Plant pathology (also phytopathology) is the scientific study of diseases in plants caused by pathogens (infectious organisms) and environmental conditions (physiological factors). Organisms that cause infectious disease include fungi, oomycetes, bacteria, viruses, viroids, virus-like organisms, phytoplasmas, protozoa, nematodes and parasitic plants. Not included are ectoparasites like insects, mites, vertebrate, or other pests that affect plant health
by eating of plant tissues. Plant pathology also involves the study of
pathogen identification, disease etiology, disease cycles, economic
impact, plant disease epidemiology, plant disease resistance, how plant diseases affect humans and animals, pathosystem genetics, and management of plant diseases.
Overview
Control of plant diseases is crucial to the reliable production of
food, and it provides significant problems in agricultural use of land,
water, fuel and other inputs. Plants in both natural and cultivated
populations carry inherent disease resistance, but there are numerous
examples of devastating plant disease impacts such as Irish potato famine and chestnut blight, as well as recurrent severe plant diseases like rice blast, soybean cyst nematode, and citrus canker.
However, disease control is reasonably successful for most crops.
Disease control is achieved by use of plants that have been bred for
good resistance to many diseases, and by plant cultivation approaches
such as crop rotation, use of pathogen-free seed, appropriate planting date and plant density, control of field moisture, and pesticide
use. Across large regions and many crop species, it is estimated that
diseases typically reduce plant yields by 10% every year in more
developed settings, but yield loss to diseases often exceeds 20% in less
developed settings. Continuing advances in the science of plant
pathology are needed to improve disease control, and to keep up with
changes in disease pressure caused by the ongoing evolution and movement
of plant pathogens and by changes in agricultural practices. Plant
diseases cause major economic losses for farmers worldwide. The Food and Agriculture Organization
estimates indeed that pests and diseases are responsible for about 25%
of crop loss. To solve this issue, new methods are needed to detect
diseases and pests early, such as novel sensors that detect plant odours
and spectroscopy and biophotonics that are able to diagnose plant health and metabolism.
Plant pathogens
Fungi
Most phytopathogenic fungi belong to the Ascomycetes and the Basidiomycetes.
The fungi reproduce both sexually and asexually via the production of spores
and other structures. Spores may be spread long distances by air or
water, or they may be soilborne. Many soil inhabiting fungi are capable
of living saprotrophically, carrying out the part of their life cycle in the soil. These are facultative saprotrophs.
Fungal diseases may be controlled through the use of fungicides and other agriculture practices. However, new races of fungi often evolve that are resistant to various fungicides.
Biotrophic fungal pathogens colonize living plant tissue and obtain nutrients from living host cells. Necrotrophic
fungal pathogens infect and kill host tissue and extract nutrients from
the dead host cells. Significant fungal plant pathogens include the following.
Ascomycetes
- Fusarium spp. (Fusarium wilt disease)
- Thielaviopsis spp. (canker rot, black root rot, Thielaviopsis root rot)
- Verticillium spp.
- Magnaporthe grisea (rice blast)
- Sclerotinia sclerotiorum (cottony rot)
Basidiomycetes
- Ustilago spp. (smuts) smut of barley
- Rhizoctonia spp.
- Phakospora pachyrhizi (soybean rust)
- Puccinia spp. (severe rusts of cereals and grasses)
- Armillaria spp. (honey fungus species, virulent pathogens of trees)
Fungus-like organisms
Oomycetes
The oomycetes are fungus-like organisms. They include some of the most destructive plant pathogens including the genus Phytophthora, which includes the causal agents of potato late blight and sudden oak death. Particular species of oomycetes are responsible for root rot.
Despite not being closely related to the fungi, the oomycetes
have developed similar infection strategies. Oomycetes are capable of
using effector proteins to turn off a plant's defenses in its infection
process. Plant pathologists commonly group them with fungal pathogens.
Significant oomycete plant pathogens include:
- Pythium spp.
- Phytophthora spp., including the potato blight of the Great Irish Famine (1845–1849)
Phytomyxea
Some slime molds in Phytomyxea cause important diseases, including club root in cabbage and its relatives and powdery scab in potatoes. These are caused by species of Plasmodiophora and Spongospora, respectively.
Bacteria
Most bacteria that are associated with plants are actually saprotrophic and do no harm to the plant itself. However, a small number, around 100 known species, are able to cause disease. Bacterial diseases are much more prevalent in subtropical and tropical regions of the world.
