Human X chromosome | |
---|---|
Human X chromosome (after G-banding)
| |
X chromosome in human male karyogram
| |
Features | |
Length (bp) | 156,040,895 bp (GRCh38) |
No. of genes | 804 (CCDS) |
Type | Allosome |
Centromere position | Submetacentric (61.0 Mbp) |
Complete gene lists | |
CCDS | Gene list |
HGNC | Gene list |
UniProt | Gene list |
NCBI | Gene list |
External map viewers | |
Ensembl | Chromosome X |
Entrez | Chromosome X |
NCBI | Chromosome X |
UCSC | Chromosome X |
Full DNA sequences | |
RefSeq | NC_000023 (FASTA) |
GenBank | CM000685 (FASTA) |
The X chromosome is one of the two sex-determining chromosomes (allosomes) in many organisms, including mammals (the other is the Y chromosome), and is found in both males and females. It is a part of the XY sex-determination system and X0 sex-determination system. The X chromosome was named for its unique properties by early researchers, which resulted in the naming of its counterpart Y chromosome, for the next letter in the alphabet, following its subsequent discovery.
Discovery
It was first noted that the X chromosome was special in 1890 by Hermann Henking in Leipzig. Henking was studying the testicles of Pyrrhocoris and noticed that one chromosome did not take part in meiosis. Chromosomes are so named because of their ability to take up staining (chroma in Greek means color).
Although the X chromosome could be stained just as well as the others,
Henking was unsure whether it was a different class of object and
consequently named it X element, which later became X chromosome after it was established that it was indeed a chromosome.
The idea that the X chromosome was named after its similarity to
the letter "X" is mistaken. All chromosomes normally appear as an
amorphous blob under the microscope and only take on a well defined
shape during mitosis. This shape is vaguely X-shaped for all
chromosomes. It is entirely coincidental that the Y chromosome, during mitosis, has two very short branches which can look merged under the microscope and appear as the descender of a Y-shape.
It was first suggested that the X chromosome was involved in sex determination by Clarence Erwin McClung in 1901. After comparing his work on locusts with Henking's and others, McClung noted that only half the sperm received an X chromosome. He called this chromosome an accessory chromosome, and insisted (correctly) that it was a proper chromosome, and theorized (incorrectly) that it was the male-determining chromosome.
Inheritance pattern
Luke Hutchison noticed that a number of possible ancestors on the X chromosome inheritance line at a given ancestral generation follows the Fibonacci sequence. A male individual has an X chromosome, which he received from his mother, and a Y chromosome, which he received from his father. The male counts as the "origin" of his own X chromosome (), and at his parents' generation, his X chromosome came from a single parent ().
The male's mother received one X chromosome from her mother (the son's
maternal grandmother), and one from her father (the son's maternal
grandfather), so two grandparents contributed to the male descendant's X
chromosome ().
The maternal grandfather received his X chromosome from his mother, and
the maternal grandmother received X chromosomes from both of her
parents, so three great-grandparents contributed to the male
descendant's X chromosome (). Five great-great-grandparents contributed to the male descendant's X chromosome (),
etc. (Note that this assumes that all ancestors of a given descendant
are independent, but if any genealogy is traced far enough back in time,
ancestors begin to appear on multiple lines of the genealogy, until
eventually, a population founder appears on all lines of the genealogy.)
Humans
Function
The X chromosome in humans spans more than 153 million base pairs (the building material of DNA).
It represents about 800 protein-coding genes compared to the Y
chromosome containing about 70 genes, out of 20,000–25,000 total genes
in the human genome.
Each person usually has one pair of sex chromosomes in each cell.
Females have two X chromosomes, whereas males have one X and one Y chromosome.
Both males and females retain one of their mother's X chromosomes, and
females retain their second X chromosome from their father. Since the
father retains his X chromosome from his mother, a human female has one X
chromosome from her paternal grandmother (father's side), and one X
chromosome from her mother. This inheritance pattern follows the Fibonacci numbers at a given ancestral depth.
Genetic disorders that are due to mutations in genes on the X chromosome are described as X linked.
If X chromosome has a genetic disease gene, it always causes illness in
male patients, since men have only one X chromosome and therefore only
one copy of each gene. Females, instead, may stay healthy and only be
carrier of genetic illness, since they have another X chromosome and
possibility to have healthy gene copy. For example hemophilia and
red-green colorblindness run in family this way.
