H)2) from oleic acid.

Circulation

Digestion and intake

Short- and medium-chain fatty acids are absorbed directly into the blood via intestine capillaries and travel through the portal vein just as other absorbed nutrients do. However, long-chain fatty acids are not directly released into the intestinal capillaries. Instead they are absorbed into the fatty walls of the intestine villi and reassemble again into triglycerides. The triglycerides are coated with cholesterol and protein (protein coat) into a compound called a chylomicron.

From within the cell, the chylomicron is released into a lymphatic capillary called a lacteal, which merges into larger lymphatic vessels. It is transported via the lymphatic system and the thoracic duct up to a location near the heart (where the arteries and veins are larger). The thoracic duct empties the chylomicrons into the bloodstream via the left subclavian vein. At this point the chylomicrons can transport the triglycerides to tissues where they are stored or metabolized for energy.

Metabolism

Fatty acids are broken down to CO2 and water by the intra-cellular mitochondria through beta oxidation and the citric acid cycle. In the final step (oxidative phosphorylation), reactions with oxygen release a lot of energy, captured in the form of large quantities of ATP. Many cell types can use either glucose or fatty acids for this purpose, but fatty acids release more energy per gram. Fatty acids (provided either by ingestion or by drawing on triglycerides stored in fatty tissues) are distributed to cells to serve as a fuel for muscular contraction and general metabolism.

Essential fatty acids

Fatty acids that are required for good health but cannot be made in sufficient quantity from other substrates, and therefore must be obtained from food, are called essential fatty acids. There are two series of essential fatty acids: one has a double bond three carbon atoms away from the methyl end; the other has a double bond six carbon atoms away from the methyl end. Humans lack the ability to introduce double bonds in fatty acids beyond carbons 9 and 10, as counted from the carboxylic acid side. Two essential fatty acids are linoleic acid (LA) and alpha-linolenic acid (ALA). These fatty acids are widely distributed in plant oils. The human body has a limited ability to convert ALA into the longer-chain omega-3 fatty acidseicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which can also be obtained from fish. Omega−3 and omega−6 fatty acids are biosynthetic precursors to endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties.

Distribution

Blood fatty acids adopt distinct forms in different stages in the blood circulation. They are taken in through the intestine in chylomicrons, but also exist in very low density lipoproteins (VLDL) and low density lipoproteins (LDL) after processing in the liver. In addition, when released from adipocytes, fatty acids exist in the blood as free fatty acids.

It is proposed that the blend of fatty acids exuded by mammalian skin, together with lactic acid and pyruvic acid, is distinctive and enables animals with a keen sense of smell to differentiate individuals.

Skin

The stratum corneum – the outermost layer of the epidermis – is composed of terminally differentiated and enucleated corneocytes within a lipid matrix. Together with cholesterol and ceramides, free fatty acids form a water-impermeable barrier that prevents evaporative water loss. Generally, the epidermal lipid matrix is composed of an equimolar mixture of ceramides (about 50% by weight), cholesterol (25%), and free fatty acids (15%). Saturated fatty acids 16 and 18 carbons in length are the dominant types in the epidermis, while unsaturated fatty acids and saturated fatty acids of various other lengths are also present. The relative abundance of the different fatty acids in the epidermis is dependent on the body site the skin is covering. There are also characteristic epidermal fatty acid alterations that occur in psoriasis, atopic dermatitis, and other inflammatory conditions.

Analysis

The chemical analysis of fatty acids in lipids typically begins with an interesterification step that breaks down their original esters (triglycerides, waxes, phospholipids etc.) and converts them to methyl esters, which are then separated by gas chromatography or analyzed by gas chromatography and mid-infrared spectroscopy.

Separation of unsaturated isomers is possible by silver ion complemented thin-layer chromatography. Other separation techniques include high-performance liquid chromatography (with short columns packed with silica gel with bonded phenylsulfonic acid groups whose hydrogen atoms have been exchanged for silver ions). The role of silver lies in its ability to form complexes with unsaturated compounds.

Industrial uses

Fatty acids are mainly used in the production of soap, both for cosmetic purposes and, in the case of metallic soaps, as lubricants. Fatty acids are also converted, via their methyl esters, to fatty alcohols and fatty amines, which are precursors to surfactants, detergents, and lubricants. Other applications include their use as emulsifiers, texturizing agents, wetting agents, anti-foam agents, or stabilizing agents.

