Search This Blog

Friday, February 27, 2015

Glacier



From Wikipedia, the free encyclopedia


The Baltoro Glacier in the Karakoram, Baltistan, Northern Pakistan. At 62 kilometres (39 mi) in length, it is one of the longest alpine glaciers on earth.

Ice calving from the terminus of the Perito Moreno Glacier in western Patagonia, Argentina

The Aletsch Glacier, the largest glacier of the Alps, in Switzerland

The Quelccaya Ice Cap is the largest glaciated area in the tropics, in Peru

A glacier (US /ˈɡlʃər/ or UK /ˈɡlæsiə/) is a persistent body of dense ice that is constantly moving under its own weight; it forms where the accumulation of snow exceeds its ablation (melting and sublimation) over many years, often centuries. Glaciers slowly deform and flow due to stresses induced by their weight, creating crevasses, seracs, and other distinguishing features. They also abrade rock and debris from their substrate to create landforms such as cirques and moraines. Glaciers form only on land and are distinct from the much thinner sea ice and lake ice that form on the surface of bodies of water.

On Earth, 99% of glacial ice is contained within vast ice sheets in the polar regions, but glaciers may be found in mountain ranges on every continent except Australia, and on a few high-latitude oceanic islands. Between 35°N and 35°S, glaciers occur only in the Himalayas, Andes, Rocky Mountains, a few high mountains in East Africa, Mexico, New Guinea and on Zard Kuh in Iran.[1]

Glacial ice is the largest reservoir of freshwater on Earth.[2] Many glaciers from temperate, alpine and seasonal polar climates store water as ice during the colder seasons and release it later in the form of meltwater as warmer summer temperatures cause the glacier to melt, creating a water source that is especially important for plants, animals and human uses when other sources may be scant. Within high altitude and Antarctic environments, the seasonal temperature difference is often not sufficient to release meltwater.

Because glacial mass is affected by long-term climate changes, e.g., precipitation, mean temperature, and cloud cover, glacial mass changes are considered among the most sensitive indicators of climate change and are a major source of variations in sea level.

Etymology and related terms

The word glacier comes from French. It is derived from the Vulgar Latin glacia and ultimately from Latin glacies meaning "ice".[3] The processes and features caused by glaciers and related to them are referred to as glacial. The process of glacier establishment, growth and flow is called glaciation. The corresponding area of study is called glaciology. Glaciers are important components of the global cryosphere.

Types


Mouth of the Schlatenkees Glacier near Innergschlöß, Austria

Glaciers are categorized by their morphology, thermal characteristics, and behavior. Alpine glaciers, also known as mountain glaciers or cirque glaciers, form on the crests and slopes of mountains. An alpine glacier that fills a valley is sometimes called a valley glacier. A large body of glacial ice astride a mountain, mountain range, or volcano is termed an ice cap or ice field.[4] Ice caps have an area less than 50,000 km² (20,000 mile²) by definition.

Glacial bodies larger than 50,000 km² are called ice sheets or continental glaciers.[5] Several kilometers deep, they obscure the underlying topography. Only nunataks protrude from their surfaces. The only extant ice sheets are the two that cover most of Antarctica and Greenland. They contain vast quantities of fresh water, enough that if both melted, global sea levels would rise by over 70 meters.[6] Portions of an ice sheet or cap that extend into water are called ice shelves; they tend to be thin with limited slopes and reduced velocities.[7] Narrow, fast-moving sections of an ice sheet are called ice streams.[8][9] In Antarctica, many ice streams drain into large ice shelves. Some drain directly into the sea, often with an ice tongue, like Mertz Glacier.

Sightseeing boat in front of a tidewater glacier, Kenai Fjords National Park, Alaska

Tidewater glaciers are glaciers that terminate in the sea, including most glaciers flowing from Greenland, Antarctica, Baffin and Ellesmere Islands in Canada, Southeast Alaska, and the Northern and Southern Patagonian Ice Fields. As the ice reaches the sea, pieces break off, or calve, forming icebergs. Most tidewater glaciers calve above sea level, which often results in a tremendous impact as the iceberg strikes the water. Tidewater glaciers undergo centuries-long cycles of advance and retreat that are much less affected by the climate change than those of other glaciers.

Thermally, a temperate glacier is at melting point throughout the year, from its surface to its base. The ice of a polar glacier is always below freezing point from the surface to its base, although the surface snowpack may experience seasonal melting. A sub-polar glacier includes both temperate and polar ice, depending on depth beneath the surface and position along the length of the glacier. In a similar way, the thermal regime of a glacier is often described by the temperature at its base alone. A cold-based glacier is below freezing at the ice-ground interface, and is thus frozen to the underlying substrate. A warm-based glacier is above or at freezing at the interface, and is able to slide at this contact.[10] This contrast is thought to a large extent to govern the ability of a glacier to effectively erode its bed, as sliding ice promotes plucking at rock from the surface below.[11] Glaciers which are partly cold-based and partly warm-based are known as polythermal.[10]

Formation


Gorner Glacier in Switzerland

Glaciers form where the accumulation of snow and ice exceeds ablation. The area in which a glacier forms is called a cirque (corrie or cwm) - a typically armchair-shaped geological feature (such as a depression between mountains enclosed by arêtes) - which collects and compresses through gravity the snow which falls into it. This snow collects and is compacted by the weight of the snow falling above it forming névé. Further crushing of the individual snowflakes and squeezing the air from the snow turns it into 'glacial ice'. This glacial ice will fill the cirque until it 'overflows' through a geological weakness or vacancy, such as the gap between two mountains. When the mass of snow and ice is sufficiently thick, it begins to move due to a combination of surface slope, gravity and pressure. On steeper slopes, this can occur with as little as 15 m (50 ft) of snow-ice.

In temperate glaciers, snow repeatedly freezes and thaws, changing into granular ice called firn. Under the pressure of the layers of ice and snow above it, this granular ice fuses into denser and denser firn. Over a period of years, layers of firn undergo further compaction and become glacial ice. Glacier ice is slightly less dense than ice formed from frozen water because it contains tiny trapped air bubbles.

Glacial ice has a distinctive blue tint because it absorbs some red light due to an overtone of the infrared OH stretching mode of the water molecule. Liquid water is blue for the same reason. The blue of glacier ice is sometimes misattributed to Rayleigh scattering due to bubbles in the ice.[12]

A glacier cave located on the Perito Moreno Glacier in Argentina.

