From Wikipedia, the free encyclopedia

In particle physics and physical cosmology, Planck units are a set of units of measurement defined exclusively in terms of four universal physical constants, in such a manner that these physical constants take on the numerical value of 1 when expressed in terms of these units.

Originally proposed in 1899 by German physicist Max Planck, these units are a system of natural units because the origin of their definition comes only from properties of nature and not from any human construct. Planck units are only one of several systems of natural units, but Planck units are not based on properties of any prototype object or particle (the choice of which is inherently arbitrary), but rather on only the properties of free space. They are relevant in research on unified theories such as quantum gravity.

The term Planck scale refers to quantities of space, time, energy and other units that are similar in magnitude to corresponding Planck units. This region may be characterized by energies of around 1019 GeV, time intervals of around 10−43 s and lengths of around 10−35 m (approximately respectively the energy-equivalent of the Planck mass, the Planck time and the Planck length). At the Planck scale, the predictions of the Standard Model, quantum field theory and general relativity are not expected to apply, and quantum effects of gravity are expected to dominate. The best-known example is represented by the conditions in the first 10−43 seconds of our universe after the Big Bang, approximately 13.8 billion years ago.

The four universal constants that, by definition, have a numeric value 1 when expressed in these units are:

Planck units do not incorporate an electromagnetic dimension. Some authors choose to extend the system to electromagnetism by, for example, adding either the electric constant ε0 or 4πε0 to this list. Similarly, authors choose to use variants of the system that give other numeric values to one or more of the four constants above.

Introduction