The X chromosome carries hundreds of genes but few, if any, of
these have anything to do directly with sex determination. Early in embryonic
development in females, one of the two X chromosomes is randomly and
permanently inactivated in nearly all somatic cells (cells other than egg and sperm cells). This phenomenon is called X-inactivation or Lyonization, and creates a Barr body.
If X-inactivation in the somatic cell meant a complete
de-functionalizing of one of the X-chromosomes, it would ensure that
females, like males, had only one functional copy of the X chromosome in
each somatic cell. This was previously assumed to be the case. However,
recent research suggests that the Barr body may be more biologically active than was previously supposed.
The partial inactivation of the X-chromosome is due to repressive heterochromatin
that compacts the DNA and prevents the expression of most genes.
Heterochromatin compaction is regulated by Polycomb Repressive Complex 2
(PRC2).
Genes
Number of genes
The following are some of the gene count estimates of human X chromosome. Because researchers use different approaches to genome annotation their predictions of the number of genes on each chromosome varies (for technical details, see gene prediction). Among various projects, the collaborative consensus coding sequence project (CCDS)
takes an extremely conservative strategy. So CCDS's gene number
prediction represents a lower bound on the total number of human
protein-coding genes.
Estimated by | Protein-coding genes | Non-coding RNA genes | Pseudogenes |
---|---|---|---|
CCDS | 804 | — | — |
HGNC | 825 | 260 | 606 |
Ensembl | 841 | 639 | 871 |
UniProt | 839 | — | — |
NCBI | 874 | 494 | 879 |
Gene list
The following is a partial list of genes on human chromosome X.
- APOO: encoding protein Apolipoprotein O
- ARMCX6: encoding protein Armadillo repeat containing X-linked 6
- BEX1: encoding protein Brain-expressed X-linked protein 1
- BEX2: encoding protein Brain-expressed X-linked protein 2
- BEX4: encoding protein Brain expressed, X-linked 4
- CCDC120: encoding protein Coiled coil domain containing protein 120
- CCDC22: encoding protein Coiled-coil domain containing 22
- CD99L2: CD99 antigen-like protein 2
- CHRDL1: encoding protein Chordin-like 1
- CMTX2 encoding protein Charcot-Marie-Tooth neuropathy, X-linked 2 (recessive)
- CMTX3 encoding protein Charcot-Marie-Tooth neuropathy, X-linked 3 (dominant)
- CT45A5: encoding protein Cancer/testis antigen family 45, member A5
- CXorf36: encoding protein hypothetical protein LOC79742
- CXorf40A: Chromosome X open reading frame 40
- CXorf49: chromosome X open reading frame 49. encoding protein
- CXorf66: encoding protein Chromosome X Open Reading Frame 66
- CXorf67: encoding protein Uncharacterized protein CXorf67
- DACH2: encoding protein Dachshund homolog 2
- EFHC2: encoding protein EF-hand domain (C-terminal) containing 2
- ERCC6L encoding protein ERCC excision repair 6 like, spindle assembly checkpoint helicase
- F8A1: Factor VIII intron 22 protein
- FAM120C: encoding protein Family with sequence similarity 120C
- FAM122B: Family with sequence similarity 122 member B
- FAM122C: encoding protein Family with sequence similarity 122C
- FAM127A: CAAX box protein 1
- FAM50A: Family with sequence similarity 50 member A
- FATE1: Fetal and adult testis-expressed transcript protein
- FMR1-AS1: encoding a long non-coding RNA FMR1 antisense RNA 1
- FRMPD3: encoding protein FERM and PDZ domain containing 3
- FUNDC1: encoding protein FUN14 domain containing 1
- FUNDC2: FUN14 domain-containing protein 2
- GATA1: encoding GATA1 transcription factor
- GNL3L encoding protein G protein nucleolar 3 like
- GPRASP2: G-protein coupled receptor-associated sorting protein 2
- GRIPAP1: encoding protein GRIP1-associated protein 1
- HDHD1A: encoding enzyme Haloacid dehalogenase-like hydrolase domain-containing protein 1A
- LAS1L encoding protein LAS1-like protein