Structure

A glacier originates at a location called its glacier head and terminates at its glacier foot, snout, or terminus.

Glaciers are broken into zones based on surface snowpack and melt conditions.[13] The ablation zone is the region where there is a net loss in glacier mass. The equilibrium line separates the ablation zone and the accumulation zone; it is the altitude where the amount of new snow gained by accumulation is equal to the amount of ice lost through ablation. The upper part of a glacier, where accumulation exceeds ablation, is called the accumulation zone. In general, the accumulation zone accounts for 60–70% of the glacier's surface area, more if the glacier calves icebergs. Ice in the accumulation zone is deep enough to exert a downward force that erodes underlying rock. After a glacier melts, it often leaves behind a bowl- or amphitheater-shaped depression that ranges in size from large basins like the Great Lakes to smaller mountain depressions known as cirques.

The accumulation zone can be subdivided based on its melt conditions.
  1. The dry snow zone is a region where no melt occurs, even in the summer, and the snowpack remains dry.
  2. The percolation zone is an area with some surface melt, causing meltwater to percolate into the snowpack. This zone is often marked by refrozen ice lenses, glands, and layers. The snowpack also never reaches melting point.
  3. Near the equilibrium line on some glaciers, a superimposed ice zone develops. This zone is where meltwater refreezes as a cold layer in the glacier, forming a continuous mass of ice.
  4. The wet snow zone is the region where all of the snow deposited since the end of the previous summer has been raised to 0 °C.
The "health" of a glacier is usually assessed by determining the glacier mass balance or observing terminus behavior. Healthy glaciers have large accumulation zones, more than 60% of their area snowcovered at the end of the melt season, and a terminus with vigorous flow.

Following the Little Ice Age's end around 1850, glaciers around the Earth have retreated substantially. A slight cooling led to the advance of many alpine glaciers between 1950–1985, but since 1985 glacier retreat and mass loss has become larger and increasingly ubiquitous.[14][15][16]

Motion


Shear or herring-bone crevasses on Emmons Glacier (Mount Rainier); such crevasses often form near the edge of a glacier where interactions with underlying or marginal rock impede flow. In this case, the impediment appears to be some distance from the near margin of the glacier.

Glaciers move, or flow, downhill due to gravity and the internal deformation of ice.[17] Ice behaves like a brittle solid until its thickness exceeds about 50 m (160 ft). The pressure on ice deeper than 50 m causes plastic flow. At the molecular level, ice consists of stacked layers of molecules with relatively weak bonds between layers. When the stress on the layer above exceeds the inter-layer binding strength, it moves faster than the layer below.[18]

Glaciers also move through basal sliding. In this process, a glacier slides over the terrain on which it sits, lubricated by the presence of liquid water. The water is created from ice that melts under high pressure from frictional heating. Basal sliding is dominant in temperate, or warm-based glaciers.

Fracture zone and cracks


Ice cracks in the Titlis Glacier

The top 50 metres (160 ft) of a glacier are rigid because they are under low pressure. This upper section is known as the fracture zone; it mostly moves as a single unit over the plastically flowing lower section. When a glacier moves through irregular terrain, cracks called crevasses develop in the fracture zone. Crevasses form due to differences in glacier velocity. If two rigid sections of a glacier move at different speeds and directions, shear forces cause them to break apart, opening a crevasse. Crevasses are seldom more than 150 feet (46 m) deep but in some cases can be 1,000 feet (300 m) or even deeper. Beneath this point, the plasticity of the ice is too great for cracks to form. Intersecting crevasses can create isolated peaks in the ice, called seracs.

Crevasses can form in several different ways. Transverse crevasses are transverse to flow and form where steeper slopes cause a glacier to accelerate. Longitudinal crevasses form semi-parallel to flow where a glacier expands laterally. Marginal crevasses form from the edge of the glacier, due to the reduction in speed caused by friction of the valley walls. Marginal crevasses are usually largely transverse to flow. Moving glacier ice can sometimes separate from stagnant ice above, forming a bergschrund. Bergschrunds resemble crevasses but are singular features at a glacier's margins.

Crevasses make travel over glaciers hazardous, especially when they are hidden by fragile snow bridges.

Crossing a crevasse on the Easton Glacier, Mount Baker, in the North Cascades, United States

Below the equilibrium line, glacial meltwater is concentrated in stream channels. Meltwater can pool in proglacial lakes on top of a glacier or descend into the depths of a glacier via moulins. Streams within or beneath a glacier flow in englacial or sub-glacial tunnels. These tunnels sometimes reemerge at the glacier's surface.[19]

Speed

The speed of glacial displacement is partly determined by friction. Friction makes the ice at the bottom of the glacier move more slowly than ice at the top. In alpine glaciers, friction is also generated at the valley's side walls, which slows the edges relative to the center.

Mean speeds vary greatly, but is typically around 1 meter per day.[20] There may be no motion in stagnant areas; for example, in parts of Alaska, trees can establish themselves on surface sediment deposits. In other cases, glaciers can move as fast as 20–30 m per day, such as in Greenland's Jakobshavn Isbræ (Greenlandic: Sermeq Kujalleq). Velocity increases with increasing slope, increasing thickness, increasing snowfall, increasing longitudinal confinement, increasing basal temperature, increasing meltwater production and reduced bed hardness.

A few glaciers have periods of very rapid advancement called surges. These glaciers exhibit normal movement until suddenly they accelerate, then return to their previous state. During these surges, the glacier may reach velocities far greater than normal speed.[21] These surges may be caused by failure of the underlying bedrock, the pooling of meltwater at the base of the glacier[22] — perhaps delivered from a supraglacial lake — or the simple accumulation of mass beyond a critical "tipping point".[23]

In glaciated areas where the glacier moves faster than one km per year, glacial earthquakes occur. These are large scale temblors that have seismic magnitudes as high as 6.1.[24][25] The number of glacial earthquakes in Greenland peaks every year in July, August and September and is increasing over time. In a study using data from January 1993 through October 2005, more events were detected every year since 2002, and twice as many events were recorded in 2005 as there were in any other year. This increase in the numbers of glacial earthquakes in Greenland may be a response to global warming.[24][25]

Ogives

Ogives are alternating wave crests and valleys that appear as dark and light bands of ice on glacier surfaces. They are linked to seasonal motion of glaciers; the width of one dark and one light band generally equals the annual movement of the glacier. Ogives are formed when ice from an icefall is severely broken up, increasing ablation surface area during summer. This creates a swale and space for snow accumulation in the winter, which in turn creates a ridge.[26] Sometimes ogives consist only of undulations or color bands and are described as wave ogives or band ogives.[27]

