In quantum mechanics, bra–ket notation is a standard notation for describing quantum states. It can also be used to denote abstract vectors and linear functionals in mathematics. The notation begins with using angle brackets, ⟨ and ⟩, and a vertical bar, |, to denote the scalar product of vectors or the action of a linear functional on a vector in a complex vector space. The scalar product or action is written as
Bra-ket notation was introduced in 1939 by Paul Dirac[1][2] and is also known as the Dirac notation.
The bra-ket notation has a precursor in Hermann Grassmann's use of the notation for his inner products nearly 100 years earlier.[3]
Introduction
Bra–ket notation is a notation for linear algebra, particularly focused on vectors, inner products, linear operators, Hermitian conjugation, and the dual space, for both finite-dimensional and infinite-dimensional complex vector spaces. It is specifically designed to ease the types of calculations that frequently come up in quantum mechanics.Its use in quantum mechanics is quite widespread. Many phenomena that are explained using quantum mechanics are usually explained using bra–ket notation.
In simple cases, a ket |m⟩ can be described as a column vector, a bra with the same label ⟨m| is its conjugate transpose (which is a row vector), and writing bras, kets, and linear operators next to each other implies matrix multiplication.[4] However, kets may also exist in uncountably-infinite-dimensional vector spaces, such that they cannot be literally written as a column vector. Also, writing a column vector as a list of numbers requires picking a basis, whereas one can write "|m⟩" without committing to any particular basis. This is helpful because quantum mechanics calculations involve frequently switching between different bases (e.g. position basis, momentum basis, energy eigenbasis, etc.), so it is better to have the basis vectors (if any) written out explicitly. In some situations involving two important basis vectors they will be referred to simply as "|-⟩" and "|+⟩".
The standard mathematical notation for the inner product, preferred as well by some physicists, expresses exactly the same thing as the bra–ket notation,
If the ket is an element of a vector space, the bra is technically an element of its dual space—see Riesz representation theorem.
Vector spaces
Vectors vs kets
In mathematics, the term "vector" is used to refer generally to any element of any vector space. In physics, however, the term "vector" is much more specific: "Vector" refers almost exclusively to quantities like displacement or velocity, which have three components that relate directly to the three dimensions of the real world. Such vectors are typically denoted with over arrows (r→) or boldface (r).In quantum mechanics, a quantum state is typically represented as an element of an abstract complex vector space—for example the infinite-dimensional vector space of all possible wavefunctions (functions mapping each point of 3D space to a complex number). Since the term "vector" is already used for something else (see previous paragraph), it is very common to refer to these elements of abstract complex vector spaces as "kets", and to write them using ket notation.
Ket notation
Ket notation, invented by Dirac, uses vertical bars and angular brackets: |A⟩. When this notation is used, these quantities are called "kets", and |A⟩ is read as "ket-A".[5] These kets can be manipulated using the usual rules of linear algebra, for example:Inner products and bras
An inner product is a generalization of the dot product. The inner product of two vectors is a scalar. In neutral notation (notation dedicated to the inner product only), this might be written (A, B), where A and B are elements of the abstract vector space, i.e. both are kets.Bra–ket notation uses a specific notation for inner products:
The purpose of "splitting" the inner product into a bra and a ket is that both the bra ⟨A| and the ket |B⟩ are meaningful on their own, and can be used in other contexts besides within an inner product. There are two main ways to think about the meanings of separate bras and kets. Accordingly, the interpretation of the expression ⟨A|B⟩ has a second interpretation, namely that of the action of a linear functional per below.
Bras and kets as row and column vectors
For a finite-dimensional vector space, using a fixed orthonormal basis, the inner product can be written as a matrix multiplication of a row vector with a column vector:The conjugate transpose (also called Hermitian conjugate) of a bra is the corresponding ket and vice versa:
Bras as linear functionals
A more abstract definition, which is equivalent but more easily generalized to infinite-dimensional spaces, is to say that bras are linear functionals on the space of kets, i.e. linear transformations that input a ket and output a complex number. The bra linear functionals are defined to be consistent with the inner product. Thus, if ⟨B| is the linear functional corresponding to |B⟩ under the Riesz representation theorem, thenIn mathematics terminology, the vector space of bras is the dual space to the vector space of kets, and corresponding bras and kets are related by the Riesz representation theorem.
Non-normalizable states and non-Hilbert spaces
Bra–ket notation can be used even if the vector space is not a Hilbert space.In quantum mechanics, it is common practice to write down kets which have infinite norm, i.e. non-normalizable wavefunctions. Examples include states whose wavefunctions are Dirac delta functions or infinite plane waves. These do not, technically, belong to the Hilbert space itself. However, the definition of "Hilbert space" can be broadened to accommodate these states (see the Gelfand–Naimark–Segal construction or rigged Hilbert spaces). The bra–ket notation continues to work in an analogous way in this broader context.