- MAGEA2: encoding protein Melanoma-associated antigen 2
- MAGEA5 encoding protein Melanoma antigen family A, 5
- MAGEA8: encoding protein Melanoma antigen family A, 8
- MAGED4B: encoding protein Melanoma-associated antigen D4
- MAGT1: encoding protein Magnesium transporter protein 1
- MBNL3: encoding protein Muscleblind-like protein 3
- MIR222: encoding microRNA MicroRNA 222
- MIR361: encoding microRNA MicroRNA 361
- MIR660: encoding protein MicroRNA 660
- MORF4L2: encoding protein Mortality factor 4-like protein 2
- MOSPD1: encoding protein Motile sperm domain containing 1
- MOSPD2: encoding protein Motile sperm domain containing 2
- NKRF: encoding protein NF-kappa-B-repressing factor
- NRK: encoding enzyme Nik-related protein kinase
- OTUD5: encoding protein OTU deubiquitinase 5
- PASD1: encoding protein PAS domain-containing protein 1
- PAGE1 :encoding a protein of unestablished function
- PBDC1: encoding a protein of unestablished function
- PCYT1B: encoding enzyme Choline-phosphate cytidylyltransferase B
- PIN4: encoding enzyme Peptidyl-prolyl cis-trans isomerase NIMA-interacting 4
- PLAC1: encoding protein Placenta-specific protein 1
- PLP2: encoding protein Proteolipid protein 2
- RPA4: encoding protein Replication protein A 30 kDa subunit
- RPS6KA6: encoding protein Ribosomal protein S6 kinase, 90kDa, polypeptide 6
- RRAGB: encoding protein Ras-related GTP-binding protein B
- SFRS17A: encoding protein Splicing factor, arginine/serine-rich 17A
- SLITRK2: encoding protein SLIT and NTRK-like protein 2
- SMARCA1: encoding protein Probable global transcription activator SNF2L1
- SMS: encoding enzyme Spermine synthase
- SSR4: encoding protein Translocon-associated protein subunit delta
- TAF7l: encoding protein TATA-box binding protein associated factor 7-like
- TCEAL1: encoding protein Transcription elongation factor A protein-like 1
- TCEAL4: encoding protein Transcription elongation factor A protein-like 4
- THOC2: encoding protein THO complex subunit 2
- TMEM29: encoding protein Protein FAM156A
- TMEM47: encoding protein Transmembrane protein 47
- TMLHE: encoding enzyme Trimethyllysine dioxygenase, mitochondrial
- TNMD encoding protein Tenomodulin (also referred to as tendin, myodulin, Tnmd and TeM)
- TRAPPC2P1 encoding protein Trafficking protein particle complex subunit 2
- TREX2: encoding enzyme Three prime repair exonuclease 2
- TRO: encoding protein Trophinin
- TSPYL2: encoding protein Testis-specific Y-encoded-like protein 2
- USP51: encoding enzyme Ubiquitin carboxyl-terminal hydrolase 51
- YIPF6: encoding protein Protein YIPF6
- ZC3H12B: encoding protein ZC3H12B
- ZFP92: encoding protein ZFP92 zinc finger protein
- ZMYM3: encoding protein Zinc finger MYM-type protein 3
- ZNF157: encoding protein Zinc finger protein 157
- ZNF182 encoding protein Zinc finger protein 182
- ZNF275: encoding protein Zinc finger protein 275
- ZNF674: encoding protein Zinc finger protein 674
Structure
It
is theorized by Ross et al. 2005 and Ohno 1967 that the X chromosome is
at least partially derived from the autosomal (non-sex-related) genome
of other mammals, evidenced from interspecies genomic sequence
alignments.
The X chromosome is notably larger and has a more active euchromatin region than its Y chromosome
counterpart. Further comparison of the X and Y reveal regions of
homology between the two. However, the corresponding region in the Y
appears far shorter and lacks regions that are conserved in the X
throughout primate species, implying a genetic degeneration for Y in
that region. Because males have only one X chromosome, they are more
likely to have an X chromosome-related disease.
It is estimated that about 10% of the genes encoded by the X
chromosome are associated with a family of "CT" genes, so named because
they encode for markers found in both tumor cells (in cancer patients)
as well as in the human testis (in healthy patients).