Geography

Black ice glacier near Aconcagua, Argentina

Glaciers are present on every continent and approximately fifty countries, excluding those (Australia, South Africa) that have glaciers only on distant subantarctic island territories. Extensive glaciers are found in Antarctica, Chile, Canada, Alaska, Greenland and Iceland. Mountain glaciers are widespread, especially in the Andes, the Himalayas, the Rocky Mountains, the Caucasus, and the Alps. Mainland Australia currently contains no glaciers, although a small glacier on Mount Kosciuszko was present in the last glacial period.[28] In New Guinea, small, rapidly diminishing, glaciers are located on its highest summit massif of Puncak Jaya.[29] Africa has glaciers on Mount Kilimanjaro in Tanzania, on Mount Kenya and in the Rwenzori Mountains. Oceanic islands with glaciers occur on Iceland, Svalbard, New Zealand, Jan Mayen and the subantarctic islands of Marion, Heard, Grande Terre (Kerguelen) and Bouvet. During glacial periods of the Quaternary, Taiwan, Hawaii on Mauna Kea[30] and Tenerife also had large alpine glaciers, while the Faroe and Crozet Islands[31] were completely glaciated.

The permanent snow cover necessary for glacier formation is affected by factors such as the degree of slope on the land, amount of snowfall and the winds. Glaciers can be found in all latitudes except from 20° to 27° north and south of the equator where the presence of the descending limb of the Hadley circulation lowers precipitation so much that with high insolation snow lines reach above 6,500 metres (21,330 ft). Between 19˚N and 19˚S, however, precipitation is higher and the mountains above 5,000 metres (16,400 ft) usually have permanent snow.

Even at high latitudes, glacier formation is not inevitable. Areas of the Arctic, such as Banks Island, and the McMurdo Dry Valleys in Antarctica are considered polar deserts where glaciers cannot form because they receive little snowfall despite the bitter cold. Cold air, unlike warm air, is unable to transport much water vapor. Even during glacial periods of the Quaternary, Manchuria, lowland Siberia,[32] and central and northern Alaska,[33] though extraordinarily cold, had such light snowfall that glaciers could not form.[34][35]

In addition to the dry, unglaciated polar regions, some mountains and volcanoes in Bolivia, Chile and Argentina are high (4,500 metres (14,800 ft) - 6,900 m (22,600 ft)) and cold, but the relative lack of precipitation prevents snow from accumulating into glaciers. This is because these peaks are located near or in the hyperarid Atacama Desert.

Glacial geology


Diagram of glacial plucking and abrasion

Glacially plucked granitic bedrock near Mariehamn, Åland Islands

Glaciers erode terrain through two principal processes: abrasion and plucking.

As glaciers flow over bedrock, they soften and lift blocks of rock into the ice. This process, called plucking, is caused by subglacial water that penetrates fractures in the bedrock and subsequently freezes and expands. This expansion causes the ice to act as a lever that loosens the rock by lifting it. Thus, sediments of all sizes become part of the glacier's load. If a retreating glacier gains enough debris, it may become a rock glacier, like the Timpanogos Glacier in Utah.

Abrasion occurs when the ice and its load of rock fragments slide over bedrock and function as sandpaper, smoothing and polishing the bedrock below. The pulverized rock this process produces is called rock flour and is made up of rock grains between 0.002 and 0.00625 mm in size. Abrasion leads to steeper valley walls and mountain slopes in alpine settings, which can cause avalanches and rock slides. These add even more material to the glacier.

Glacial abrasion is commonly characterized by glacial striations. Glaciers produce these when they contain large boulders that carve long scratches in the bedrock. By mapping the direction of the striations, researchers can determine the direction of the glacier's movement. Similar to striations are chatter marks, lines of crescent-shape depressions in the rock underlying a glacier. They are formed by abrasion when boulders in the glacier are repeatedly caught and released as they are dragged along the bedrock.

The rate of glacier erosion is variable. Six factors control erosion rate:
  • Velocity of glacial movement
  • Thickness of the ice
  • Shape, abundance and hardness of rock fragments contained in the ice at the bottom of the glacier
  • Relative ease of erosion of the surface under the glacier
  • Thermal conditions at the glacier base
  • Permeability and water pressure at the glacier base
Material that becomes incorporated in a glacier is typically carried as far as the zone of ablation before being deposited. Glacial deposits are of two distinct types:
  • Glacial till: material directly deposited from glacial ice. Till includes a mixture of undifferentiated material ranging from clay size to boulders, the usual composition of a moraine.
  • Fluvial and outwash sediments: sediments deposited by water. These deposits are stratified by size.
Larger pieces of rock that are encrusted in till or deposited on the surface are called "glacial erratics". They range in size from pebbles to boulders, but as they are often moved great distances, they may be drastically different from the material upon which they are found. Patterns of glacial erratics hint at past glacial motions.

Moraines


Glacial moraines above Lake Louise, Alberta, Canada

Glacial moraines are formed by the deposition of material from a glacier and are exposed after the glacier has retreated. They usually appear as linear mounds of till, a non-sorted mixture of rock, gravel and boulders within a matrix of a fine powdery material. Terminal or end moraines are formed at the foot or terminal end of a glacier. Lateral moraines are formed on the sides of the glacier. Medial moraines are formed when two different glaciers merge and the lateral moraines of each coalesce to form a moraine in the middle of the combined glacier. Less apparent are ground moraines, also called glacial drift, which often blankets the surface underneath the glacier downslope from the equilibrium line.

The term moraine is of French origin. It was coined by peasants to describe alluvial embankments and rims found near the margins of glaciers in the French Alps. In modern geology, the term is used more broadly, and is applied to a series of formations, all of which are composed of till. Moraines can also create moraine dammed lakes.

Drumlins


A drumlin field forms after a glacier has modified the landscape. The teardrop-shaped formations denote the direction of the ice flow.

Drumlins are asymmetrical, canoe shaped hills made mainly of till. Their heights vary from 15 to 50 meters and they can reach a kilometer in length. The steepest side of the hill faces the direction from which the ice advanced (stoss), while a longer slope is left in the ice's direction of movement (lee).

Drumlins are found in groups called drumlin fields or drumlin camps. One of these fields is found east of Rochester, New York; it is estimated to contain about 10,000 drumlins.

