Search This Blog

Sunday, August 3, 2014

Science Is Not Democratic

Science Is Not Democratic

By James Conca
From:  http://www.forbes.com/sites/jamesconca/2014/08/03/science-is-not-democratic/
            

President Obama touched on this very subject while speaking to the League of Conservation Voters’ Capital Dinner at the end of June, implying that science is being politicized (LCV Dinner). While on the surface this isn’t news, the extent to which our country is rejecting science over ideology is news – bad news. Bad for business, bad for security and bad for the future.

During his speech, Obama lambasted members of Congress who espouse either an active distrust of our scientific community or passive ignorance of its findings. The distrust of scientists in the U.S. has become an effective political tool since the 1980s. But it is also extremely dangerous to our democracy.

No one expects the public to be experts or to recognize important scientific results. But we do expect that when important scientific results occur, they are implemented and used for the betterment of America and the world.

President Obama at the League of Conservation Voters when he lambasted members of Congress who espouse either an active distrust of our scientific community or passive ignorance of its findings. The distrust of scientists in the United States has become a growing ideology used for political purposes but is actually dangerous to our democracy. Source: White HouseCaption - President Obama at the League of Conservation Voters when he lambasted members of Congress who espouse either an active distrust of our scientific community or passive ignorance of its findings. The distrust of scientists in the United States has become a growing ideology used for political purposes but is actually dangerous to our democracy. Source: White House

Everyone remembers how the tobacco industry pretended scientific studies showed cigarettes didn’t cause cancer. But when results finally came out from independent scientific studies showing they do cause cancer, the country, and even smokers, accepted it pretty quickly. As Obama put it:
“I’m not a doctor either, but if a bunch of doctors tell me that tobacco can cause lung cancer, then I’ll say, OK.”
The most glaring examples of this distrust of scientific experts are in climate change, evolution and nuclear energy. Being a geologist, I know quite a bit about climate change, having studied its effects over the last two billion years on Earth, and even on other planets like Mars Mars and Venus, where we began our models of extreme climate change in the 60s and 70s. But even I have to defer to those researchers who are knee deep in its influence over the last 10,000 years and the role of human activities, such as deforestation, agriculture and volatilization of fossil carbon, in aggravating the effects over recent time.

But if you disagree with the scientists in these fields, it is easy to believe it’s a conspiracy by various moneyed interests who have bought that entire scientific field and everyone in it. So you can just ignore all of them.

The notion that science should not depend on public opinion is an American tradition, a major reason we became the most powerful nation on Earth. The Founding Fathers were students of the Enlightenment and viewed science and technology as fundamental to the emerging Nation’s survival:

“There is nothing which can better deserve your patronage, than the promotion of science and literature.” – George Washington, 1st State of The Union Address, 1790

“Our civil rights have no dependence on our religious opinions, any more than our opinions in physics or geometry” – Thomas Jefferson, 1779

We all understand that public attitudes on science are more influenced by political and religious beliefs than by the public’s scientific literacy (IFL Science). That a quarter of Americans think the Sun revolves around the Earth isn’t as bad as it sounds. Half of Americans believed that 100 years ago. Close to 100% thought that in 1776.
But they didn’t really influence scientific policy. Now they do.

Before 1980, Congress and the President generally deferred to the scientific community to interpret science. Franklin Delano Roosevelt didn’t argue the merits of the Bohr atom with Oppenheimer when he wrote to him 1943. Yes, the Moon landing was driven by military and Cold War aims, but no one in politics questioned how NASA went about getting us there.

Science isn’t a belief system. It’s proven knowledge. It either knows the answer to a problem, or admits it doesn’t and keeps looking for it. Every time we ignore the scientific community, bad things generally happen.

Beginning in the 16th century, it took almost 200 years for the scientific method to develop to the point where it provided demonstrable survival advantages to civilization. It is not coincidental that this realization by the monarchs and governments of those times came first through military applications and the advancement of material sciences, since they were the original funding agencies.

At the same time, application of scientific results to agriculture and sanitation began to affect everyone, for the better. The long 20thcentury rise in scientific advantages, and resultant military and economic power, began in the late 1800s. A combination of 19th century American individualism, the rise of manufacturing and unions, and the assumption that scientists should be encouraged to excel with less direction from patrons than was generally exercised in Europe, allowed the United States to rise in economic and military power fast and far in the 60 years following World War One.

There was a recognition in America that it was important we have both basic scientific and applied scientific research – one that would provide fundamental discoveries and advances while the other would take those results and determine if, and how, they could be of any use. Thus, research on the mating habits of the Tsetse fly in the 1960’s would become integral in identifying vectors in the spread of AIDS in Africa 30 years later.
In fact, the real difference between the U.S. and the Soviet Union was just this idea of scientific control and integrity. In the Soviet Union, many scientists were told that their results better be acceptable to the Communist Party. This led to several major disasters in the Soviet Union, the most famous being Chernobyl. But the worst was an attempt to impose a pseudoscientific theory in place of true evolutionary theory, à la Darwinism and genetics, during the 1940s and 50s. This last one decimated their agricultural productivity and mortally wounded their economy during the critical period when America had an upper hand in the Cold War.

That disaster resulted from the Communist Party’s support of an ideology, derived from Lamarck and espoused by biologist party-loyalist Trofim Lysenko, over the scientists who understood evolution. All scientists were told to believe only in this Lamarckian theory and to denounce Darwinian evolution. The Party went so far as to require only this theory be taught in school.
Dissenting scientists were driven out of science, imprisoned or killed.

Since this theory was wrong, it was inevitable that applying it exclusively would destroy the agricultural industry of the Soviet Union. This even spawned the term Lysenkoism which means the manipulation or distortion of the scientific process as a way to reach a predetermined conclusion as dictated by an ideological bias, often related to social or political objectives.
Obama is actually referring to Lysenkoism when he refers to the rejection of scientific consensus by many in Congress (KSTP).

This dangerous warping of science by politics was feared by scientists beginning in the 17th century. In order to make sure science didn’t get too politicized, and that results didn’t start being cooked to satisfy the powers-that-be, scientists began forming scientific societies to support the scientific method itself.
Each society focused on its own field since only those in that particular field understood the subject sufficiently to self-police its members. It wasn’t always perfect, and they themselves were subject to lots of internal politics, but it made it difficult for non-scientists to pretend they were experts.