Esters of fatty acids with simpler alcohols (such as methyl-, ethyl-, n-propyl-, isopropyl- and butyl esters) are used as emollients in cosmetics and other personal care products and as synthetic lubricants. Esters of fatty acids with more complex alcohols, such as sorbitol, ethylene glycol, diethylene glycol, and polyethylene glycol are consumed in food, or used for personal care and water treatment, or used as synthetic lubricants or fluids for metal working.

Bias

From Wikipedia, the free encyclopedia
Interpretations of the random patterns of craters on the Moon. A common example of a perceptual bias caused by pareidolia.

Bias is a disproportionate weight in favor of or against an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individual, a group, or a belief. In science and engineering, a bias is a systematic error. Statistical bias results from an unfair sampling of a population, or from an estimation process that does not give accurate results on average.

Etymology

The word appears to derive from Old Provençal into Old French biais, "sideways, askance, against the grain". Whence comes French biais, "a slant, a slope, an oblique".

It seems to have entered English via the game of bowls, where it referred to balls made with a greater weight on one side. Which expanded to the figurative use, "a one-sided tendency of the mind", and, at first especially in law, "undue propensity or prejudice". or ballast, used to lower the centre of gravity of a ship to increase stability and to keep the ship from one side.

Types

Cognitive biases

A cognitive bias is a repeating or basic misstep in thinking, assessing, recollecting, or other cognitive processes. That is, a pattern of deviation from standards in judgment, whereby inferences may be created unreasonably. People create their own "subjective social reality" from their own perceptions, their view of the world may dictate their behaviour. Thus, cognitive biases may sometimes lead to perceptual distortion, inaccurate judgment, illogical interpretation, or what is broadly called irrationality. However some cognitive biases are taken to be adaptive, and thus may lead to success in the appropriate situation. Furthermore, cognitive biases as an example through education may allow faster choice selection when speedier outcomes for a task are more valuable than precision. Other cognitive biases are a "by-product" of human processing limitations, coming about because of an absence of appropriate mental mechanisms, or just from human limitations in information processing.

Anchoring

Anchoring is a psychological heuristic that describes the propensity to rely on the first piece of information encountered when making decisions. According to this heuristic, individuals begin with an implicitly suggested reference point (the "anchor") and make adjustments to it to reach their estimate. For example, the initial price offered for a used car sets the standard for the rest of the negotiations, so that prices lower than the initial price seem more reasonable even if they are still higher than what the car is worth.

Apophenia

Apophenia, also known as patternicity, or agenticity, is the human tendency to perceive meaningful patterns within random data. Apophenia is well documented as a rationalization for gambling. Gamblers may imagine that they see patterns in the numbers which appear in lotteries, card games, or roulette wheels. One manifestation of this is known as the "gambler's fallacy".

Pareidolia is the visual or auditory form of apophenia. It has been suggested that pareidolia combined with hierophany may have helped ancient societies organize chaos and make the world intelligible.

Attribution bias

An attribution bias can happen when individuals assess or attempt to discover explanations behind their own and others' behaviors. People make attributions about the causes of their own and others' behaviors; but these attributions do not necessarily precisely reflect reality. Rather than operating as objective perceivers, individuals are inclined to perceptual slips that prompt biased understandings of their social world. When judging others we tend to assume their actions are the result of internal factors such as personality, whereas we tend to assume our own actions arise because of the necessity of external circumstances. There are a wide range of sorts of attribution biases, such as the ultimate attribution error, fundamental attribution error, actor-observer bias, and self-serving bias.

Examples of attribution bias:

Confirmation bias

A drawing of a man sitting on a stool at a writing desk
Confirmation bias has been described as an internal "yes man", echoing back a person's beliefs like Charles Dickens' character Uriah Heep.

Confirmation bias is the tendency to search for, interpret, favor, and recall information in a way that confirms one's beliefs or hypotheses while giving disproportionately less attention to information that contradicts it. The effect is stronger for emotionally charged issues and for deeply entrenched beliefs. People also tend to interpret ambiguous evidence as supporting their existing position. Biased search, interpretation and memory have been invoked to explain attitude polarization (when a disagreement becomes more extreme even though the different parties are exposed to the same evidence), belief perseverance (when beliefs persist after the evidence for them is shown to be false), the irrational primacy effect (a greater reliance on information encountered early in a series) and illusory correlation (when people falsely perceive an association between two events or situations). Confirmation biases contribute to overconfidence in personal beliefs and can maintain or strengthen beliefs in the face of contrary evidence. Poor decisions due to these biases have been found in political and organizational contexts.