Banach spaces are a different generalization of Hilbert spaces. In a Banach space B, the vectors may be notated by kets and the continuous linear functionals by bras. Over any vector space without topology, we may also notate the vectors by kets and the linear functionals by bras. In these more general contexts, the bracket does not have the meaning of an inner product, because the Riesz representation theorem does not apply.
Usage in quantum mechanics
The mathematical structure of quantum mechanics is based in large part on linear algebra:- Wave functions and other quantum states can be represented as vectors in a complex Hilbert space. (The exact structure of this Hilbert space depends on the situation.) In bra–ket notation, for example, an electron might be in the "state" |ψ⟩. (Technically, the quantum states are rays of vectors in the Hilbert space, as c|ψ⟩ corresponds to the same state for any nonzero complex number c.)
- Quantum superpositions can be described as vector sums of the constituent states. For example, an electron in the state |1⟩ + i |2⟩ is in a quantum superposition of the states |1⟩ and |2⟩.
- Measurements are associated with linear operators (called observables) on the Hilbert space of quantum states.
- Dynamics are also described by linear operators on the Hilbert space. For example, in the Schrödinger picture, there is a linear time evolution operator U with the property that if an electron is in state |ψ⟩ right now, at a later time it will be in the state U|ψ⟩, the same U for every possible |ψ⟩.
- Wave function normalization is scaling a wave function so that its norm is 1. Since virtually every calculation in quantum mechanics involves vectors and linear operators, it can involve, and often does involve, bra–ket notation. A few examples follow:
Spinless position–space wave function
The Hilbert space of a spin-0 point particle is spanned by a "position basis" { |r⟩ }, where the label r extends over the set of all points in position space. This label is the eigenvalue of the position operator acting on such a basis state, . Since there are an uncountably infinite number of vector components in the basis, this is an uncountably infinite-dimensional Hilbert space. The dimensions of the Hilbert space (usually infinite) and position space (usually 1, 2 or 3) are not to be conflated.
Starting from any ket |Ψ⟩ in this Hilbert space, we can define a complex scalar function of r, known as a wavefunction:
It is then customary to define linear operators acting on wavefunctions in terms of linear operators acting on kets, by
Overlap of states
In quantum mechanics the expression ⟨φ|ψ⟩ is typically interpreted as the probability amplitude for the state ψ to collapse into the state φ. Mathematically, this means the coefficient for the projection of ψ onto φ. It is also described as the projection of state ψ onto state φ.Changing basis for a spin-1/2 particle
A stationary spin-1/2 particle has a two-dimensional Hilbert space. One orthonormal basis is:Since these are a basis, any quantum state of the particle can be expressed as a linear combination (i.e., quantum superposition) of these two states:
A different basis for the same Hilbert space is:
Again, any state of the particle can be expressed as a linear combination of these two:
There is a mathematical relationship between aψ, bψ, cψ and dψ; see change of basis.
Misleading uses
There are a few conventions and abuses of notation that are generally accepted by the physics community, but which might confuse the non-initiated.It is common to use the same symbol for labels and constants in the same equation. For example, α̂ |α⟩ = α |α⟩, where the symbol α is used simultaneously as the name of the operator α̂, its eigenvector |α⟩ and the associated eigenvalue α.
Something similar occurs in component notation of vectors. While Ψ (uppercase) is traditionally associated with wavefunctions, ψ (lowercase) may be used to denote a label, a wave function or complex constant in the same context, usually differentiated only by a subscript.
The main abuses are including operations inside the vector labels. This is done for a fast notation of scaling vectors. E.g. if the vector |α⟩ is scaled by √2, it might be denoted by |α/√2⟩, which makes no sense since α is a label, not a function or a number, so you can't perform operations on it.
This is especially common when denoting vectors as tensor products, where part of the labels are moved outside the designed slot, e.g. |α⟩ = |α/√21⟩ ⊗ |α/√22⟩. Here part of the labeling that should state that all three vectors are different was moved outside the kets, as subscripts 1 and 2. And a further abuse occurs, since α is meant to refer to the norm of the first vector—which is a label denoting a value.
Linear operators
Linear operators acting on kets
A linear operator is a map that inputs a ket and outputs a ket. (In order to be called "linear", it is required to have certain properties.) In other words, if A is a linear operator and |ψ⟩ is a ket, then A|ψ⟩ is another ket.In an N-dimensional Hilbert space, |ψ⟩ can be written as an N × 1 column vector, and then A is an N × N matrix with complex entries. The ket A|ψ⟩ can be computed by normal matrix multiplication.
