From Wikipedia, the free encyclopedia
 
The gravitational interaction of antimatter with matter or antimatter has not been conclusively observed by physicists. While the consensus among physicists is that gravity will attract both matter and antimatter at the same rate that matter attracts matter, there is a strong desire to confirm this experimentally.

Antimatter's rarity and tendency to annihilate when brought into contact with matter makes its study a technically demanding task. Most methods for the creation of antimatter (specifically antihydrogen) result in high-energy particles and atoms of high kinetic energy, which are unsuitable for gravity-related study. In recent years, first ALPHA[1][2] and then ATRAP[3] have trapped antihydrogen atoms at CERN; in 2012 ALPHA used such atoms to set the first free-fall loose bounds on the gravitational interaction of antimatter with matter, measured to within ±7500% of ordinary gravity[4], not enough for a clear scientific statement about the sign of gravity acting on antimatter. Future experiments need to be performed with higher precision, either with beams of antihydrogen (AEGIS) or with trapped antihydrogen (ALPHA or GBAR).

Three hypotheses