Framing

Framing involves the social construction of social phenomena by mass media sources, political or social movements, political leaders, and so on. It is an influence over how people organize, perceive, and communicate about reality. It can be positive or negative, depending on the audience and what kind of information is being presented. For political purposes, framing often presents facts in such a way that implicates a problem that is in need of a solution. Members of political parties attempt to frame issues in a way that makes a solution favoring their own political leaning appear as the most appropriate course of action for the situation at hand. As understood in social theory, framing is a schema of interpretation, a collection of anecdotes and stereotypes, that individuals rely on to understand and respond to events. People use filters to make sense of the world, the choices they then make are influenced by their creation of a frame.

Cultural bias is the related phenomenon of interpreting and judging phenomena by standards inherent to one's own culture. Numerous such biases exist, concerning cultural norms for color, location of body parts, mate selection, concepts of justice, linguistic and logical validity, acceptability of evidence, and taboos. Ordinary people may tend to imagine other people as basically the same, not significantly more or less valuable, probably attached emotionally to different groups and different land.

Halo effect and horn effect

The halo effect and the horn effect are when an observer's overall impression of a person, organization, brand, or product influences their feelings about specifics of that entity's character or properties.

The name halo effect is based on the concept of the saint's halo, and is a specific type of confirmation bias, wherein positive sentiments in one area cause questionable or unknown characteristics to be seen positively. If the observer likes one aspect of something, they will have a positive predisposition toward everything about it. A person's appearance has been found to produce a halo effect. The halo effect is also present in the field of brand marketing, affecting perception of companies and non-governmental organizations (NGOs).

The opposite of the halo is the horn effect, when "individuals believe (that negative) traits are inter-connected." The term horn effect refers to Devil's horns. It works in a negative direction: if the observer dislikes one aspect of something, they will have a negative predisposition towards other aspects.

Self-serving bias

Self-serving bias is the tendency for cognitive or perceptual processes to be distorted by the individual's need to maintain and enhance self-esteem. It is the propensity to credit accomplishment to our own capacities and endeavors, yet attribute failure to outside factors, to dismiss the legitimacy of negative criticism, concentrate on positive qualities and accomplishments yet disregard flaws and failures. Studies have demonstrated that this bias can affect behavior in the workplace, in interpersonal relationships, playing sports, and in consumer decisions.

Status quo bias

Status quo bias is an emotional bias; a preference for the current state of affairs. The current baseline (or status quo) is taken as a reference point, and any change from that baseline is perceived as a loss. Status quo bias should be distinguished from a rational preference for the status quo ante, as when the current state of affairs is objectively superior to the available alternatives, or when imperfect information is a significant problem. A large body of evidence, however, shows that status quo bias frequently affects human decision-making.

Conflicts of interest

A conflict of interest is when a person or association has intersecting interests (financial, personal, etc.) which could potentially corrupt. The potential conflict is autonomous of actual improper actions, it can be found and intentionally defused before corruption, or the appearance of corruption, happens. "A conflict of interest is a set of circumstances that creates a risk that professional judgement or actions regarding a primary interest will be unduly influenced by a secondary interest." It exists if the circumstances are sensibly accepted to present a hazard that choices made may be unduly affected by auxiliary interests.

Corruption

A conflict of interest arises when a decision-maker participates in a corrupt act that seeks to influence the outcome in favor of a specific individual, organization, or entity in a decision-making process. For example, attempts to solicit a bribe or kickback in exchange for favoring a party creates a conflict of interest. A perceived conflict of interest may also arise in an individual who is offered such a payment, even if it is declined, particularly in situations where the attempt to bribe is not reported.

Laws restricting monetary transaction is appropriate can differ between jurisdictions based upon their criminal laws. For example, some nations criminalize the receipt of political campaign contributions in the form of cash, while other nations permit cash donations provided that donors otherwise adhere to election law.

Favoritism

Favoritism, sometimes known as in-group favoritism, or in-group bias, refers to a pattern of favoring members of one's in-group over out-group members. This can be expressed in evaluation of others, in allocation of resources, and in many other ways. This has been researched by psychologists, especially social psychologists, and linked to group conflict and prejudice. Cronyism is favoritism of long-standing friends, especially by appointing them to positions of authority, regardless of their qualifications. Nepotism is favoritism granted to relatives.