Thus formed in America were societies like the Geological Society of America, the American Chemical Society, the American Medical Association, the American Nuclear Society, the American Association for the Advancement of Science, the American Institute of Biological Sciences, the American Society of Mechanical Engineers and the American Geophysical Union, to name a few of the hundreds we have in this country.

Not only did these societies encourage the exchange of results and vetting of theories, they convinced the Government that science actually mattered and that there should be federal agencies that were populated by scientists trained in specific disciplines of importance to the Nation.
Overtime, many science-based government agencies were formed to address the pressing scientific and technical challenges of each time period, including the United States Geologic Survey, our system of Agricultural Research Stations, the Center for Disease Control, the National Aeronautics and Space Administration, the National Science Foundation, the Nuclear Regulatory Commission, the Environmental Protection Agency, and many, many others.

The benefits to America were vast and obvious, and led directly to the United States becoming the greatest nation on Earth in the years following World War Two.
But things began changing in the United States about 30 years ago. Basic Science began being cut in favor of Applied Science. Research budgets for agencies like the Department of Defense exploded while basic research funding for Universities and scientific societies began drying up. The Directors and Chiefs of those science-based government agencies, previously held by scientists in those fields who worked their way up that agency’s ladder, became political appointees. It was worrisome.

Slowly, a scientific expert started to become a dirty word in some halls on Capital Hill. Political and ideological groups became adroit at pretending to include science to push their agendas, resorting to pseudoscience when necessary. The new crop of Google Graduates are their present-day soldiers and are flooding society with so much science noise, it’s difficult to tell who’s a scientist and who’s not.

Vaccines are suddenly seen as more dangerous than diseases like whooping cough. Fluoride in water is a conspiracy. Instead of asking the Geological Society of America about earthquakes and evolution, for which it was formed, it’s now OK to surf Creation Ministries. While we love TV shows featuring fancy CSI scientific mega-labs, that’s not how real law enforcement works. Watching political activists on TV discuss events like Fukushima, one wonders “where are the nuclear scientists on this show?”

These are dangerous and stupid trends, trends that have undermined our funding for science in America,  have eroded our scientific and technological leadership in the world,  have discouraged American students from entering the hard sciences, and  have made us more dependent on science coming out of other countries. A few generations of this foolishness and we won’t ever recover.
But if you don’t believe me, there must be some expert you can ask.

Follow Jim on https://twitter.com/JimConca and see his and Dr. Wright’s book at http://www.amazon.com/gp/product/1419675885/sr=1-10/qid=1195953013/

So Long, Seafood! Ocean Acidification Projected to Slam Alaskan Fisheries

So Long, Seafood! Ocean Acidification Projected to Slam Alaskan Fisheries

Ocean Acidification Will Hit Most Vulnerable Alaskans Hardest
The worst socio-economic consequences of acidification will fall on the southwestern and southeastern coasts of the Alaska.

ADVERTISEMENT

The sinuous Alaskan coastline, which is 50 percent longer than the rest of U.S. coastline, produces half of all commercial seafood caught in the nation. It is also ground zero for ocean acidification, one of the most devastating effects of our carbon dioxide emissions. In other words, those bountiful crab, clam, and salmon fisheries may not be around much longer.
What scientists don’t know is how much longer.

“The scary thing is that we don’t know the answer to that question yet,”  says NOAA oceanographer Jeremy Mathis. “The potential is certainly there for it to be a rapid event, literally overnight. Whether that’s a slow degradation of the fisheries over decades, or whether a species is there one year and isn’t the next, we still don’t know that. That’s what I’m most concerned about.”
Ocean acidification can be thought of as climate change's similarly disasterous twin. Oceans absorb around one-third of the carbon dioxide emitted into the atmosphere. As the concentration of CO2 rises, so does the amount that sinks into the ocean, raising the acidity of the water. Acidification is happening everywhere, but even more rapidly in Alaska, where cold coastal waters are able to absorb more carbon dioxide, and where circulation patterns bring deep, naturally acidic water up toward the surface. Sea creatures rely on specific conditions to stay alive. When those conditions change, so do their populations. Usually for the worse.

An acidification spike around the coast of British Columbia in February 2014 wiped out 10 million scallops. Acidification in the the Pacific Northwest around 2006 began dissolving oyster larvae, wiping out some hatchery populations completely. But projected acidification in Alaska would be on a much grander scale. Hundreds of thousands of people depend on the Alaskan fishing industry for jobs and food.

Mathis and his team’s latest research, published Tuesday in the journal Progress in Oceanography, paints a comprehensive picture of just how threatened certain Alaskan communities are by the prospect of fishery decline or collapse. The fishing industry in Alaska supports over 100,000 jobs, and generates more than $5 billion in annual revenue. Beyond commercial fishing, around 120,000 Alaskans, roughly 17 percent of the state's population, rely on subsistence fishing to feed their families, according to the report. The analysis found that communities most reliant on fishery harvests, with relatively lower income and fewer alternative job options, face the highest risk of ocean acidification.

Mathis hopes his team’s research will provide a basis for local governments and nonprofits to design programs to help Alaska’s fishing communities survive lower and lower yields.

“Economic diversification is key,” Mathis says. “A lot of those places are almost solely reliant on the fishing industry. It's like a stock portfolio. If you don’t have any diversification, you have a lot of risk.” The report proposes job training programs, increased educational options, and investing in new infrastructure to open up new opportunities to coastal  southeastern and southwestern Alaska, where acidification is projected to have the most dire economic consequences.

Alaska mapCommunities facing the highest risk are in the Southeast and Southwest of the Alaska.
Among the perils of higher acidity is that it makes it harder for mollusks like clams and crustaceans like crabs to build their shells. The lowered pH dissolves calcium carbonate, it difficult for the animals to extract enough of the mineral compound from the water to build shells. It also appears to damage gill function in crabs and change their behavior, as pointed out in a Newsweek cover story earlier this year.

Pteropod, a tiny swimming sea snail, is especially vulnerable to reduced shell-building due to acidification in the Gulf of Alaska. These little snails make up half the diet of the pink salmon, so their survival and the survival of Alaska’s salmon runs are intimately linked, according to Mathis’ earlier research, as reported by Scientific American. Pteropod populations in similar acidity conditions as those already seen in coastal Alaska have shown “rapid and significant shell dissolution,” according to the latest report.
Alaska habitat mapHabitat ranges of vulnerable species studied in the report: Tanner and snow crabs, geoduck, littleneck, and razor clams (adapted from Alaska Department of Fish & Game).
In the past 200 years, global average pH has dropped by .1 units. If CO2 emissions continue as projected, the next 100 years will sink pH by another .3 units. “That’s a 300 percent change by 2100. I think that if those changes come to fruition, the oceans in general are probably going to be in trouble,” Mathis says.

