From Wikipedia, the free encyclopedia

The Unified Neutral Theory of Biodiversity and Biogeography
Hubbell Unified Neutral Theory Cover.jpg
AuthorStephen P. Hubbell
CountryU.S.
LanguageEnglish
SeriesMonographs in Population Biology
Release number
32
PublisherPrinceton University Press
Publication date
2001
Pages375
ISBN0-691-02129-5

The unified neutral theory of biodiversity and biogeography (here "Unified Theory" or "UNTB") is a hypothesis and the title of a monograph by ecologist Stephen Hubbell. The hypothesis aims to explain the diversity and relative abundance of species in ecological communities, although like other neutral theories of ecology, Hubbell's hypothesis assumes that the differences between members of an ecological community of trophically similar species are "neutral", or irrelevant to their success. This implies that biodiversity arises at random, as each species follows a random walk. The hypothesis has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better.

Neutrality means that at a given trophic level in a food web, species are equivalent in birth rates, death rates, dispersal rates and speciation rates, when measured on a per-capita basis. This can be considered a null hypothesis to niche theory. Hubbell built on earlier neutral concepts, including MacArthur & Wilson's theory of island biogeography and Gould's concepts of symmetry and null models.

An ecological community is a group of trophically similar, sympatric species that actually or potentially compete in a local area for the same or similar resources. Under the Unified Theory, complex ecological interactions are permitted among individuals of an ecological community (such as competition and cooperation), provided that all individuals obey the same rules. Asymmetric phenomena such as parasitism and predation are ruled out by the terms of reference; but cooperative strategies such as swarming, and negative interaction such as competing for limited food or light are allowed (so long as all individuals behave in the same way).

The Unified Theory also makes predictions that have profound implications for the management of biodiversity, especially the management of rare species.

The theory predicts the existence of a fundamental biodiversity constant, conventionally written θ, that appears to govern species richness on a wide variety of spatial and temporal scales.

Saturation