Linear operators are ubiquitous in the theory of quantum mechanics. For example, observable physical quantities are represented by self-adjoint operators, such as energy or momentum, whereas transformative processes are represented by unitary linear operators such as rotation or the progression of time.
Linear operators acting on bras
Operators can also be viewed as acting on bras from the right hand side. Specifically, if A is a linear operator and ⟨φ| is a bra, then ⟨φ|A is another bra defined by the ruleIf the same state vector appears on both bra and ket side,
Outer products
A convenient way to define linear operators on a Hilbert space H is given by the outer product: if ⟨φ| is a bra and |ψ⟩ is a ket, the outer product- .
One of the uses of the outer product is to construct projection operators. Given a ket |ψ⟩ of norm 1, the orthogonal projection onto the subspace spanned by |ψ⟩ is
Hermitian conjugate operator
Just as kets and bras can be transformed into each other (making |ψ⟩ into ⟨ψ|), the element from the dual space corresponding to A|ψ⟩ is ⟨ψ|A†, where A† denotes the Hermitian conjugate (or adjoint) of the operator A. In other words,Self-adjoint operators, where A = A†, play an important role in quantum mechanics; for example, an observable is always described by a self-adjoint operator. If A is a self-adjoint operator, then ⟨ψ|A|ψ⟩ is always a real number (not complex). This implies that expectation values of observables are real.
Properties
Bra–ket notation was designed to facilitate the formal manipulation of linear-algebraic expressions. Some of the properties that allow this manipulation are listed herein. In what follows, c1 and c2 denote arbitrary complex numbers, c* denotes the complex conjugate of c, A and B denote arbitrary linear operators, and these properties are to hold for any choice of bras and kets.Linearity
- Since bras are linear functionals,
- By the definition of addition and scalar multiplication of linear functionals in the dual space,[6]
Associativity
Given any expression involving complex numbers, bras, kets, inner products, outer products, and/or linear operators (but not addition), written in bra–ket notation, the parenthetical groupings do not matter (i.e., the associative property holds). For example:Hermitian conjugation
Bra–ket notation makes it particularly easy to compute the Hermitian conjugate (also called dagger, and denoted †) of expressions. The formal rules are:- The Hermitian conjugate of a bra is the corresponding ket, and vice versa.
- The Hermitian conjugate of a complex number is its complex conjugate.
- The Hermitian conjugate of the Hermitian conjugate of anything (linear operators, bras, kets, numbers) is itself—i.e.,
- Given any combination of complex numbers, bras, kets, inner products, outer products, and/or linear operators, written in bra–ket notation, its Hermitian conjugate can be computed by reversing the order of the components, and taking the Hermitian conjugate of each.
- Kets:
- Inner products:
- Note that ⟨φ|ψ⟩ is a scalar, so the Hermitian conjugate is just the complex conjugate, i.e.
- Matrix elements:
- Outer products:
Composite bras and kets
Two Hilbert spaces V and W may form a third space V ⊗ W by a tensor product. In quantum mechanics, this is used for describing composite systems. If a system is composed of two subsystems described in V and W respectively, then the Hilbert space of the entire system is the tensor product of the two spaces. (The exception to this is if the subsystems are actually identical particles. In that case, the situation is a little more complicated.)If |ψ⟩ is a ket in V and |φ⟩ is a ket in W, the direct product of the two kets is a ket in V ⊗ W. This is written in various notations:
The unit operator
Consider a complete orthonormal system (basis),From basic functional analysis, it is known that any ket |ψ⟩ can also be written as
From the commutativity of kets with (complex) scalars, it follows that
This, then, can be inserted in any expression without affecting its value; for example
In quantum mechanics, it often occurs that little or no information about the inner product ⟨ψ|φ⟩ of two arbitrary (state) kets is present, while it is still possible to say something about the expansion coefficients ⟨ψ|ei⟩ = ⟨ei|ψ⟩* and ⟨ei|φ⟩ of those vectors with respect to a specific (orthonormalized) basis. In this case, it is particularly useful to insert the unit operator into the bracket one time or more.
For more information, see Resolution of the identity,
- 1 = ∫ dx |x⟩⟨x| = ∫ dp |p⟩⟨p|, where |p⟩ = ∫ dx eixp/ħ|x⟩/√2πħ.
Notation used by mathematicians
The object physicists are considering when using bra–ket notation is a Hilbert space (a complete inner product space).Let H be a Hilbert space and h ∈ H a vector in H. What physicists would denote by |h⟩ is the vector itself. That is,
- .
- ,
Moreover, mathematicians usually write the dual entity not at the first place, as the physicists do, but at the second one, and they usually use not an asterisk but an overline (which the physicists reserve for averages and the Dirac spinor adjoint) to denote complex conjugate numbers; i.e., for scalar products mathematicians usually write