From Wikipedia, the free encyclopedia

A formal system is used to infer theorems from axioms according to a set of rules. These rules used to carry out the inference of theorems from axioms are known as the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such system as the foundation for the knowledge in mathematics . A formal system may represent a well-defined system of abstract thought. Spinoza's Ethics imitates the form of Euclid's Elements. Spinoza employed Euclidean elements such as "axioms" or "primitive truths", rules of inferences, etc., so that a calculus can be built using these.
 
The term formalism is sometimes used as a rough synonym for formal system, but is also used to refer to a given style of notation, for example, Paul Dirac's bra–ket notation.

Background