Backpropagation is a method used in artificial neural networks to calculate a gradient that is needed in the calculation of the weights to be used in the network.
Backpropagation is shorthand for "the backward propagation of errors,"
since an error is computed at the output and distributed backwards
throughout the network’s layers. It is commonly used to train deep neural networks, a term referring to neural networks with more than one hidden layer.
Backpropagation is a special case of a more general technique called automatic differentiation. In the context of learning, backpropagation is commonly used by the gradient descent optimization algorithm to adjust the weight of neurons by calculating the gradient of the loss function.
Backpropagation requires the derivative of the loss function with respect to the network output to be known, which typically (but not necessarily) means that the desired target value is known. For this reason, it is considered to be a supervised learning method, although it is used in some unsupervised networks such as autoencoders. Backpropagation is also a generalization of the delta rule to multi-layered feedforward networks, made possible by using the chain rule to iteratively compute gradients for each layer. It is closely related to the Gauss–Newton algorithm and is part of continuing research in neural backpropagation. Backpropagation can be used with any gradient-based optimizer, such as L-BFGS or truncated Newton.
Backpropagation is a special case of a more general technique called automatic differentiation. In the context of learning, backpropagation is commonly used by the gradient descent optimization algorithm to adjust the weight of neurons by calculating the gradient of the loss function.
Backpropagation requires the derivative of the loss function with respect to the network output to be known, which typically (but not necessarily) means that the desired target value is known. For this reason, it is considered to be a supervised learning method, although it is used in some unsupervised networks such as autoencoders. Backpropagation is also a generalization of the delta rule to multi-layered feedforward networks, made possible by using the chain rule to iteratively compute gradients for each layer. It is closely related to the Gauss–Newton algorithm and is part of continuing research in neural backpropagation. Backpropagation can be used with any gradient-based optimizer, such as L-BFGS or truncated Newton.
History
Motivation
The goal of any supervised learning algorithm is to find a function that best maps a set of inputs to their correct output. An example would be a classification task, where the input is an image of an animal, and the correct output is the type of animal (e.g.: dog, cat, giraffe, lion, zebra, etc.).The motivation for backpropagation is to train a multi-layered neural network such that it can learn the appropriate internal representations to allow it to learn any arbitrary mapping of input to output.
Loss function
Sometimes referred to as the cost function or error function (not to be confused with the Gauss error function), the loss function is a function that maps values of one or more variables onto a real number intuitively representing some "cost" associated with those values. For backpropagation, the loss function calculates the difference between the network output and its expected output, after a case propagates through the network.Assumptions
Two assumptions must be made about the form of the error function. The first is that it can be written as an average over error functions , for individual training examples, . The reason for this assumption is that the backpropagation algorithm calculates the gradient of the error function for a single training example, which needs to be generalized to the overall error function. The second assumption is that it can be written as a function of the outputs from the neural network.Example loss function
Let be vectors in .Select an error function measuring the difference between two outputs. The standard choice is the square of the Euclidean distance between the vectors and :
The error function over training examples can then be written as an average of losses over individual examples:
Optimization
The optimization algorithm repeats a two phase cycle, propagation and weight update. When an input vector is presented to the network, it is propagated forward through the network, layer by layer, until it reaches the output layer. The output of the network is then compared to the desired output, using a loss function. The resulting error value is calculated for each of the neurons in the output layer. The error values are then propagated from the output back through the network, until each neuron has an associated error value that reflects its contribution to the original output.Backpropagation uses these error values to calculate the gradient of the loss function. In the second phase, this gradient is fed to the optimization method, which in turn uses it to update the weights, in an attempt to minimize the loss function.
Algorithm
Let be a neural network with connections, inputs, and outputs.Below, will denote vectors in , vectors in , and vectors in . These are called inputs, outputs and weights respectively.
The neural network corresponds to a function which, given a weight , maps an input to an output .
The optimization takes as input a sequence of training examples and produces a sequence of weights starting from some initial weight , usually chosen at random.
These weights are computed in turn: first compute using only for . The output of the algorithm is then , giving us a new function . The computation is the same in each step, hence only the case is described.
Calculating from is done by considering a variable weight and applying gradient descent to the function to find a local minimum, starting at .
This makes the minimizing weight found by gradient descent.
Algorithm in code
To implement the algorithm above, explicit formulas are required for the gradient of the function where the function is .The learning algorithm can be divided into two phases: propagation and weight update.
Phase 1: propagation
Each propagation involves the following steps:- Propagation forward through the network to generate the output value(s)
- Calculation of the cost (error term)
- Propagation of the output activations back through the network using the training pattern target to generate the deltas (the difference between the targeted and actual output values) of all output and hidden neurons.
Phase 2: weight update
For each weight, the following steps must be followed:- The weight's output delta and input activation are multiplied to find the gradient of the weight.
- A ratio (percentage) of the weight's gradient is subtracted from the weight.
Learning is repeated (on new batches) until the network performs adequately.
Pseudocode
The following is pseudocode for a stochastic gradient descent algorithm for training a three-layer network (only one hidden layer):initialize network weights (often small random values) do forEach training example named ex prediction = neural-net-output(network, ex) // forward pass actual = teacher-output(ex) compute error (prediction - actual) at the output units compute for all weights from hidden layer to output layer // backward pass compute for all weights from input layer to hidden layer // backward pass continued update network weights // input layer not modified by error estimate until all examples classified correctly or another stopping criterion satisfied return the network
The lines labeled "backward pass" can be implemented using the backpropagation algorithm, which calculates the gradient of the error of the network regarding the network's modifiable weights.