Although the process that forms drumlins is not fully understood, their shape implies that they are products of the plastic deformation zone of ancient glaciers. It is believed that many drumlins were formed when glaciers advanced over and altered the deposits of earlier glaciers.

Glacial valleys, cirques, arêtes, and pyramidal peaks


Features of a glacial landscape

Before glaciation, mountain valleys have a characteristic "V" shape, produced by eroding water. During glaciation, these valleys are widened, deepened, and smoothed, forming a "U"-shaped glacial valley. The erosion that creates glacial valleys eliminates the spurs of earth that extend across mountain valleys, creating triangular cliffs called truncated spurs. Within glacial valleys, depressions created by plucking and abrasion can be filled by lakes, called paternoster lakes. If a glacial valley runs into a large body of water, it forms a fjord.

Many glaciers deepen their valleys more than their smaller tributaries. Therefore, when glaciers recede, the valleys of the tributary glaciers remain above the main glacier's depression and are called hanging valleys.

At the start of a classic valley glacier is a bowl-shaped cirque, which has escarped walls on three sides but is open on the side that descends into the valley. Cirques are where ice begins to accumulate in a glacier. Two glacial cirques may form back to back and erode their backwalls until only a narrow ridge, called an arête is left. This structure may result in a mountain pass. If multiple cirques encircle a single mountain, they create pointed pyramidal peaks; particularly steep examples are called horns.

Roche moutonnée

Some rock formations in the path of a glacier are sculpted into small hills called roche moutonnée, or "sheepback" rock. Roche moutonnée are elongated, rounded, and asymmetrical bedrock knobs can be produced by glacier erosion. They range in length from less than a meter to several hundred meters long.[36] Roche moutonnée have a gentle slope on their up-glacier sides and a steep to vertical face on their down-glacier sides. The glacier abrades the smooth slope on the upstream side as it flows along, but tears loose and carries away rock from the downstream side via plucking.

Alluvial stratification

As the water that rises from the ablation zone moves away from the glacier, it carries fine eroded sediments with it. As the speed of the water decreases, so does its capacity to carry objects in suspension. The water thus gradually deposits the sediment as it runs, creating an alluvial plain. When this phenomenon occurs in a valley, it is called a valley train. When the deposition is in an estuary, the sediments are known as bay mud.

Outwash plains and valley trains are usually accompanied by basins known as "kettles". These are small lakes formed when large ice blocks that are trapped in alluvium melt and produce water-filled depressions. Kettle diameters range from 5 m to 13 km, with depths of up to 45 meters. Most are circular in shape because the blocks of ice that formed them were rounded as they melted.[37]

Glacial deposits


Landscape produced by a receding glacier

When a glacier's size shrinks below a critical point, its flow stops and it becomes stationary. Meanwhile, meltwater within and beneath the ice leaves stratified alluvial deposits. These deposits, in the forms of columns, terraces and clusters, remain after the glacier melts and are known as "glacial deposits".

Glacial deposits that take the shape of hills or mounds are called kames. Some kames form when meltwater deposits sediments through openings in the interior of the ice. Others are produced by fans or deltas created by meltwater. When the glacial ice occupies a valley, it can form terraces or kames along the sides of the valley.

Long, sinuous glacial deposits are called eskers. Eskers are composed of sand and gravel that was deposited by meltwater streams that flowed through ice tunnels within or beneath a glacier. They remain after the ice melts, with heights exceeding 100 meters and lengths of as long as 100 km.

Loess deposits

Very fine glacial sediments or rock flour is often picked up by wind blowing over the bare surface and may be deposited great distances from the original fluvial deposition site. These eolian loess deposits may be very deep, even hundreds of meters, as in areas of China and the Midwestern United States of America. Katabatic winds can be important in this process.

Isostatic rebound

Isostatic pressure by a glacier on the Earth's crust

Large masses, such as ice sheets or glaciers, can depress the crust of the Earth into the mantle. The depression usually totals a third of the ice sheet or glacier's thickness. After the ice sheet or glacier melts, the mantle begins to flow back to its original position, pushing the crust back up. This post-glacial rebound, which proceeds very slowly after the melting of the ice sheet or glacier, is currently occurring in measurable amounts in Scandinavia and the Great Lakes region of North America.

A geomorphological feature created by the same process on a smaller scale is known as dilation-faulting. It occurs where previously compressed rock is allowed to return to its original shape more rapidly than can be maintained without faulting. This leads to an effect similar to what would be seen if the rock were hit by a large hammer. Dilation faulting can be observed in recently de-glaciated parts of Iceland and Cumbria.

On Mars


Northern polar ice cap on Mars

The polar ice caps of Mars show geologic evidence of glacial deposits. The south polar cap is especially comparable to glaciers on Earth.[38] Topographical features and computer models indicate the existence of more glaciers in Mars' past.[39]

At mid-latitudes, between 35° and 65° north or south, Martian glaciers are affected by the thin Martian atmosphere. Because of the low atmospheric pressure, ablation near the surface is solely due to sublimation, not melting. As on Earth, many glaciers are covered with a layer of rocks which insulates the ice. A radar instrument on board the Mars Reconnaissance Orbiter found ice under a thin layer of rocks in formations called lobate debris aprons (LDAs).[40][41][42][43][44]

The pictures below illustrate how landscape features on Mars closely resemble those on the Earth.