Once acidity reaches those levels, there’s no turning back--at least not in a terms of time scales relevant to people alive today. “It is reversible, but not on human lifetime scale,” Mathis says. In a fantasy scenario where we halted all CO2 emissions beginning right now, it would still take hundreds of years to recover. If we emit the amount of CO2 we are projected to emit over the next hundred years, Mathis says, it will take “hundreds of thousands of years” to bounce back.

Long before then, sometime in this century, but perhaps overnight, it may be the people of Alaska who first feel the socio-economic pain of ocean acidification.
 

Three Myths About the Brain

Three Myths About the Brain

Credit Olimpia Zagnoli
 
His findings were clear and reasonably consistent. “One can remove,” he wrote in 1824, “from the front, or the back, or the top or the side, a certain portion of the cerebral lobes, without destroying their function.” For mental faculties to work properly, it seemed, just a “small part of the lobe” sufficed.
 
Thus the foundation was laid for a popular myth: that we use only a small portion — 10 percent is the figure most often cited — of our brain. An early incarnation of the idea can be found in the work of another 19th-century scientist, Charles-Édouard Brown-Séquard, who in 1876 wrote of the powers of the human brain that “very few people develop very much, and perhaps nobody quite fully.”
 
But Flourens was wrong, in part because his methods for assessing mental capacity were crude and his animal subjects were poor models for human brain function. Today the neuroscience community uniformly rejects the notion, as it has for decades, that our brain’s potential is largely untapped.
 
The myth persists, however. The newly released movie “Lucy,” about a woman who acquires superhuman abilities by tapping the full potential of her brain, is only the latest and most prominent expression of this idea.
 
Myths about the brain typically arise in this fashion: An intriguing experimental result generates a plausible if speculative interpretation (a small part of the lobe seems sufficient) that is later overextended or distorted (we use only 10 percent of our brain). The caricature ultimately infiltrates pop culture and takes on a life of its own, quite independent from the facts that spawned it.
 
Another such myth is the idea that the left and right hemispheres of the brain are fundamentally different. The “left brain” is supposedly logical and detail-oriented, whereas the “right brain” is the seat of passion and creativity. This caricature developed initially out of the observation, dating from the 1860s, that damage to the left hemisphere of the brain can have drastically different effects on language and motor control than does damage to the right hemisphere.
 
But while these and other, more subtle, asymmetries certainly exist, far too much has been made of the idea of distinct left- and right-brain function. The fact is that the two sides of the brain are more similar to each other than they are different, and both sides participate in most tasks, especially complex ones like acts of creativity and feats of logic.
 
In recent years, a new myth about the brain has started to emerge. This is the myth of mirror neurons, or the idea that a certain class of brain cells discovered in the macaque monkey is the key to understanding the human mind.
 
The mirror neuron claim has escaped the lab and is starting to find its way into popular culture. You might hear it said, for example, that watching a World Cup match is an intense experience because our mirror neurons allow us to experience the game as if we were on the field itself, simulating every kick and pass.
 
But as with older myths, this speculation has lost its connection with the data. We now recognize that physical movements themselves don’t uniquely determine our understanding of them. After all, we can understand actions that we can’t ourselves perform (flying, slithering) and a single movement can be understood in many ways (tipping a carafe can be pouring or filling or emptying). Further research shows that dysfunction of the motor system, for example in cerebral palsy, stroke or Lou Gehrig’s disease, does not preclude the ability to understand actions (or enjoy World Cup matches).
Accordingly, more recently developed theories of mirror neuron function emphasize their role in motor control instead of understanding actions.
 
So please, take heed. An ounce of myth prevention now may save a pound of neuroscientific nonsense later.

Still Have Questions About GMOs? Here's A Doctor's Breakdown Of What You Need To Know

Still Have Questions About GMOs? Here's A Doctor's Breakdown Of What You Need To Know

 | By                                                                              



Go into any organic or health food store, and you'll see the labels plastered over and over again in big, block letters: "Non-GMO Project Verified." Your fellow shoppers may be paying careful attention to these labels, should you be too?

The production and consumption of GMOs is definitely a hot-button issue these days. Dr. Aaron Carroll acknowledges this upfront in his latest edition of "Healthcare Triage," even saying, "I'm guaranteed to make a lot of you angry, no matter what I say."

But what actually are GMOs, and how do they impact the consumer and the environment? Carroll breaks down the answers to these questions as only a healthcare and research professional could: fairly, succinctly and with the data to back him up.

Inter-Related Meanings of Organic

The word "organic" has a number of meanings, both in science, and among the general public.  These meanings are often inter-related.  Here, I will condense several Wiki articles to cover a few of them.
_________________________________________

Organic matter

Organic matter (or organic material, natural organic matter, NOM) is matter composed of organic compounds that has come from the remains of dead organisms such as plants and animals and their waste products in the environment.[1] Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. It is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.[citation needed]

Formation

Living organisms are composed of organic compounds. In life they secrete or excrete organic materials into their environment, shed body parts such as leaves and roots and after the organism dies, its body is broken down by bacterial and fungal action. Larger molecules of organic matter can be formed from the polymerization of different parts of already broken down matter.[citation needed] Natural organic matter can vary greatly, depending on its origin, transformation mode, age, and existing environment, thus its bio-physico-chemical functions vary with different environments."[2]

Natural ecosystem functions

Organic matter is present throughout the ecosystem. After degrading and reacting, it can then move into soil and mainstream water via waterflow. Organic matter provides nutrition to living organisms.. Organic matter acts as a buffer, when in aqueous solution, to maintain a less acidic pH in the environment. The buffer acting component has been proposed to be relevant for neutralizing acid rain.[3]

Source cycle

A majority of organic matter not already in the soil comes from groundwater. When the groundwater saturates the soil or sediment around it, organic matter can freely move between the phases. Groundwater has its own sources of natural organic matter also:
  • "organic matter deposits, such as kerogen and coal
  • soil and sediment organic matter
  • organic matter infiltrating into the subsurface from rivers, lakes, and marine systems"[4]
Note that one source of groundwater organic matter is soil organic matter and sedimentary organic matter. The major method of movement into soil is from groundwater, but organic matter from soil moves into groundwater as well. Most of the organic matter in lakes, rivers, and surface water areas comes from deteriorated material in the water and surrounding shores. However, organic matter can pass into or out of water to soil and sediment in the same respect as with the soil.