Role in diseases
Numerical abnormalities
- Klinefelter syndrome is caused by the presence of one or more extra copies of the X chromosome in a male's cells. Extra genetic material from the X chromosome interferes with male sexual development, preventing the testicles from functioning normally and reducing the levels of testosterone.
- Males with Klinefelter syndrome typically have one extra copy of the X chromosome in each cell, for a total of two X chromosomes and one Y chromosome (47,XXY). It is less common for affected males to have two or three extra X chromosomes (48,XXXY or 49,XXXXY) or extra copies of both the X and Y chromosomes (48,XXYY) in each cell. The extra genetic material may lead to tall stature, learning and reading disabilities, and other medical problems. Each extra X chromosome lowers the child's IQ by about 15 points,[20][21] which means that the average IQ in Klinefelter syndrome is in general in the normal range, although below average. When additional X and/or Y chromosomes are present in 48,XXXY, 48,XXYY, or 49,XXXXY, developmental delays and cognitive difficulties can be more severe and mild intellectual disability may be present.
- Klinefelter syndrome can also result from an extra X chromosome in only some of the body's cells. These cases are called mosaic 46,XY/47,XXY.
Triple X syndrome (also called 47,XXX or trisomy X):
- This syndrome results from an extra copy of the X chromosome in each of a female's cells. Females with trisomy X have three X chromosomes, for a total of 47 chromosomes per cell. The average IQ of females with this syndrome is 90, while the average IQ of unaffected siblings is 100. Their stature on average is taller than normal females. They are fertile and their children do not inherit the condition.
- Females with more than one extra copy of the X chromosome (48, XXXX syndrome or 49, XXXXX syndrome) have been identified, but these conditions are rare.
- This results when each of a female's cells has one normal X chromosome and the other sex chromosome is missing or altered. The missing genetic material affects development and causes the features of the condition, including short stature and infertility.
- About half of individuals with Turner syndrome have monosomy X (45,X), which means each cell in a woman's body has only one copy of the X chromosome instead of the usual two copies. Turner syndrome can also occur if one of the sex chromosomes is partially missing or rearranged rather than completely missing. Some women with Turner syndrome have a chromosomal change in only some of their cells. These cases are called Turner syndrome mosaics (45,X/46,XX).
X-linked recessive disorders
Sex linkage was first discovered in insects, e.g., T. H. Morgan's 1910 discovery of the pattern of inheritance of the white eyes mutation in Drosophila melanogaster. Such discoveries helped to explain x-linked disorders in humans, e.g., haemophilia A and B, adrenoleukodystrophy, and red-green color blindness.
Other disorders
XX male syndrome is a rare disorder, where the SRY
region of the Y chromosome has recombined to be located on one of the X
chromosomes. As a result, the XX combination after fertilization has
the same effect as a XY combination, resulting in a male. However, the
other genes of the X chromosome cause feminization as well.
X-linked endothelial corneal dystrophy is an extremely rare disease of cornea associated with Xq25 region. Lisch epithelial corneal dystrophy is associated with Xp22.3.
Megalocornea 1 is associated with Xq21.3-q22
Adrenoleukodystrophy,
a rare and fatal disorder that is carried by the mother on the x-cell.
It affects only boys between the ages of 5 and 10 and destroys the
protective cell surrounding the nerves, myelin,
in the brain. The female carrier hardly shows any symptoms because
females have a copy of the x-cell. This disorder causes a once healthy
boy to lose all abilities to walk, talk, see, hear, and even swallow.
Within 2 years after diagnosis, most boys with Adrenoleukodystrophy die.
Role in mental abilities and intelligence
The
X-chromosome has played a crucial role in the development of sexually
selected characteristics for over 300 million years. During that time it
has accumulated a disproportionate number of genes concerned with
mental functions. For reasons that are not yet understood, there is an
excess proportion of genes on the X-chromosome that are associated with
the development of intelligence, with no obvious links to other
significant biological functions. In other words, a significant proportion of genes associated with
intelligence is passed on to the male offspring from the maternal side
and to the female offspring from either/both maternal and paternal side.
There has also been interest in the possibility that haploinsufficiency
for one or more X-linked genes has a specific impact on development of
the Amygdala and its connections with cortical centres involved in social–cognition processing or the ‘social brain'.