Calcium



From Wikipedia, the free encyclopedia

Calcium,  20Ca
Calcium unter Argon Schutzgasatmosphäre.jpg
Calcium Spectrum.png
Spectral lines of calcium
General properties
Name, symbol calcium, Ca
Pronunciation /ˈkælsiəm/
KAL-see-əm
Appearance dull gray, silver
Calcium in the periodic table
Hydrogen (diatomic nonmetal)
Helium (noble gas)
Lithium (alkali metal)
Beryllium (alkaline earth metal)
Boron (metalloid)
Carbon (polyatomic nonmetal)
Nitrogen (diatomic nonmetal)
Oxygen (diatomic nonmetal)
Fluorine (diatomic nonmetal)
Neon (noble gas)
Sodium (alkali metal)
Magnesium (alkaline earth metal)
Aluminium (post-transition metal)
Silicon (metalloid)
Phosphorus (polyatomic nonmetal)
Sulfur (polyatomic nonmetal)
Chlorine (diatomic nonmetal)
Argon (noble gas)
Potassium (alkali metal)
Calcium (alkaline earth metal)
Scandium (transition metal)
Titanium (transition metal)
Vanadium (transition metal)
Chromium (transition metal)
Manganese (transition metal)
Iron (transition metal)
Cobalt (transition metal)
Nickel (transition metal)
Copper (transition metal)
Zinc (transition metal)
Gallium (post-transition metal)
Germanium (metalloid)
Arsenic (metalloid)
Selenium (polyatomic nonmetal)
Bromine (diatomic nonmetal)
Krypton (noble gas)
Rubidium (alkali metal)
Strontium (alkaline earth metal)
Yttrium (transition metal)
Zirconium (transition metal)
Niobium (transition metal)
Molybdenum (transition metal)
Technetium (transition metal)
Ruthenium (transition metal)
Rhodium (transition metal)
Palladium (transition metal)
Silver (transition metal)
Cadmium (transition metal)
Indium (post-transition metal)
Tin (post-transition metal)
Antimony (metalloid)
Tellurium (metalloid)
Iodine (diatomic nonmetal)
Xenon (noble gas)
Caesium (alkali metal)
Barium (alkaline earth metal)
Lanthanum (lanthanide)
Cerium (lanthanide)
Praseodymium (lanthanide)
Neodymium (lanthanide)
Promethium (lanthanide)
Samarium (lanthanide)
Europium (lanthanide)
Gadolinium (lanthanide)
Terbium (lanthanide)
Dysprosium (lanthanide)
Holmium (lanthanide)
Erbium (lanthanide)
Thulium (lanthanide)
Ytterbium (lanthanide)
Lutetium (lanthanide)
Hafnium (transition metal)
Tantalum (transition metal)
Tungsten (transition metal)
Rhenium (transition metal)
Osmium (transition metal)
Iridium (transition metal)
Platinum (transition metal)
Gold (transition metal)
Mercury (transition metal)
Thallium (post-transition metal)
Lead (post-transition metal)
Bismuth (post-transition metal)
Polonium (post-transition metal)
Astatine (metalloid)
Radon (noble gas)
Francium (alkali metal)
Radium (alkaline earth metal)
Actinium (actinide)
Thorium (actinide)
Protactinium (actinide)
Uranium (actinide)
Neptunium (actinide)
Plutonium (actinide)
Americium (actinide)
Curium (actinide)
Berkelium (actinide)
Californium (actinide)
Einsteinium (actinide)
Fermium (actinide)
Mendelevium (actinide)
Nobelium (actinide)
Lawrencium (actinide)
Rutherfordium (transition metal)
Dubnium (transition metal)
Seaborgium (transition metal)
Bohrium (transition metal)
Hassium (transition metal)
Meitnerium (unknown chemical properties)
Darmstadtium (unknown chemical properties)
Roentgenium (unknown chemical properties)
Copernicium (transition metal)
Ununtrium (unknown chemical properties)
Flerovium (post-transition metal)
Ununpentium (unknown chemical properties)
Livermorium (unknown chemical properties)
Ununseptium (unknown chemical properties)
Ununoctium (unknown chemical properties)
Mg

Ca

Sr
potassiumcalciumscandium
Atomic number 20
Standard atomic weight 40.078(4)
Element category alkaline earth metal
Group, block group 2 (alkaline earth metals), s-block
Period period 4
Electron configuration [Ar] 4s2
per shell 2, 8, 8, 2
Physical properties
Phase solid
Melting point 1115 K ​(842 °C, ​1548 °F)
Boiling point 1757 K ​(1484 °C, ​2703 °F)
Density near r.t. 1.55 g·cm−3
when liquid, at m.p. 1.378 g·cm−3
Heat of fusion 8.54 kJ·mol−1
Heat of vaporization 154.7 kJ·mol−1
Molar heat capacity 25.929 J·mol−1·K−1
vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 864 956 1071 1227 1443 1755
Atomic properties
Oxidation states +2, +1[1] ​(a strongly basic oxide)
Electronegativity Pauling scale: 1.00
Ionization energies 1st: 589.8 kJ·mol−1
2nd: 1145.4 kJ·mol−1
3rd: 4912.4 kJ·mol−1
(more)
Atomic radius empirical: 197 pm
Covalent radius 176±10 pm
Van der Waals radius 231 pm
Miscellanea
Crystal structure face-centered cubic (fcc)
Face-centered cubic crystal structure for calcium
Speed of sound thin rod 3810 m·s−1 (at 20 °C)
Thermal expansion 22.3 µm·m−1·K−1 (at 25 °C)
Thermal conductivity 201 W·m−1·K−1
Electrical resistivity 33.6 nΩ·m (at 20 °C)
Magnetic ordering diamagnetic
Young's modulus 20 GPa
Shear modulus 7.4 GPa
Bulk modulus 17 GPa
Poisson ratio 0.31
Mohs hardness 1.75
Brinell hardness 167 MPa
CAS Registry Number 7440-70-2
History
Discovery and first isolation Humphry Davy (1808)
Most stable isotopes
Main article: Isotopes of calcium
iso NA half-life DM DE (MeV) DP
40Ca 96.941% >5.9×1021 y (β+β+) 0.194 40Ar
41Ca trace 1.03×105 y ε 41K
42Ca 0.647% 42Ca is stable with 22 neutrons
43Ca 0.135% 43Ca is stable with 23 neutrons
44Ca 2.086% 44Ca is stable with 24 neutrons
45Ca syn 162.7 d β 0.258 45Sc
46Ca 0.004% >8.8×1022 y (ββ) 0.988 46Ti
47Ca syn 4.536 d β 0.694, 1.99 47Sc
γ 1.297
48Ca 0.187% 4.3×1019 y ββ 4.274 48Ti
) 0.0058 48Sc
Decay modes in parentheses are predicted, but have not yet been observed


Calcium is a chemical element with symbol Ca and atomic number 20. Calcium is a soft gray alkaline earth metal, fifth-most-abundant element by mass in the Earth's crust. Calcium is also the fifth-most-abundant dissolved ion in seawater by both molarity and mass, after sodium, chloride, magnesium, and sulfate.[2]

Calcium is essential for living organisms, in particular in cell physiology, where movement of the calcium ion Ca2+ into and out of the cytoplasm functions as a signal for many cellular processes. As a major material used in mineralization of bone, teeth and shells, calcium is the most abundant metal by mass in many animals. Calcium does not occur naturally because it reacts with other elements easily. The calcium was formed by alpha particles five billion years ago.[3]

Notable characteristics


Flame test. Brick-red color originates from calcium.