Importance of the cycle

Organic matter can migrate through soil, sediment, water. This movement enables a cycle. Organisms decompose into organic matter, which can then be transported and recycled. Not all biomass migrates, some is rather stationary, turning over only over the course of millions of years.[5]

Soil organic matter

The organic matter in soil derives from plants and animals. In a forest, for example, leaf litter and woody material falls to the forest floor. This is sometimes referred to as organic material.[6] When it decays to the point in which it is no longer recognizable it is called soil organic matter. When the organic matter has broken down into a stable substance that resist further decomposition it is called humus. Thus soil organic matter comprises all of the organic matter in the soil exclusive of the material that has not decayed.[7]

One of the advantages of humus is that it is able to withhold water and nutrients, therefore giving plants the capacity for growth. Another advantage of humus is that it helps the soil to stick together which allows nematodes, or microscopic bacteria, to easily decay the nutrients in the soil.[8]

There are several ways to quickly increase the amount of humus. Combining compost, plant or animal materials/waste, or green manure with soil will increase the amount of humus in the soil.
  1. Compost: decomposed organic material.
  2. Plant and animal material and waste: dead plants or plant waste such as leaves or bush and tree trimmings, or animal manure.
  3. Green manure: plants or plant material that is grown for the sole purpose of being incorporated with soil.
These three materials supply nematodes and bacteria with nutrients for them to thrive and produce more humus, which will give plants enough nutrients to survive and grow.[8]

Factors controlling rates of decomposition

    • Environmental factors
      • 1. Aeration
      • 2. Temperature
      • 3. Soil Moisture
      • 4. Soil pH
    • Quality of added residues
      • 1. Size of organic residues
      • 2. C/N of organic residues
  • Rate of decomposition of plant residues, in order from fastest to slowest decomposition rates:
    • 1. Sugars, starches, simple proteins
    • 2. Hemicellulose
    • 3. Cellulose
    • 4. Fats, waxes, oils, resins
    • 5. Lignin, phenolic compounds

Priming effect

The priming effect is characterized by intense changes in the natural process of soil organic matter (SOM) turnover, resulting from relatively moderate intervention with the soil.[9] The phenomenon is generally caused by either pulsed or continuous changes to inputs of fresh organic matter (FOM).[10] Priming effects usually result in an acceleration of mineralization due to a trigger such as the FOM inputs. The cause of this increase in decomposition has often been attributed to an increase in microbial activity resulting from higher energy and nutrient availability released from the FOM.
After the input of FOM, specialized microorganisms are believed to grow quickly and only decompose this newly added organic matter.[11] The turnover rate of SOM in these areas is at least one order of magnitude higher than the bulk soil.[10]

Other soil treatments, besides organic matter inputs, which lead to this short-term change in turnover rates, include "input of mineral fertilizer, exudation of organic substances by roots, mere mechanical treatment of soil or its drying and rewetting."[9]

Priming effects can be either positive or negative depending on the reaction of the soil with the added substance. A positive priming effect results in the acceleration of mineralization while a negative priming effect results in immobilization, leading to N unavailability. Although most changes have been documented in C and N pools, the priming effect can also be found in phosphorus and sulfur, as well as other nutrients.[9]

Löhnis was the first to discover the priming effect phenomenon in 1926 through his studies of green
manure decomposition and its effects on legume plants in soil. He noticed that when adding fresh organic residues to the soil, it resulted in intensified mineralization by the humus N. It was not until 1953, though, that the term priming effect was given by Bingemann in his paper titled, The effect of the addition of organic materials on the decomposition of an organic soil. Several other terms had been used before priming effect was coined, including priming action, added nitrogen interaction (ANI), extra N and additional N.[9] Despite these early contributions, the concept of the priming effect was widely disregarded until about the 1980s-1990s.[10]

The priming effect has been found in many different studies and is regarded as a common occurrence, appearing in most plant soil systems.[12] However, the mechanisms which lead to the priming effect are more complex then originally thought, and still remain generally misunderstood.[11]

Although there is a lot of uncertainty surrounding the reason for the priming effect, a few undisputed facts have emerged from the collection of recent research:
  1. The priming effect can arise either instantaneously or very shortly (potentially days or weeks)[10] after the addition of a substance is made to the soil.
  2. The priming effect is larger in soils that are rich in C and N as compared to those poor in these nutrients.
  3. Real priming effects have not been observed in sterile environments.
  4. The size of the priming effect increases as the amount of added treatment to the soil increases.[9]
Recent findings suggest that the same priming effect mechanisms acting in soil systems may also be present in aquatic environments, which suggests a need for broader considerations of this phenomenon in the future.[10][13]

Decomposition

One suitable definition of organic matter is biological material[disambiguation needed] in the process of decaying or decomposing, such as humus. A closer look at the biological material in the process of decaying reveals so-called organic compounds (biological molecules) in the process of breaking up (disintegrating).

The main processes by which soil molecules disintegrates are by bacterial or fungal enzymatic catalysis. If bacteria or fungi were not present on Earth, the process of decomposition would have proceeded much slower.
_________________________________________

Organic chemistry

 
Organic chemistry is a chemistry subdiscipline involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms.[1] Study of structure includes using spectroscopy (e.g., NMR), mass spectrometry, and other physical and chemical methods to determine the chemical composition and constitution of organic compounds and materials. Study of properties includes both physical properties and chemical properties, and uses similar methods as well as methods to evaluate chemical reactivity, with the aim to understand the behavior of the organic matter in its pure form (when possible), but also in solutions, mixtures, and fabricated forms. The study of organic reactions includes probing their scope through use in preparation of target compounds (e.g., natural products, drugs, polymers, etc.) by chemical synthesis, as well as the focused study of the reactivities of individual organic molecules, both in the laboratory and via theoretical (in silico) study.
 