Most plant pathogenic bacteria are rod-shaped (bacilli).
In order to be able to colonize the plant they have specific
pathogenicity factors. Five main types of bacterial pathogenicity
factors are known: uses of cell wall–degrading enzymes, toxins, effector proteins, phytohormones and exopolysaccharides.
Pathogens such as Erwinia species use cell wall–degrading enzymes to cause soft rot. Agrobacterium species change the level of auxins to cause tumours with phytohormones. Exopolysaccharides are produced by bacteria and block xylem vessels, often leading to the death of the plant.
Bacteria control the production of pathogenicity factors via quorum sensing.
Significant bacterial plant pathogens:
- Burkholderia
- Proteobacteria
- Xanthomonas spp.
- Pseudomonas spp.
- Pseudomonas syringae pv. tomato causes tomato plants to produce less fruit, and it "continues to adapt to the tomato by minimizing its recognition by the tomato immune system."
Phytoplasmas and spiroplasmas
Phytoplasma and Spiroplasma are genera of bacteria that lack cell walls and are related to the mycoplasmas, which are human pathogens. Together they are referred to as the mollicutes. They also tend to have smaller genomes than most other bacteria. They are normally transmitted by sap-sucking insects, being transferred into the plant's phloem where it reproduces.
Viruses, viroids and virus-like organisms
There are many types of plant virus, and some are even asymptomatic. Under normal circumstances, plant viruses cause only a loss of crop yield. Therefore, it is not economically viable to try to control them, the exception being when they infect perennial species, such as fruit trees.
Most plant viruses have small, single-stranded RNA genomes. However some plant viruses also have double stranded RNA or single or double stranded DNA genomes. These genomes may encode only three or four proteins: a replicase, a coat protein, a movement protein, in order to allow cell to cell movement through plasmodesmata,
and sometimes a protein that allows transmission by a vector. Plant
viruses can have several more proteins and employ many different
molecular translation methods.
Plant viruses are generally transmitted from plant to plant by a vector, but mechanical and seed transmission also occur. Vector transmission is often by an insect (for example, aphids), but some fungi, nematodes, and protozoa have been shown to be viral vectors. In many cases, the insect and virus are specific for virus transmission such as the beet leafhopper that transmits the curly top virus causing disease in several crop plants.
Nematodes
Nematodes are small, multicellular wormlike animals. Many live freely in the soil, but there are some species that parasitize plant roots. They are a problem in tropical and subtropical regions of the world, where they may infect crops. Potato cyst nematodes (Globodera pallida and G. rostochiensis) are widely distributed in Europe and North and South America and cause $300 million
worth of damage in Europe every year. Root knot nematodes have quite a
large host range, they parasitize plant root systems and thus directly
affect the uptake of water and nutrients needed for normal plant growth
and reproduction,
whereas cyst nematodes tend to be able to infect only a few species.
Nematodes are able to cause radical changes in root cells in order to
facilitate their lifestyle.
Protozoa and algae
There are a few examples of plant diseases caused by protozoa (e.g., Phytomonas, a kinetoplastid). They are transmitted as durable zoospores that may be able to survive in a resting state in the soil for many years. Further, they can transmit plant viruses. When the motile zoospores come into contact with a root hair they produce a plasmodium which invades the roots.
Some colourless parasitic algae (e.g., Cephaleuros) also cause plant diseases.
Parasitic plants
Parasitic plants such as mistletoe and dodder
are included in the study of phytopathology. Dodder, for example, is
used as a conduit either for the transmission of viruses or virus-like
agents from a host plant to a plant that is not typically a host or for
an agent that is not graft-transmissible.
Common pathogenic infection methods
- Cell wall-degrading enzymes: These are used to break down the plant cell wall in order to release the nutrients inside.
- Toxins: These can be non-host-specific, which damage all plants, or host-specific, which cause damage only on a host plant.
- Effector proteins: These can be secreted into the extracellular environment or directly into the host cell, often via the Type three secretion system. Some effectors are known to suppress host defense processes. This can include: reducing the plants internal signaling mechanisms or reduction of phytochemicals production. Bacteria, fungus and oomycetes are known for this function.