Lobbying

Box offered by tobacco lobbyists to Dutch Member of the European Parliament Kartika Liotard in September 2013

Lobbying is the attempt to influence choices made by administrators, frequently lawmakers or individuals from administrative agencies. Lobbyists may be among a legislator's constituencies, or not; they may engage in lobbying as a business, or not. Lobbying is often spoken of with contempt, the implication is that people with inordinate socioeconomic power are corrupting the law in order to serve their own interests. When people who have a duty to act on behalf of others, such as elected officials with a duty to serve their constituents' interests or more broadly the common good, stand to benefit by shaping the law to serve the interests of some private parties, there is a conflict of interest. This can lead to all sides in a debate looking to sway the issue by means of lobbyists.

Regulatory issues

Self-regulation is the process whereby an organization monitors its own adherence to legal, ethical, or safety standards, rather than have an outside, independent agency such as a third party entity monitor and enforce those standards. Self-regulation of any group can create a conflict of interest. If any organization, such as a corporation or government bureaucracy, is asked to eliminate unethical behavior within their own group, it may be in their interest in the short run to eliminate the appearance of unethical behavior, rather than the behavior itself.

Regulatory capture is a form of political corruption that can occur when a regulatory agency, created to act in the public interest, instead advances the commercial or political concerns of special interest groups that dominate the industry or sector it is charged with regulating. Regulatory capture occurs because groups or individuals with a high-stakes interest in the outcome of policy or regulatory decisions can be expected to focus their resources and energies in attempting to gain the policy outcomes they prefer, while members of the public, each with only a tiny individual stake in the outcome, will ignore it altogether. Regulatory capture is a risk to which a regulatory agency is exposed by its very nature.

Shilling

Shilling is deliberately giving spectators the feeling that one is an energetic autonomous client of a vendor for whom one is working. The effectiveness of shilling relies on crowd psychology to encourage other onlookers or audience members to purchase the goods or services (or accept the ideas being marketed). Shilling is illegal in some places, but legal in others. An example of shilling is paid reviews that give the impression of being autonomous opinions.

Statistical biases

Statistical bias is a systematic tendency in the process of data collection, which results in lopsided, misleading results. This can occur in any of a number of ways, in the way the sample is selected, or in the way data are collected. It is a property of a statistical technique or of its results whereby the expected value of the results differs from the true underlying quantitative parameter being estimated.

Forecast bias

A forecast bias is when there are consistent differences between results and the forecasts of those quantities; that is: forecasts may have an overall tendency to be too high or too low.

Observer-expectancy effect

The observer-expectancy effect is when a researcher's expectations cause them to subconsciously influence the people participating in an experiment. It is usually controlled using a double-blind system, and was an important reason for the development of double-blind experiments.

Reporting bias and social desirability bias

In epidemiology and empirical research, reporting bias is defined as "selective revealing or suppression of information" of undesirable behavior by subjects or researchers. It refers to a tendency to under-report unexpected or undesirable experimental results, while being more trusting of expected or desirable results. This can propagate, as each instance reinforces the status quo, and later experimenters justify their own reporting bias by observing that previous experimenters reported different results.

Social desirability bias is a bias within social science research where survey respondents can tend to answer questions in a manner that will be viewed positively by others. It can take the form of over-reporting laudable behavior, or under-reporting undesirable behavior. This bias interferes with the interpretation of average tendencies as well as individual differences. The inclination represents a major issue with self-report questionnaires; of special concern are self-reports of abilities, personalities, sexual behavior, and drug use.

Selection bias

Sampling is supposed to collect of a representative sample of a population.

Selection bias is the conscious or unconscious bias introduced into a study by the way individuals, groups or data are selected for analysis, if such a way means that true randomization is not achieved, thereby ensuring that the sample obtained is not representative of the population intended to be analyzed. This results in a sample that may be significantly different from the overall population.

Prejudices

Bias and prejudice are usually considered to be closely related. Prejudice is prejudgment, or forming an opinion before becoming aware of the relevant facts of a case. The word is often used to refer to preconceived, usually unfavorable, judgments toward people or a person because of gender, political opinion, social class, age, disability, religion, sexuality, race/ethnicity, language, nationality, or other personal characteristics. Prejudice can also refer to unfounded beliefs and may include "any unreasonable attitude that is unusually resistant to rational influence".

