From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Herbig%E2%80%93Haro_object
 
HH 32 looks like a star due to its intense brightness. The surrounding gas appears like clouds around a full moon.
Images are in false colour. Bright yellow star in brown-appearing nebula shoots out a blue-white jet, which then causes blue and purple emissions from the surrounding medium upon impact.
Hubble Space Telescope images of HH 32 (left; top) and HH 34 (right; upper left) – colourful nebulae are typical of Herbig–Haro objects
 
Herbig–Haro (HH) objects are bright patches of nebulosity associated with newborn stars. They are formed when narrow jets of partially ionised gas ejected by stars collide with nearby clouds of gas and dust at several hundred kilometres per second. Herbig–Haro objects are commonly found in star-forming regions, and several are often seen around a single star, aligned with its rotational axis. Most of them lie within about one parsec (3.26 light-years) of the source, although some have been observed several parsecs away. HH objects are transient phenomena that last around a few tens of thousands of years. They can change visibly over timescales of a few years as they move rapidly away from their parent star into the gas clouds of interstellar space (the interstellar medium or ISM). Hubble Space Telescope observations have revealed the complex evolution of HH objects over the period of a few years, as parts of the nebula fade while others brighten as they collide with the clumpy material of the interstellar medium.

First observed in the late 19th century by Sherburne Wesley Burnham, Herbig–Haro objects were recognised as a distinct type of emission nebula in the 1940s. The first astronomers to study them in detail were George Herbig and Guillermo Haro, after whom they have been named. Herbig and Haro were working independently on studies of star formation when they first analysed the objects, and recognised that they were a by-product of the star formation process. Although HH objects are a visible wavelength phenomena, many remain invisible at these wavelengths due to dust and gas, and can only be detected at infrared wavelengths. Such objects, when observed in near infrared, are called molecular hydrogen emission-line objects (MHOs).

Discovery and history of observations