Spores: Spores of phytopathogenic fungi can be a source of
infection on host plants. Spores first adhere to the cuticular layer on
leaves and stems of host plant. In order for this to happen the
infectious spore must be transported from the pathogen source, this
occurs via wind, water, and vectors such as insects and humans. When
favourable conditions are present, the spore will produce a modified
hyphae called a germ tube. This germ tube later forms a bulge called an
appressorium, which forms melanized cell walls to build up tugour
pressure. Once enough turgor pressure is accumulated the appressorium
asserts pressure against the cuticular layer in the form of a hardened
penetration peg. This process is also aided by the secretion of cell
wall degrading enzymes from the appressorium. Once the penetration peg
enters the host tissue it developes a specialized hyphae called a
haustorium. Based on the pathogens life cycle, this haustorium can
invade and feed neighbouring cells intracellularly or exist
intercellulary within a host.
Physiological plant disorders
Abiotic disorders can be caused by natural processes such as drought, frost, snow and hail; flooding and poor drainage; nutrient deficiency; deposition of mineral salts such as sodium chloride and gypsum; windburn and breakage by storms; and wildfires. Similar disorders (usually classed as abiotic) can be caused by human intervention, resulting in soil compaction, pollution of air and soil, salinisation caused by irrigation and road salting, over-application of herbicides, clumsy handling (e.g. lawnmower damage to trees), and vandalism.
Epidemiology
Epidemiology: The study of factors affecting the outbreak and spread of infectious diseases.
A disease tetrahedron (disease pyramid) best captures the elements
involved with plant diseases. This pyramid uses the disease triangle as a
foundation, consisting of elements such as: host, pathogen and
environment. In addition to these three elements, humans and time add
the remaining elements to create a disease tetrahedron.
History: Plant disease epidemics that are historically known based on tremendous losses:
- Irish potato late blight
- Dutch elm disease
- Chestnut blight in North America
Factors affecting epidemics:
Host: Resistance or susceptibility level, age and genetics.
Pathogen: Amount of innoculum, genetics, and type of reproduction
Disease resistance
Plant disease resistance is the ability of a plant to prevent and terminate infections from plant pathogens.
Structures that help plants prevent disease are: cuticular layer,
cell walls and stomata guard cells. These act as a barrier to prevent
pathogens from entering the plant host.
Once diseases have over come these barriers, plant receptors initiate
signalling pathways to create molecules to compete against the foreign
molecules. These pathways are influenced and triggered by genes within
the host plant and are susceptible to being manipulated by genetic
breeding to create varieties of plants that are resistant to destructive
pathogens.
Management
- Quarantine
- A diseased patch of vegetation or individual plants can be isolated from other, healthy growth. Specimens may be destroyed or relocated into a greenhouse for treatment or study. Another option is to avoid the introduction of harmful nonnative organisms by controlling all human traffic and activity (e.g., AQIS), although legislation and enforcement are crucial in order to ensure lasting effectiveness.
- Cultural
- Farming in some societies is kept on a small scale, tended by peoples whose culture includes farming traditions going back to ancient times. (An example of such traditions would be lifelong training in techniques of plot terracing, weather anticipation and response, fertilization, grafting, seed care, and dedicated gardening.) Plants that are intently monitored often benefit from not only active external protection but also a greater overall vigor. While primitive in the sense of being the most labor-intensive solution by far, where practical or necessary it is more than adequate.
- Plant resistance
- Sophisticated agricultural developments now allow growers to choose from among systematically cross-bred species to ensure the greatest hardiness in their crops, as suited for a particular region's pathological profile. Breeding practices have been perfected over centuries, but with the advent of genetic manipulation even finer control of a crop's immunity traits is possible. The engineering of food plants may be less rewarding, however, as higher output is frequently offset by popular suspicion and negative opinion about this "tampering" with nature.
- Chemical
- Many natural and synthetic compounds can be employed to combat the above threats. This method works by directly eliminating disease-causing organisms or curbing their spread; however, it has been shown to have too broad an effect, typically, to be good for the local ecosystem. From an economic standpoint, all but the simplest natural additives may disqualify a product from "organic" status, potentially reducing the value of the yield.
- Biological
- Crop rotation may be an effective means to prevent a parasitic population from becoming well-established, as an organism affecting leaves would be starved when the leafy crop is replaced by a tuberous type, etc. Other means to undermine parasites without attacking them directly may exist.
- Integrated
- The use of two or more of these methods in combination offers a higher chance of effectiveness.