Ageism

Ageism is the stereotyping and/or discrimination against individuals or groups on the basis of their age. It can be used in reference to prejudicial attitudes towards older people, or towards younger people.

Classism

Classism is discrimination on the basis of social class. It includes attitudes that benefit the upper class at the expense of the lower class, or vice versa.

Lookism

Lookism is stereotypes, prejudice, and discrimination on the basis of physical attractiveness, or more generally to people whose appearance matches cultural preferences. Many people make automatic judgments of others based on their physical appearance that influence how they respond to those people.

Racism

Racism consists of ideologies based on a desire to dominate or a belief in the inferiority of another race. It may also hold that members of different races should be treated differently.

Sexism

A woman under arrrest walking between two policemen
Suffragette organizations campaigned for women's right to vote.
Sexism is prejudice or discrimination based on one's sex or gender. Sexism can affect anyone, but primarily affects women and girls. It has been linked to gender roles and stereotypes, and may include the belief that one sex or gender is intrinsically superior to another. Extreme sexism may foster sexual harassment, rape, and other forms of sexual violence. Discrimination in this context is defined as discrimination toward people based on their gender identity or their gender or sex differences. An example of this is workplace inequality. Sexism refers to violation of equal opportunities (formal equality) based on gender or refers to violation of equality of outcomes based on gender, also called substantive equality. Sexism may arise from social or cultural customs and norms.

Contextual biases

Biases in academia

Academic bias

Academic bias is the bias or perceived bias of scholars allowing their beliefs to shape their research and the scientific community. Claims of bias are often linked to claims by conservatives of pervasive bias against political conservatives and religious Christians. Some have argued that these claims are based upon anecdotal evidence which would not reliably indicate systematic bias, and have suggested that this divide is due to self-selection of conservatives choosing not to pursue academic careers. There is some evidence that perception of classroom bias may be rooted in issues of sexuality, race, class and sex as much or more than in religion.

Experimenter bias

In science research, experimenter bias occurs when experimenter expectancies regarding study results bias the research outcome. Examples of experimenter bias include conscious or unconscious influences on subject behavior including creation of demand characteristics that influence subjects, and altered or selective recording of experimental results themselves. It can also involve asking leading probes and not neutrally redirecting the subject back to the task when they ask for validation or questions.

Funding bias

Funding bias refers to the tendency of a scientific study to support the interests of the study's financial sponsor. This phenomenon is recognized sufficiently that researchers undertake studies to examine bias in past published studies. It can be caused by any or all of: a conscious or subconscious sense of obligation of researchers towards their employers, misconduct or malpractice, publication bias, or reporting bias.

Full text on net bias

Full text on net (or FUTON) bias is a tendency of scholars to cite academic journals with open access—that is, journals that make their full text available on the internet without charge—in their own writing as compared with toll access publications. Scholars can more easily discover and access articles that have their full text on the internet, which increases authors' likelihood of reading, quoting, and citing these articles, this may increase the impact factor of open access journals relative to journals without open access.

The related bias, no abstract available bias (NAA bias) is scholars' tendency to cite journal articles that have an abstract available online more readily than articles that do not.

Publication bias

Publication bias is a type of bias with regard to what academic research is likely to be published because of a tendency among researchers and journal editors to prefer some outcomes rather than others (e.g., results showing a significant finding), which leads to a problematic bias in the published literature. This can propagate further as literature reviews of claims about support for a hypothesis will themselves be biased if the original literature is contaminated by publication bias. Studies with significant results often do not appear to be superior to studies with a null result with respect to quality of design. However, statistically significant results have been shown to be three times more likely to be published compared to papers with null results.

Biases in law enforcement

Driving while black

Driving while black refers to the racial profiling of African American drivers. The phrase implies that a motorist might be pulled over by a police officer, questioned, and searched, because of a racial bias.

Racial profiling

Racial profiling, or ethnic profiling, is the act of suspecting or targeting a person of a certain race on the basis of racially observed characteristics or behavior, rather than on individual suspicion. Racial profiling is commonly referred to regarding its use by law enforcement, and its leading to discrimination against minorities.

Victim blaming

Victim blaming occurs when the victim of a wrongful act is held at fault for the harm that befell them. The study of victimology seeks to mitigate the perception of victims as responsible.