In chemical terms, calcium is reactive and soft for a metal; though harder than lead, it can be cut with a knife with difficulty. It is a silvery metallic element that must be extracted by electrolysis from a fused salt like calcium chloride.[4] Once produced, it rapidly forms a gray-white oxide and nitride coating when exposed to air. In bulk form (typically as chips or "turnings"), the metal is somewhat difficult to ignite, more so even than magnesium chips; but, when lit, the metal burns in air with a brilliant high-intensity orange-red light. Calcium metal reacts with water, generating hydrogen gas at a rate rapid enough to be noticeable, but not fast enough at room temperature to generate much heat, making it useful for generating hydrogen.[5] In powdered form, however, the reaction with water is extremely rapid, as the increased surface area of the powder accelerates the reaction with the water. Part of the reason for the slowness of the calcium–water reaction is a result of the metal being partly protected by insoluble white calcium hydroxide. In water solutions of acids, where this salt is soluble, calcium reacts vigorously.

With a density of 1.54 g/cm3,[6] calcium is the lightest of the alkaline earth metals; magnesium (specific gravity 1.74) and beryllium (1.84) are denser though lighter in atomic mass. From strontium onward, the alkali earth metals become denser with increasing atomic mass.

Calcium has two allotropes.[7]

Calcium has a higher electrical resistivity than copper or aluminium, yet weight-for-weight, due to its much lower density, it is a much better conductor than either. However, its use in terrestrial applications is usually limited by its high reactivity with air.

Calcium salts are colorless from any contribution of the calcium, and ionic solutions of calcium (Ca2+) are colorless as well. As with magnesium salts and other alkaline earth metal salts, calcium salts are often quite soluble in water. Notable exceptions include calcium hydroxide, calcium sulfate (unusual for sulfate salts), calcium carbonate and tricalcium phosphate. With the exception of calcium sulfate, even the insoluble calcium salts listed are in general more soluble than the transition metal counterparts. When in solution, the calcium ion varies remarkably to the human taste, being reported as mildly salty, sour, "mineral-like" or even "soothing." It is apparent that many animals can taste, or develop a taste, for calcium, and use this sense to detect the mineral in salt licks or other sources.[8] In human nutrition, soluble calcium salts may be added to tart juices without much effect to the average palate.

Calcium is the fifth-most-abundant element by mass in the human body, where it is an important cellular ionic messenger with many functions. Calcium also serves as a structural element in bone. It is the relatively high-atomic-number calcium in the skeleton that causes bone to be radio-opaque. Of the human body's solid components after drying and burning of organics (as for example, after cremation), about a third of the total "mineral" mass remaining is the approximately one kilogram of calcium that composes the average skeleton (the remainder being mostly phosphorus and oxygen).

H and K lines

Visible spectra of many stars, including the Sun, exhibit strong absorption lines of singly ionized calcium. Prominent among these are the H-line at 3968.5 Å and the K line at 3933.7 Å of singly ionized calcium, or Ca II. When observing the Sun, or stars with low temperatures, the prominence of the H and K lines in the visible spectra can be an indication of strong magnetic activity in the chromosphere. Measurement of periodic variations of these active regions can also be used to deduce the rotation periods of these stars.[9]

Compounds

Calcium, combined with phosphate, forming hydroxylapatite, is the mineral portion of human and animal bones and teeth. The mineral portion of some corals can also be transformed into hydroxylapatite.
Calcium hydroxide (Ca(OH)2) (slaked lime) is used in many chemical refinery processes and is made by heating limestone at high temperature (above 825 °C) and then carefully adding water to it. When lime is mixed with sand, it hardens into a mortar and is turned into plaster by carbon dioxide uptake. Mixed with other compounds, lime forms an important part of Portland cement.

Calcium carbonate (CaCO3) is one of the common compounds of calcium. It is heated to form quicklime (CaO), which is then added to water (H2O). This forms another material known as slaked lime (Ca(OH)2), which is an inexpensive base material used throughout the chemical industry. Chalk, marble, and limestone are all forms of calcium carbonate.

When water percolates through limestone or other soluble carbonate rocks, it partially dissolves the rock and causes cave formation with their characteristic stalactites and stalagmites, and also forms hard water. Other important calcium compounds are calcium nitrate, calcium sulfide, calcium chloride, calcium carbide, calcium cyanamide and calcium hypochlorite.

A few calcium compounds where calcium is in the oxidation state +1 have also been investigated recently.[1]

Isotopes

Calcium has five stable isotopes (40Ca, 42Ca, 43Ca, 44Ca and 46Ca), plus one more isotope (48Ca) that has such a long half-life that for all practical purposes it can also be considered stable. The 20% range in relative mass among naturally occurring calcium isotopes is greater than for any other element except hydrogen and helium. Calcium also has a cosmogenic isotope, radioactive 41Ca, which has a half-life of 103,000 years. Unlike cosmogenic isotopes that are produced in the atmosphere, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre or so of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar-system anomalies.Ninety-seven percent of naturally occurring calcium is in the form of 40Ca. 40Ca is one of the daughter products of 40K decay, along with 40Ar. While K–Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K-Ca age dating.

The most abundant isotope, 40Ca, has a nucleus of 20 protons and 20 neutrons. This is the heaviest stable isotope of any element that has equal numbers of protons and neutrons. In supernova explosions, calcium is formed from the reaction of carbon with various numbers of alpha particles (helium nuclei), until the most common calcium isotope (containing 10 helium nuclei) has been synthesized.[citation needed]

