From Wikipedia, the free encyclopedia

A fusion rocket is a theoretical design for a rocket driven by fusion propulsion which could provide efficient and long-term acceleration in space without the need to carry a large fuel supply. The design relies on the development of fusion power technology beyond current capabilities, and the construction of rockets much larger and more complex than any current spacecraft. A smaller and lighter fusion reactor might be possible in the future when more sophisticated methods have been devised to control magnetic confinement and prevent plasma instabilities. Inertial fusion could provide a lighter and more compact alternative, as might a fusion engine based on a field-reversed configuration. Fusion nuclear pulse propulsion is one approach to using nuclear fusion energy to provide propulsion for rockets.

For space flight, the main advantage of fusion would be the very high specific impulse, and the main disadvantage the (likely) large mass of the reactor. However, a fusion rocket may produce less radiation than a fission rocket, reducing the mass needed for shielding. The surest way of building a fusion rocket with current technology is to use hydrogen bombs as proposed in Project Orion, but such a spacecraft would also be massive and the Partial Nuclear Test Ban Treaty prohibits the use of nuclear bombs. Therefore, the use of nuclear bombs to propel rockets on Earth is problematic, but possible in space in theory. An alternate approach would be electrical (e.g. ion) propulsion with electric power generation via fusion power instead of direct thrust.

Electricity generation vs. direct thrust