The range of chemicals studied in organic chemistry include hydrocarbons, compounds containing only carbon and hydrogen, as well as myriad compositions based always on carbon, but also containing other elements,[1][2][3] especially:
In the modern era, the range extends further into the periodic table, with main group elements, including:
In addition, much modern research focuses on organic chemistry involving further organometallics, including the lanthanides, but especially the:
  • transition metals (e.g., zinc, copper, palladium, nickel, cobalt, titanium, chromium, etc.).
To be supplied
Line-angle representation
To be supplied
Ball-and-stick representation
To be supplied
Space-filling representation
 
Three representations of an organic compound, 5α-Dihydroprogesterone (5α-DHP), a steroid hormone. For molecules showing color, the carbon atoms are in black, hydrogens in gray, and oxygens in red. In the line angle representation, carbon atoms are implied at every terminus of a line and vertex of multiple lines, and hydrogen atoms are implied to fill the remaining needed valences (up to 4).

Finally, organic compounds form the basis of all earthly life and constitute a significant part of human endeavors in chemistry. The bonding patterns open to carbon, with its valence of four—formal single, double, and triple bonds, as well as various structures with delocalized electrons—make the array of organic compounds structurally diverse, and their range of applications enormous. They either form the basis of, or are important constituents of, many commercial products including pharmaceuticals; petrochemicals and products made from them (including lubricants, solvents, etc.); plastics; fuels and explosives; etc. As indicated, the study of organic chemistry overlaps with organometallic chemistry and biochemistry, but also with medicinal chemistry, polymer chemistry, as well as many aspects of materials science.[1]

Characterization

Since organic compounds often exist as mixtures, a variety of techniques have also been developed to assess purity, especially important being chromatography techniques such as HPLC and gas chromatography. Traditional methods of separation include distillation, crystallization, and solvent extraction.

Organic compounds were traditionally characterized by a variety of chemical tests, called "wet methods", but such tests have been largely displaced by spectroscopic or other computer-intensive methods of analysis.[12] Listed in approximate order of utility, the chief analytical methods are:
  • Nuclear magnetic resonance (NMR) spectroscopy is the most commonly used technique, often permitting complete assignment of atom connectivity and even stereochemistry using correlation spectroscopy. The principal constituent atoms of organic chemistry - hydrogen and carbon - exist naturally with NMR-responsive isotopes, respectively 1H and 13C.
  • Elemental analysis: A destructive method used to determine the elemental composition of a molecule. See also mass spectrometry, below.
  • Mass spectrometry indicates the molecular weight of a compound and, from the fragmentation patterns, its structure. High resolution mass spectrometry can usually identify the exact formula of a compound and is used in lieu of elemental analysis. In former times, mass spectrometry was restricted to neutral molecules exhibiting some volatility, but advanced ionization techniques allow one to obtain the "mass spec" of virtually any organic compound.
  • Crystallography is an unambiguous method for determining molecular geometry, the proviso being that single crystals of the material must be available and the crystal must be representative of the sample. Highly automated software allows a structure to be determined within hours of obtaining a suitable crystal.
Traditional spectroscopic methods such as infrared spectroscopy, optical rotation, UV/VIS spectroscopy provide relatively nonspecific structural information but remain in use for specific classes of compounds.

Properties

Physical properties of organic compounds typically of interest include both quantitative and qualitative features. Quantitative information includes melting point, boiling point, and index of refraction. Qualitative properties include odor, consistency, solubility, and color.

Melting and boiling properties

Organic compounds typically melt and many boil. In contrast, while inorganic materials generally can be melted, many do not boil, tending instead to degrade. In earlier times, the melting point (m.p.) and boiling point (b.p.) provided crucial information on the purity and identity of organic compounds.
The melting and boiling points correlate with the polarity of the molecules and their molecular weight. Some organic compounds, especially symmetrical ones, sublime, that is they evaporate without melting. A well-known example of a sublimable organic compound is para-dichlorobenzene, the odiferous constituent of modern mothballs. Organic compounds are usually not very stable at temperatures above 300 °C, although some exceptions exist.

Solubility

Neutral organic compounds tend to be hydrophobic; that is, they are less soluble in water than in organic solvents. Exceptions include organic compounds that contain ionizable groups as well as low molecular weight alcohols, amines, and carboxylic acids where hydrogen bonding occurs. Organic compounds tend to dissolve in organic solvents. Solvents can be either pure substances like ether or ethyl alcohol, or mixtures, such as the paraffinic solvents such as the various petroleum ethers and white spirits, or the range of pure or mixed aromatic solvents obtained from petroleum or tar fractions by physical separation or by chemical conversion. Solubility in the different solvents depends upon the solvent type and on the functional groups if present.

Solid state properties

Various specialized properties of molecular crystals and organic polymers with conjugated systems are of interest depending on applications, e.g. thermo-mechanical and electro-mechanical such as piezoelectricity, electrical conductivity (see conductive polymers and organic semiconductors), and electro-optical (e.g. non-linear optics) properties. For historical reasons, such properties are mainly the subjects of the areas of polymer science and materials science.

Nomenclature

 
The names of organic compounds are either systematic, following logically from a set of rules, or nonsystematic, following various traditions. Systematic nomenclature is stipulated by specifications from IUPAC. Systematic nomenclature starts with the name for a parent structure within the molecule of interest. This parent name is then modified by prefixes, suffixes, and numbers to unambiguously convey the structure. Given that millions of organic compounds are known, rigorous use of systematic names can be cumbersome. Thus, IUPAC recommendations are more closely followed for simple compounds, but not complex molecules. To use the systematic naming, one must know the structures and names of the parent structures. Parent structures include unsubstituted hydrocarbons, heterocycles, and monofunctionalized derivatives thereof.

Nonsystematic nomenclature is simpler and unambiguous, at least to organic chemists.
Nonsystematic names do not indicate the structure of the compound. They are common for complex molecules, which includes most natural products. Thus, the informally named lysergic acid diethylamide is systematically named (6aR,9R)-N,N-diethyl-7-methyl-4,6,6a,7,8,9-hexahydroindolo-[4,3-fg] quinoline-9-carboxamide.

With the increased use of computing, other naming methods have evolved that are intended to be interpreted by machines. Two popular formats are SMILES and InChI.

Structural drawings

Organic molecules are described more commonly by drawings or structural formulas, combinations of drawings and chemical symbols. The line-angle formula is simple and unambiguous. In this system, the endpoints and intersections of each line represent one carbon, and hydrogen atoms can either be notated explicitly or assumed to be present as implied by tetravalent carbon. The depiction of organic compounds with drawings is greatly simplified by the fact that carbon in almost all organic compounds has four bonds, nitrogen three, oxygen two, and hydrogen one.