Isotope fractionation

As with the isotopes of other elements, a variety of processes fractionate, or alter the relative abundance of, calcium isotopes.[10] The best studied of these processes is the mass-dependent fractionation of calcium isotopes that accompanies the precipitation of calcium minerals, such as calcite, aragonite and apatite, from solution. Isotopically light calcium is preferentially incorporated into minerals, leaving the solution from which the mineral precipitated enriched in isotopically heavy calcium. At room temperature the magnitude of this fractionation is roughly 0.25‰ (0.025%) per atomic mass unit (AMU). Mass-dependent differences in calcium isotope composition conventionally are expressed the ratio of two isotopes (usually 44Ca/40Ca) in a sample compared to the same ratio in a standard reference material. 44Ca/40Ca varies by about 1% among common earth materials.[11]
Calcium isotope fractionation during mineral formation has led to several applications of calcium isotopes. In particular, the 1997 observation by Skulan and DePaolo[12] that calcium minerals are isotopically lighter than the solutions from which the minerals precipitate is the basis of analogous applications in medicine and in paleooceanography. In animals with skeletons mineralized with calcium the calcium isotopic composition of soft tissues reflects the relative rate of formation and dissolution of skeletal mineral. In humans changes in the calcium isotopic composition of urine have been shown to be related to changes in bone mineral balance. When the rate of bone formation exceeds the rate of bone resorption, soft tissue 44Ca/40Ca rises. Soft tissue 44Ca/40Ca falls when bone resorption exceeds bone formation. Because of this relationship, calcium isotopic measurements of urine or blood may be useful in the early detection of metabolic bone diseases like osteoporosis.[13]

A similar system exists in the ocean, where seawater 44Ca/40Ca tends to rise when the rate of removal of Ca2+ from seawater by mineral precipitation exceeds the input of new calcium into the ocean, and fall when calcium input exceeds mineral precipitation. It follows that rising 44Ca/40Ca corresponds to falling seawater Ca2+ concentration, and falling 44Ca/40Ca corresponds to rising seawater Ca2+ concentration. In 1997 Skulan and DePaolo presented the first evidence of change in seawater 44Ca/40Ca over geologic time, along with a theoretical explanation of these changes. More recent papers have confirmed this observation, demonstrating that seawater Ca2+ concentration is not constant, and that the ocean probably never is in “steady state” with respect to its calcium input and output.[14][15] This has important climatological implications, as the marine calcium cycle is closely tied to the carbon cycle (see below).

Geochemical cycling

Calcium provides an important link between tectonics, climate and the carbon cycle. In the simplest terms, uplift of mountains exposes Ca-bearing rocks to chemical weathering and releases Ca2+ into surface water. This Ca2+ eventually is transported to the ocean where it reacts with dissolved CO2 to form limestone. Some of this limestone settles to the sea floor where it is incorporated into new rocks. Dissolved CO2, along with carbonate and bicarbonate ions, are referred to as dissolved inorganic carbon (DIC).

Travertine terraces Pamukkale, Turkey

The actual reaction is more complicated and involves the bicarbonate ion (HCO3) that forms when CO2 reacts with water at seawater pH:
Ca2+ + 2HCO
3
CaCO
3
(limestone) + CO
2
+ H
2
O
Note that at ocean pH most of the CO2 produced in this reaction is immediately converted back into HCO
3
. The reaction results in a net transport of one molecule of CO2 from the ocean/atmosphere into the lithosphere.[16]

The result is that each Ca2+ ion released by chemical weathering ultimately removes one CO2 molecule from the surficial system (atmosphere, ocean, soils and living organisms), storing it in carbonate rocks where it is likely to stay for hundreds of millions of years. The weathering of calcium from rocks thus scrubs CO2 from the ocean and atmosphere, exerting a strong long-term effect on climate.[17] Analogous cycles involving magnesium, and to a much smaller extent strontium and barium, have the same effect.

As the weathering of limestone (CaCO3) liberates equimolar amounts of Ca2+ and CO2, it has no net effect on the CO2 content of the atmosphere and ocean. The weathering of silicate rocks like granite, on the other hand, is a net CO2 sink because it produces abundant Ca2+ but very little CO2.

History


'Ain Ghazal figure

Lime as building material was used since prehistoric times going as far back as 7000 to 14000 BC.[18] Significant statues made from lime plaster date back into the 7 millennia BC were found in 'Ain Ghazal.[19] The first dated lime kiln dates back to 2500 BC and was found in Khafajah mesopotamia.[20][21] Calcium (from Latin calx, genitive calcis, meaning "lime")[22] was known as early as the first century when the Ancient Romans prepared lime as calcium oxide. Literature dating back to 975 AD notes that plaster of paris (calcium sulfate), is useful for setting broken bones. It was not isolated until 1808 in England when Sir Humphry Davy electrolyzed a mixture of lime and mercuric oxide.[23]Calcium metal was not available in large scale until the beginning of the 20th century.

Occurrence

Calcium is not naturally found in its elemental state. Calcium occurs most commonly in sedimentary rocks in the minerals calcite, dolomite and gypsum. It also occurs in igneous and metamorphic rocks chiefly in the silicate minerals: plagioclases, amphiboles, pyroxenes and garnets.

Applications

Calcium is used[24]

Calcium compounds

Nutrition

Calcium is an important component of a healthy diet and a mineral necessary for life. The National Osteoporosis Foundation says, "Calcium plays an important role in building stronger, denser bones early in life and keeping bones strong and healthy later in life." Approximately 99 percent of the body's calcium is stored in the bones and teeth.[28] The rest of the calcium in the body has other important uses, such as some exocytosis, especially neurotransmitter release, and muscle contraction. In the electrical conduction system of the heart, calcium replaces sodium as the mineral that depolarizes the cell, proliferating the action potential. In cardiac muscle, sodium influx commences an action potential, but during potassium efflux, the cardiac myocyte experiences calcium influx, prolonging the action potential and creating a plateau phase of dynamic equilibrium. Long-term calcium deficiency can lead to rickets and poor blood clotting and in case of a menopausal woman, it can lead to osteoporosis, in which the bone deteriorates and there is an increased risk of fractures. 
While a lifelong deficit can affect bone and tooth formation, over-retention can cause hypercalcemia (elevated levels of calcium in the blood), impaired kidney function and decreased absorption of other minerals.[29][30] Several sources suggest a correlation between high calcium intake (2000 mg per day, or twice the U.S. recommended daily allowance, equivalent to six or more glasses of milk per day) and prostate cancer.[31] High calcium intakes or high calcium absorption were previously thought to contribute to the development of kidney stones. However, a high calcium intake has been associated with a lower risk for kidney stones in more recent research.[32][33][34] Vitamin D is needed to absorb calcium.
Dairy products, such as milk and cheese, are a well-known source of calcium. Some individuals are allergic to dairy products and even more people, in particular those of non Indo-European descent, are lactose-intolerant, leaving them unable to consume non-fermented dairy products in quantities larger than about half a liter per serving. Others, such as vegans, avoid dairy products for ethical and health reasons.