Biases in media

Media bias is the bias or perceived bias of journalists and news producers within the mass media in the selection of events, the stories that are reported, and how they are covered. The term generally implies a pervasive or widespread bias violating the standards of journalism, rather than the perspective of an individual journalist or article. The level of media bias in different nations is debated. There are also watchdog groups that report on media bias.

Practical limitations to media neutrality include the inability of journalists to report all available stories and facts, the requirement that selected facts be linked into a coherent narrative, government influence including overt and covert censorship, the influence of the owners of the news source, concentration of media ownership, the selection of staff, the preferences of an intended audience, and pressure from advertisers.

Bias has been a feature of the mass media since its birth with the invention of the printing press. The expense of early printing equipment restricted media production to a limited number of people. Historians have found that publishers often served the interests of powerful social groups.

Agenda setting

Agenda setting describes the capacity of the media to focus on particular stories, if a news item is covered frequently and prominently, the audience will regard the issue as more important. That is, its salience will increase.

Gatekeeping

Gatekeeping is the way in which information and news are filtered to the public, by each person or corporation along the way. It is the "process of culling and crafting countless bits of information into the limited number of messages that reach people every day, and it is the center of the media's role in modern public life. [...] This process determines not only which information is selected, but also what the content and nature of the messages, such as news, will be."

Sensationalism

Sensationalism is when events and topics in news stories and pieces are overhyped to present skewed impressions of events, which may cause a misrepresentation of the truth of a story. Sensationalism may involve reporting about insignificant matters and events, or the presentation of newsworthy topics in a trivial or tabloid manner contrary to the standards of professional journalism.

Other contexts

Educational bias

Bias in education refers to real or perceived bias in the educational system. The content of school textbooks is often the issue of debate, as their target audience is young people, and the term "whitewashing" is used to refer to selective removal of critical or damaging evidence or comment. Religious bias in textbooks is observed in countries where religion plays a dominant role. There can be many forms of educational bias. Some overlooked aspects, occurring especially with the pedagogical circles of public and private schools—sources that are unrelated to fiduciary or mercantile impoverishment which may be unduly magnified—include teacher bias as well as a general bias against women who are going into STEM research.

Inductive bias

Inductive bias occurs within the field of machine learning. In machine learning one seeks to develop algorithms that are able to learn to anticipate a particular output. To accomplish this, the learning algorithm is given training cases that show the expected connection. Then the learner is tested with new examples. Without further assumptions, this problem cannot be solved exactly as unknown situations may not be predictable. The inductive bias of the learning algorithm is the set of assumptions that the learner uses to predict outputs given inputs that it has not encountered. It may bias the learner towards the correct solution, the incorrect, or be correct some of the time. A classical example of an inductive bias is Occam's Razor, which assumes that the simplest consistent hypothesis is the best.

Insider trading

Insider trading is the trading of a public company's stock or other securities (such as bonds or stock options) by individuals with access to non-public information about the company. In various countries, trading based on insider information is illegal because it is seen as unfair to other investors who do not have access to the information as the investor with insider information could potentially make far larger profits that a typical investor could make.

Match fixing

In organized sports, match fixing occurs when a match is played to a completely or partially pre-determined result, violating the rules of the game and often the law. There is a variety of reasons for this, but the most common is in exchange for a payoff from gamblers. Players might also intentionally perform poorly to get an advantage in the future (such as a better draft pick, or an easier opponent in a playoff), or to rig a handicap system. Match-fixing generally refers to fixing the final result of the game. Another form of match-fixing, known as spot-fixing, involves fixing small events within a match which can be gambled upon, but which are unlikely to prove decisive in determining the final result of the game.

Implicit bias

An implicit bias, or implicit stereotype, is the unconscious attribution of particular qualities to a member of a certain social group.

Implicit stereotypes are shaped by experience and based on learned associations between particular qualities and social categories, including race and/or gender. Individuals' perceptions and behaviors can be influenced by the implicit stereotypes they hold, even if they are unaware/unintentionally hold such stereotypes. Implicit bias is an aspect of implicit social cognition: the phenomenon that perceptions, attitudes, and stereotypes operate without conscious intention. For example, researchers may have implicit bias when designing survey questions and as a result, the questions do not produce accurate results or fail to encourage survey participation. The existence of implicit bias is supported by a variety of scientific articles in psychological literature. Implicit stereotype was first defined by psychologists Mahzarin Banaji and Anthony Greenwald in 1995.

Fourier-transform infrared spectroscopy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Fourier-transform_infrared_spectrosc...