Classification of organic compounds

Functional groups

 
The family of carboxylic acids contains a carboxyl (-COOH) functional group. Acetic acid, shown here, is an example.

The concept of functional groups is central in organic chemistry, both as a means to classify structures and for predicting properties. A functional group is a molecular module, and the reactivity of that functional group is assumed, within limits, to be the same in a variety of molecules.
Functional groups can have decisive influence on the chemical and physical properties of organic compounds. Molecules are classified on the basis of their functional groups. Alcohols, for example, all have the subunit C-O-H. All alcohols tend to be somewhat hydrophilic, usually form esters, and usually can be converted to the corresponding halides. Most functional groups feature heteroatoms (atoms other than C and H). Organic compounds are classified according to functional groups, alcohols, carboxylic acids, amines, etc.

Aliphatic compounds

 
The aliphatic hydrocarbons are subdivided into three groups of homologous series according to their state of saturation:
  • paraffins, which are alkanes without any double or triple bonds,
  • olefins or alkenes which contain one or more double bonds, i.e. di-olefins (dienes) or poly-olefins.
  • alkynes, which have one or more triple bonds.
The rest of the group is classed according to the functional groups present. Such compounds can be "straight-chain", branched-chain or cyclic. The degree of branching affects characteristics, such as the octane number or cetane number in petroleum chemistry.

Both saturated (alicyclic) compounds and unsaturated compounds exist as cyclic derivatives. The most stable rings contain five or six carbon atoms, but large rings (macrocycles) and smaller rings are common. The smallest cycloalkane family is the three-membered cyclopropane ((CH2)3). Saturated cyclic compounds contain single bonds only, whereas aromatic rings have an alternating (or conjugated) double bond. Cycloalkanes do not contain multiple bonds, whereas the cycloalkenes and the cycloalkynes do.

Aromatic compounds

Benzene is one of the best-known aromatic compounds as it is one of the simplest and most stable aromatics.

Aromatic hydrocarbons contain conjugated double bonds. This means that every carbon atom in the ring is sp2 hybridized, allowing for added stability. The most important example is benzene, the structure of which was formulated by Kekulé who first proposed the delocalization or resonance principle for explaining its structure. For "conventional" cyclic compounds, aromaticity is conferred by the presence of 4n + 2 delocalized pi electrons, where n is an integer. Particular instability (antiaromaticity) is conferred by the presence of 4n conjugated pi electrons.

Heterocyclic compounds

The characteristics of the cyclic hydrocarbons are again altered if heteroatoms are present, which can exist as either substituents attached externally to the ring (exocyclic) or as a member of the ring itself (endocyclic). In the case of the latter, the ring is termed a heterocycle. Pyridine and furan are examples of aromatic heterocycles while piperidine and tetrahydrofuran are the corresponding alicyclic heterocycles. The heteroatom of heterocyclic molecules is generally oxygen, sulfur, or nitrogen, with the latter being particularly common in biochemical systems.

Examples of groups among the heterocyclics are the aniline dyes, the great majority of the compounds discussed in biochemistry such as alkaloids, many compounds related to vitamins, steroids, nucleic acids (e.g. DNA, RNA) and also numerous medicines. Heterocyclics with relatively simple structures are pyrrole (5-membered) and indole (6-membered carbon ring).

Rings can fuse with other rings on an edge to give polycyclic compounds. The purine nucleoside bases are notable polycyclic aromatic heterocycles. Rings can also fuse on a "corner" such that one atom (almost always carbon) has two bonds going to one ring and two to another. Such compounds are termed spiro and are important in a number of natural products.
_________________________________________

Organic farming

   
Organic farming is a form of agriculture that relies on techniques such as crop rotation, green manure, compost, and biological pest control. Depending on whose definition is used, organic farming uses fertilizers and pesticides (which include herbicides, insecticides and fungicides) if they are considered natural (such as bone meal from animals or pyrethrin from flowers), but it excludes or strictly limits the use of various methods (including synthetic petrochemical fertilizers and pesticides; plant growth regulators such as hormones; antibiotic use in livestock; genetically modified organisms;[1] human sewage sludge; and nanomaterials.[2]) for reasons including sustainability, openness, independence, health, and safety.

Organic agricultural methods are internationally regulated and legally enforced by many nations, based in large part on the standards set by the International Federation of Organic Agriculture Movements (IFOAM), an international umbrella organization for organic farming organizations established in 1972.[3] The USDA National Organic Standards Board (NOSB) definition as of April 1995 is:
“Organic agriculture is an ecological production management system that promotes and enhances biodiversity, biological cycles and soil biological activity. It is based on minimal use of off-farm inputs and on management practices that restore, maintain and enhance ecological harmony."[4]
Since 1990 the market for organic food and other products has grown rapidly, reaching $63 billion worldwide in 2012.[5]:25 This demand has driven a similar increase in organically managed farmland which has grown over the years 2001-2011 at a compounding rate of 8.9% per annum.[6] As of 2011, approximately 37,000,000 hectares (91,000,000 acres) worldwide were farmed organically, representing approximately 0.9 percent of total world farmland (2009).[7]

Organic farming systems

There are several organic farming systems. Biodynamic farming is a comprehensive approach, with its own international governing body. The Do Nothing Farming method focuses on a minimum of mechanical cultivation and labor for grain crops. French intensive and biointensive, methods are well-suited to organic principles. Other examples of techniques are holistic management, permaculture, SRI and no-till farming (the last two which may be implemented in conventional or organic systems[23][24]).

Methods

Organic cultivation of mixed vegetables in Capay, California. Note the hedgerow in the background.
"An organic farm, properly speaking, is not one that uses certain methods and substances and avoids others; it is a farm whose structure is formed in imitation of the structure of a natural system that has the integrity, the independence and the benign dependence of an organism"
Wendell Berry, "The Gift of Good Land"
Organic farming methods combine scientific knowledge of ecology and modern technology with traditional farming practices based on naturally occurring biological processes. Organic farming methods are studied in the field of agroecology. While conventional agriculture uses synthetic pesticides and water-soluble synthetically purified fertilizers, organic farmers are restricted by regulations to using natural pesticides and fertilizers. The principal methods of organic farming include crop rotation, green manures and compost, biological pest control, and mechanical cultivation. These measures use the natural environment to enhance agricultural productivity: legumes are planted to fix nitrogen into the soil, natural insect predators are encouraged, crops are rotated to confuse pests and renew soil, and natural materials such as potassium bicarbonate[25] and mulches are used to control disease and weeds. Hardier plants are generated through plant breeding rather than genetic engineering.