Intuition
Learning as an optimization problem
To understand the mathematical derivation of the backpropagation algorithm, it helps to first develop some intuitions about the relationship between the actual output of a neuron and the correct output for a particular training case. Consider a simple neural network with two input units, one output unit and no hidden units. Each neuron uses a linear output that is the weighted sum of its input.Initially, before training, the weights will be set randomly. Then the neuron learns from training examples, which in this case consists of a set of tuples where and are the inputs to the network and t is the correct output (the output the network should eventually produce given those inputs). The initial network, given and , will compute an output y that likely differs from t (given random weights). A common method for measuring the discrepancy between the expected output t and the actual output y is the squared error measure:
As an example, consider the network on a single training case: , thus the input and are 1 and 1 respectively and the correct output, t is 0. Now if the actual output y is plotted on the horizontal axis against the error E on the vertical axis, the result is a parabola. The minimum of the parabola corresponds to the output y which minimizes the error E. For a single training case, the minimum also touches the horizontal axis, which means the error will be zero and the network can produce an output y that exactly matches the expected output t. Therefore, the problem of mapping inputs to outputs can be reduced to an optimization problem of finding a function that will produce the minimal error.
However, the output of a neuron depends on the weighted sum of all its inputs:
One commonly used algorithm to find the set of weights that minimizes the error is gradient descent. Backpropagation is then used to calculate the steepest descent direction.
Derivation for a single-layered network
The gradient descent method involves calculating the derivative of the squared error function with respect to the weights of the network. This is normally done using backpropagation. Assuming one output neuron, the squared error function is:- is the squared error,
- is the target output for a training sample, and
- is the actual output of the output neuron.
For each neuron , its output is defined as
The activation function is non-linear and differentiable. A commonly used activation function is the logistic function:
Finding the derivative of the error
Calculating the partial derivative of the error with respect to a weight is done using the chain rule twice:The derivative of the output of neuron with respect to its input is simply the partial derivative of the activation function (assuming here that the logistic function is used):
The first factor is straightforward to evaluate if the neuron is in the output layer, because then and
Considering as a function of the inputs of all neurons receiving input from neuron ,
Putting it all together:
Extension
The choice of learning rate is important, since a high value can cause too strong a change, causing the minimum to be missed, while a too low learning rate slows the training unnecessarily.Optimizations such as Quickprop are primarily aimed at speeding up error minimization; other improvements mainly try to increase reliability.
Adaptive learning rate
In order to avoid oscillation inside the network such as alternating connection weights, and to improve the rate of convergence, refinements of this algorithm use an adaptive learning rate.Inertia
By using a variable inertia term (Momentum) the gradient and the last change can be weighted such that the weight adjustment additionally depends on the previous change. If the Momentum is equal to 0, the change depends solely on the gradient, while a value of 1 will only depend on the last change.Similar to a ball rolling down a mountain, whose current speed is determined not only by the current slope of the mountain but also by its own inertia, inertia can be added:
where:
- is the change in weight in the connection of neuron to neuron at time
- a learning rate (
- the error signal of neuron and
- the output of neuron , which is also an input of the current neuron (neuron ),
- the influence of the inertial term (in ). This corresponds to the weight change at the previous point in time.
With inertia, the problems of getting stuck (in steep ravines and flat plateaus) are avoided. Since, for example, the gradient of the error function becomes very small in flat plateaus, a plateau would immediately lead to a "deceleration" of the gradient descent. This deceleration is delayed by the addition of the inertia term so that a flat plateau can be escaped more quickly.
Modes of learning
Two modes of learning are available: stochastic and batch. In stochastic learning, each input creates a weight adjustment. In batch learning weights are adjusted based on a batch of inputs, accumulating errors over the batch. Stochastic learning introduces "noise" into the gradient descent process, using the local gradient calculated from one data point; this reduces the chance of the network getting stuck in local minima. However, batch learning typically yields a faster, more stable descent to a local minimum, since each update is performed in the direction of the average error of the batch. A common compromise choice is to use "mini-batches", meaning small batches and with samples in each batch selected stochastically from the entire data set.Limitations
- Gradient descent with backpropagation is not guaranteed to find the global minimum of the error function, but only a local minimum; also, it has trouble crossing plateaus in the error function landscape. This issue, caused by the non-convexity of error functions in neural networks, was long thought to be a major drawback, but Yann LeCun et al. argue that in many practical problems, it is not.
- Backpropagation learning does not require normalization of input vectors; however, normalization could improve performance.
History
According to various sources, the basics of continuous backpropagation were derived in the context of control theory by Henry J. Kelley in 1960 and by Arthur E. Bryson in 1961. They used principles of dynamic programming. In 1962, Stuart Dreyfus published a simpler derivation based only on the chain rule. Bryson and Ho described it as a multi-stage dynamic system optimization method in 1969.In 1970 Linnainmaa published the general method for automatic differentiation (AD) of discrete connected networks of nested differentiable functions. This corresponds to backpropagation, which is efficient even for sparse networks.
In 1973 Dreyfus used backpropagation to adapt parameters of controllers in proportion to error gradients. In 1974 Werbos mentioned the possibility of applying this principle to artificial neural networks, and in 1982 he applied Linnainmaa's AD method to neural networks in the way that is used today.
In 1986 Rumelhart, Hinton and Williams showed experimentally that this method can generate useful internal representations of incoming data in hidden layers of neural networks. In 1993, Wan was the first to win an international pattern recognition contest through backpropagation.
During the 2000s it fell out of favour, but returned in the 2010s, benefitting from cheap, powerful GPU-based computing systems. This has been especially so in language structure learning research, where the connectionist models using this algorithm have been able to explain a variety of phenomena related to first and second language learning.