From Wikipedia, the free encyclopedia

What Is Life? The Physical
Aspect of the Living Cell
Was ist Leben (1)-OG.JPG
Title pages of 1948 edition
Author Erwin Schrödinger
Country United Kingdom (UK)
Language English
Genre Popular science
Publisher Cambridge University Press
Publication date
1944
Media type Print
Pages 194 pp.
ISBN 0-521-42708-8
OCLC 24503223
574/.01 20
LC Class QH331 .S357 1992

What Is Life? The Physical Aspect of the Living Cell is a 1944 science book written for the lay reader by physicist Erwin Schrödinger. The book was based on a course of public lectures delivered by Schrödinger in February 1943, under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin. The lectures attracted an audience of about 400, who were warned "that the subject-matter was a difficult one and that the lectures could not be termed popular, even though the physicist’s most dreaded weapon, mathematical deduction, would hardly be utilized." Schrödinger's lecture focused on one important question: "how can the events in space and time which take place within the spatial boundary of a living organism be accounted for by physics and chemistry?"

In the book, Schrödinger introduced the idea of an "aperiodic crystal" that contained genetic information in its configuration of covalent chemical bonds. In the 1950s, this idea stimulated enthusiasm for discovering the genetic molecule. Although the existence of some form of hereditary information had been hypothesized since 1869, its role in reproduction and its helical shape were still unknown at the time of Schrödinger's lecture. In retrospect, Schrödinger's aperiodic crystal can be viewed as a well-reasoned theoretical prediction of what biologists should have been looking for during their search for genetic material. Both James D. Watson,[2] and Francis Crick, who jointly proposed the double helix structure of DNA based on X-ray diffraction experiments by Rosalind Franklin, credited Schrödinger's book with presenting an early theoretical description of how the storage of genetic information would work, and each independently acknowledged the book as a source of inspiration for their initial researches.[3]

Background