While organic is fundamentally different from conventional because of the use of carbon based fertilizers compared with highly soluble synthetic based fertilizers and biological pest control instead of synthetic pesticides, organic farming and large-scale conventional farming are not entirely mutually exclusive. Many of the methods developed for organic agriculture have been borrowed by more conventional agriculture. For example, Integrated Pest Management is a multifaceted strategy that uses various organic methods of pest control whenever possible, but in conventional farming could include synthetic pesticides only as a last resort.[26]

Crop diversity

Crop diversity is a distinctive characteristic of organic farming. Conventional farming focuses on mass production of one crop in one location, a practice called monoculture. The science of agroecology has revealed the benefits of polyculture (multiple crops in the same space), which is often employed in organic farming.[27] Planting a variety of vegetable crops supports a wider range of beneficial insects, soil microorganisms, and other factors that add up to overall farm health. Crop diversity helps environments thrive and protect species from going extinct.[28]

Soil management

Organic farming relies heavily on the natural breakdown of organic matter, using techniques like green manure and composting, to replace nutrients taken from the soil by previous crops. This biological process, driven by microorganisms such as mycorrhiza, allows the natural production of nutrients in the soil throughout the growing season, and has been referred to as feeding the soil to feed the plant. Organic farming uses a variety of methods to improve soil fertility, including crop rotation, cover cropping, reduced tillage, and application of compost. By reducing tillage, soil is not inverted and exposed to air; less carbon is lost to the atmosphere resulting in more soil organic carbon. This has an added benefit of carbon sequestration which can reduce green house gases and aid in reversing climate change.

Plants need nitrogen, phosphorus, and potassium, as well as micronutrients and symbiotic relationships with fungi and other organisms to flourish, but getting enough nitrogen, and particularly synchronization so that plants get enough nitrogen at the right time (when plants need it most), is a challenge for organic farmers.[29] Crop rotation and green manure ("cover crops") help to provide nitrogen through legumes (more precisely, the Fabaceae family) which fix nitrogen from the atmosphere through symbiosis with rhizobial bacteria. Intercropping, which is sometimes used for insect and disease control, can also increase soil nutrients, but the competition between the legume and the crop can be problematic and wider spacing between crop rows is required. Crop residues can be ploughed back into the soil, and different plants leave different amounts of nitrogen, potentially aiding synchronization.[29] Organic farmers also use animal manure, certain processed fertilizers such as seed meal and various mineral powders such as rock phosphate and greensand, a naturally occurring form of potash which provides potassium. Together these methods help to control erosion. In some cases pH may need to be amended. Natural pH amendments include lime and sulfur, but in the U.S. some compounds such as iron sulfate, aluminum sulfate, magnesium sulfate, and soluble boron products are allowed in organic farming.[30]:43

Mixed farms with both livestock and crops can operate as ley farms, whereby the land gathers fertility through growing nitrogen-fixing forage grasses such as white clover or alfalfa and grows cash crops or cereals when fertility is established. Farms without livestock ("stockless") may find it more difficult to maintain soil fertility, and may rely more on external inputs such as imported manure as well as grain legumes and green manures, although grain legumes may fix limited nitrogen because they are harvested. Horticultural farms growing fruits and vegetables which operate in protected conditions are often even more reliant upon external inputs.[29]

Biological research into soil and soil organisms has proven beneficial to organic farming. Varieties of bacteria and fungi break down chemicals, plant matter and animal waste into productive soil nutrients. In turn, they produce benefits of healthier yields and more productive soil for future crops.[31] Fields with less or no manure display significantly lower yields, due to decreased soil microbe community, providing a healthier, more arable soil system.[32]

Weed management

Organic weed management promotes weed suppression, rather than weed elimination, by enhancing crop competition and phytotoxic effects on weeds.[33] Organic farmers integrate cultural, biological, mechanical, physical and chemical tactics to manage weeds without synthetic herbicides.

Organic standards require rotation of annual crops,[34] meaning that a single crop cannot be grown in the same location without a different, intervening crop. Organic crop rotations frequently include weed-suppressive cover crops and crops with dissimilar life cycles to discourage weeds associated with a particular crop.[33] Research is ongoing to develop organic methods to promote the growth of natural microorganisms that suppress the growth or germination of common weeds.[35]

Other cultural practices used to enhance crop competitiveness and reduce weed pressure include selection of competitive crop varieties, high-density planting, tight row spacing, and late planting into warm soil to encourage rapid crop germination.[33]

Mechanical and physical weed control practices used on organic farms can be broadly grouped as:[36]
  • Tillage - Turning the soil between crops to incorporate crop residues and soil amendments; remove existing weed growth and prepare a seedbed for planting; turning soil after seeding to kill weeds, including cultivation of row crops;
  • Mowing and cutting - Removing top growth of weeds;
  • Flame weeding and thermal weeding - Using heat to kill weeds; and
  • Mulching - Blocking weed emergence with organic materials, plastic films, or landscape fabric.[37]
Some critics, citing work published in 1997 by David Pimentel of Cornell University,[38] which described an epidemic of soil erosion worldwide, have raised concerned that tillage contribute to the erosion epidemic.[39] The FAO and other organizations have advocated a "no-till" approach to both conventional and organic farming, and point out in particular that crop rotation techniques used in organic farming are excellent no-till approaches.[39][40] A study published in 2005 by Pimentel and colleagues[41] confirmed that "Crop rotations and cover cropping (green manure) typical of organic agriculture reduce soil erosion, pest problems, and pesticide use." Some naturally sourced chemicals are allowed for herbicidal use. These include certain formulations of acetic acid (concentrated vinegar), corn gluten meal, and essential oils. A few selective bioherbicides based on fungal pathogens have also been developed. At this time, however, organic herbicides and bioherbicides play a minor role in the organic weed control toolbox.[36]

Weeds can be controlled by grazing. For example, geese have been used successfully to weed a range of organic crops including cotton, strawberries, tobacco, and corn,[42] reviving the practice of keeping cotton patch geese, common in the southern U.S. before the 1950s. Similarly, some rice farmers introduce ducks and fish to wet paddy fields to eat both weeds and insects.[43]