Many good vegetable sources of calcium exist, including seaweeds such as kelp, wakame and hijiki; nuts and seeds like almonds, hazelnuts, sesame, and pistachio; blackstrap molasses; beans (especially soy beans); figs; quinoa; okra; rutabaga; broccoli; dandelion leaves; and kale. In addition, several foods and drinks, such as orange juice, soy milk, tofu, breakfast cereals, and breads are often fortified with calcium.[35]

Numerous vegetables, notably spinach, chard and rhubarb have a high calcium content, but they may also contain varying amounts of oxalic acid that binds calcium and reduces its absorption. The same problem may to a degree affect the absorption of calcium from amaranth, collard greens, and chicory greens. This process may also be related to the generation of calcium oxalate.

An overlooked source of calcium is eggshell, which can be ground into a powder and mixed into food or a glass of water.[36][37][38]

The calcium content of most foods can be found in the USDA National Nutrient Database.[39]

Dietary supplements


500 milligram calcium supplements made from calcium carbonate

Calcium supplements are used to prevent and to treat calcium deficiencies. Office of Dietary Supplements (National Institutes of Health) recommends that no more than 600 mg of supplement should be taken at a time because the percent of calcium absorbed decreases as the amount of calcium in the supplement increases.[26] It is therefore recommended to spread doses throughout the day.[40] Recommended daily calcium intake for adults ranges from 1000 to 1300 mg.[40] Calcium supplements may have side effects such as bloating and constipation in some people. It is suggested that taking the supplements with food may aid in nullifying these side effects.[40]

Vitamin D is added to some calcium supplements. Proper vitamin D status is important because vitamin D is converted to a hormone in the body, which then induces the synthesis of intestinal proteins responsible for calcium absorption.[41]
  • The absorption of calcium from most food and commonly used dietary supplements is very similar.[42] This is contrary to what many calcium supplement manufacturers claim in their promotional materials.
  • Milk is an excellent source of dietary calcium for those whose bodies tolerate it because it has a high concentration of calcium and the calcium in milk is excellently absorbed.[42]
  • Soymilk and other vegetable milks are usually sold with calcium added so that their calcium concentration is as high as in milk.
  • Also different kind of juices boosted with calcium are widely available.
  • Calcium carbonate is the most common and least expensive calcium supplement. It should be taken with food, and depends on low pH levels (acidic) for proper absorption in the intestine.[43] Some studies suggests that the absorption of calcium from calcium carbonate is similar to the absorption of calcium from milk.[44][45]
  • Antacids frequently contain calcium carbonate, and are a commonly used, inexpensive calcium supplement.
  • Coral calcium is a salt of calcium derived from fossilized coral reefs. Coral calcium is composed of calcium carbonate and trace minerals.
  • Calcium citrate can be taken without food and is the supplement of choice for individuals with achlorhydria or who are taking histamine-2 blockers or proton-pump inhibitors.[46] Calcium citrate is about 21% elemental calcium. 1000 mg will provide 210 mg of calcium. It is more expensive than calcium carbonate and more of it must be taken to get the same amount of calcium.
  • Calcium phosphate costs more than calcium carbonate, but less than calcium citrate. Microcrystalline Hydroxyapatite (MH) is one of several forms of calcium phosphate used as a dietary supplement. Hydroxyapatite is about 40% calcium.
  • Calcium lactate has similar absorption as calcium carbonate,[47] but is more expensive. Calcium lactate and calcium gluconate are less concentrated forms of calcium and are not practical oral supplements.[46]

Bone health

Calcium supplementation can have a small effect in improving bone mineral density. This is of no meaningful benefit to health in children, but in post-menopausal women the risk of vertebral fractures may be reduced.[48][49]

Cardiovascular impact

A study investigating the effects of personal calcium supplement use on cardiovascular risk in the Women’s Health Initiative Calcium/Vitamin D Supplementation Study (WHI CaD Study) found a modestly increased risk of cardiovascular events, particularly myocardial infarction in postmenopausal women. A broad recommendation of calcium/vitamin D supplements is therefore not warranted.[50] In contrast, the authors of a 2013 literature review concluded that the benefits of calcium supplementation, such as on bone health, appear to outweigh any risk calcium supplementation may theoretically pose to the cardiovascular health.[51]

Cancer

Overall, there is no strong evidence calcium supplementation helps prevent cancer in people: some studies suggest it might decrease the risk, but others suggest it might increase the risk. The National Cancer Institute, part of the National Institutes of Health, does not recommend the use of calcium supplements to prevent any type of cancer, due to the lack of evidence supporting its use for this purpose.[52]

There is weak evidence calcium supplementation might have a preventative effect against developing colorectal adenomatous polyps, but the evidence is insufficient to recommend such supplementation as a beneficial practice.[53]

Hazards and toxicity

Compared with other metals, the calcium ion and most calcium compounds have low toxicity. This is not surprising given the very high natural abundance of calcium compounds in the environment and in organisms. Calcium poses few serious environmental problems, with kidney stones the most common side-effect in clinical studies. Acute calcium poisoning is rare, and difficult to achieve unless calcium compounds are administered intravenously. For example, the oral median lethal dose (LD50) for rats for calcium carbonate and calcium chloride are 6.45[54] and 1.4 g/kg,[55] respectively.

Calcium metal is hazardous because of its sometimes-violent reactions with water and acids. Calcium metal is found in some drain cleaners, where it functions to generate heat and calcium hydroxide that saponifies the fats and liquefies the proteins (e.g., hair) that block drains. When swallowed calcium metal has the same effect on the mouth, esophagus and stomach, and can be fatal.[56]

Excessive consumption of calcium carbonate antacids/dietary supplements (such as Tums) over a period of weeks or months can cause milk-alkali syndrome, with symptoms ranging from hypercalcemia to potentially fatal renal failure. What constitutes “excessive” consumption is not well known and, it is presumed, varies a great deal from person to person. Persons consuming more than 10 grams/day of CaCO3 (=4 g Ca) are at risk of developing milk-alkali syndrome,[57] but the condition has been reported in at least one person consuming only 2.5 grams/day of CaCO3 (=1 g Ca), an amount usually considered moderate and safe.[58]

Oral calcium supplements diminish the absorption of thyroxine when taken within four to six hours of each other.[59] Thus, people taking both calcium and thyroxine run the risk of inadequate thyroid hormone replacement and thence hypothyroidism if they take them simultaneously or near-simultaneously.[60][unreliable medical source?]

Excessive[vague] calcium supplementation can be detrimental to cardiovascular health, especially in men.[61][62]

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...