Controlling other organisms

Chloroxylon is used for Pest Management in Organic Rice Cultivation in Chhattisgarh, India
 
Organisms aside from weeds that cause problems on organic farms include arthropods (e.g., insects, mites), nematodes, fungi and bacteria. Organic practices include, but are not limited to:
Examples of predatory beneficial insects include minute pirate bugs, big-eyed bugs, and to a lesser extent ladybugs (which tend to fly away), all of which eat a wide range of pests. Lacewings are also effective, but tend to fly away. Praying mantis tend to move more slowly and eat less heavily. Parasitoid wasps tend to be effective for their selected prey, but like all small insects can be less effective outdoors because the wind controls their movement. Predatory mites are effective for controlling other mites.[30]:66–90

Naturally derived insecticides allowed for use on organic farms use include Bacillus thuringiensis (a bacterial toxin), pyrethrum (a chrysanthemum extract), spinosad (a bacterial metabolite), neem (a tree extract) and rotenone (a legume root extract). Fewer than 10% of organic farmers use these pesticides regularly; one survey found that only 5.3% of vegetable growers in California use rotenone while 1.7% use pyrethrum.[45]:26 These pesticides are not always more safe or environmentally friendly than synthetic pesticides and can cause harm.[30]:92 The main criterion for organic pesticides is that they are naturally derived, and some naturally derived substances have been controversial. Controversial natural pesticides include rotenone, copper, nicotine sulfate, and pyrethrums[46][47] Rotenone and pyrethrum are particularly controversial because they work by attacking the nervous system, like most conventional insecticides. Rotenone is extremely toxic to fish[48] and can induce symptoms resembling Parkinson's disease in mammals.[49][50] Although pyrethrum (natural pyrethrins) is more effective against insects when used with piperonyl butoxide (which retards degradation of the pyrethrins),[51] organic standards generally do not permit use of the latter substance.[52][53][54]

Naturally derived fungicides allowed for use on organic farms include the bacteria Bacillus subtilis and Bacillus pumilus; and the fungus Trichoderma harzianum. These are mainly effective for diseases affecting roots. Compost tea contains a mix of beneficial microbes, which may attack or out-compete certain plant pathogens,[55] but variability among formulations and preparation methods may contribute to inconsistent results or even dangerous growth of toxic microbes in compost teas.[56]
Some naturally derived pesticides are not allowed for use on organic farms. These include nicotine sulfate, arsenic, and strychnine.[57]

Synthetic pesticides allowed for use on organic farms include insecticidal soaps and horticultural oils for insect management; and Bordeaux mixture, copper hydroxide and sodium bicarbonate for managing fungi.[57] Copper sulfate and Bordeaux mixture (copper sulfate plus lime), approved for organic use in various jurisdictions,[52][53][57] can be more environmentally problematic than some synthetic fungicides dissallowed in organic farming[58][59] Similar concerns apply to copper hydroxide. Repeated application of copper sulfate or copper hydroxide as a fungicide may eventually result in copper accumulation to toxic levels in soil,[60] and admonitions to avoid excessive accumulations of copper in soil appear in various organic standards and elsewhere. Environmental concerns for several kinds of biota arise at average rates of use of such substances for some crops.[61] In the European Union, where replacement of copper-based fungicides in organic agriculture is a policy priority,[62] research is seeking alternatives for organic production.[63]

Livestock

For livestock like these healthy cows vaccines play an important part in animal health since antibiotic therapy is prohibited in organic farming

Raising livestock and poultry, for meat, dairy and eggs, is another traditional, farming activity that complements growing. Organic farms attempt to provide animals with natural living conditions and feed. While the USDA does not require any animal welfare requirements be met for a product to be marked as organic, this is a variance from older organic farming practices.[64]

Also, horses and cattle used to be a basic farm feature that provided labor, for hauling and plowing, fertility, through recycling of manure, and fuel, in the form of food for farmers and other animals. While today, small growing operations often do not include livestock, domesticated animals are a desirable part of the organic farming equation, especially for true sustainability, the ability of a farm to function as a self-renewing unit.

Genetic modification

 
A key characteristic of organic farming is the rejection of genetically engineered plants and animals. On October 19, 1998, participants at IFOAM's 12th Scientific Conference issued the Mar del Plata Declaration, where more than 600 delegates from over 60 countries voted unanimously to exclude the use of genetically modified organisms in food production and agriculture.

Although opposition to the use of any transgenic technologies in organic farming is strong, agricultural researchers Luis Herrera-Estrella and Ariel Alvarez-Morales continue to advocate integration of transgenic technologies into organic farming as the optimal means to sustainable agriculture, particularly in the developing world,[65] as does author and scientist Pamela Ronald, who views this kind of biotechnology as being consistent with organic principles.[66]

Although GMOs are excluded from organic farming, there is concern that the pollen from genetically modified crops is increasingly penetrating organic and heirloom seed stocks, making it difficult, if not impossible, to keep these genomes from entering the organic food supply. Differing regulations among countries limits the availability of GMOs to certain countries, as described in the article on regulation of the release of genetic modified organisms.

Standards

Standards regulate production methods and in some cases final output for organic agriculture. Standards may be voluntary or legislated. As early as the 1970s private associations certified organic producers. In the 1980s, governments began to produce organic production guidelines. In the 1990s, a trend toward legislated standards began, most notably with the 1991 EU-Eco-regulation developed for European Union,[67] which set standards for 12 countries, and a 1993 UK program. The EU's program was followed by a Japanese program in 2001, and in 2002 the U.S. created the National Organic Program (NOP).[68] As of 2007 over 60 countries regulate organic farming (IFOAM 2007:11). In 2005 IFOAM created the Principles of Organic Agriculture, an international guideline for certification criteria.[69] Typically the agencies accredit certification groups rather than individual farms.

Organic production materials used in and foods are tested independently by the Organic Materials Review Institute.[70]

Composting

Under USDA organic standards, manure must be subjected to proper thermophilic composting and allowed to reach a sterilizing temperature. If raw animal manure is used, 120 days must pass before the crop is harvested if the final product comes into direct contact with the soil. For products which do not come into direct contact with soil, 90 days must pass prior to harvest.[71]
 

Lie group

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lie_group In mathematics , a Lie gro...